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L PREFACE

In this course, we shall deal with various aspects of Calculus

¥ .. .
. » . Limit and Continuity
‘ o Successive Differentiations
o Partial Differentiation
K o Tangent and Normal
L J :
L 2 Curvature
£ i
S ) .
T o. Asymptotes and Singular Points
. . N \
o~ o Differentiability t

» Taylor's theorem

L
" SYLLABUS \ _ -

Unit1;

= Limits of functions, Sequential criterion for limits, Divergence criteria. Limit theorems, One-sided limits, Infinite
limits and limits at infinity, Continuous functions, Sequential criterion for continuity and discontinuity, Algebra of
continuous functions, Properties of continuous functions on closed and bounded intervals; Uniform continuity,
Non-uniform continuity criteria, Uniform continuity theorem.

Unit 2: ‘
+ .. Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial dlfferentlatlon Eulers
| theorem on homogeneous functions. Tangents and normals, Curvature, Asymptotes, Singular points.
Unit3: .
Differentiability of functions, Algebra of differentiable functions, Carathdodory's theorem and chain rule; Relative

extrema, Interior extremum theorem, Rolle's theorem, Mean-value theorem and its applications, Intermediate
| value property of derivatives - Darboux's theorem. ~

i

Unit4;

:;F ¥
Taylor polynomial, Taylor's theorem with Lagrange form of remainder, Application of Taylor's theorem in error
estimation; Relative extrema, and to establish a criterion for convexity; Taylor's series expansions of simple
trigonometric and exponential functions.
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® Limits of functions and theorems on limits
# Infinite limit and limits at infinity
& Continuous Function
O*Algebra of Continuous functions and properties of continuous function
@ : Uniform Continuity
{ ® Summary
® Objective Evaluation

LEARNING OBJECTIVES

After reading this chapter, you should be able to learn:
; @, Limits of function and related theorem
Continuous functions and its properties -
O Standard results of continuity s
0 Concept of uniform continuity -
. How to classify the continuity, uniform contintity and non-uniform continuity

I8N INTRODUCTION

The most important idea in calculus is that of limit. The concept of the limit is the
foundation of atmost all of mathematical analysis. In this chapter we-shall introduce the’
notion of limits and continuity of a special class of functions whose domain is an interval and
range is contained in R. These functions are known as real valued functions of a single variable.
Since, we shall throughout be concerned with real valued functions only, the word funcnon
will stand for a real valued function. i

R GRAPH OF A FUNCTION

The graph of a function, always play an important role in discussing the nature of a
function f(x). It is defined as follows “If f : X — Y, be a function, then the set of all ordered pair
(x, y) in which x € X, appears as a first element

4 Y

i VANRVANENS

and its image appears as its second
element is called the graph of f.

ie, Graph of a function f: X > ¥
is [{0x, fC} - -jc/eX, fx)ey].

For example., Consider the -1
function
1
= — L XFE '
fx) smx,x 0 ¥y Fig.1
Then, the graph of f(x) is given.
REMARK T ET AT

» By Dedekind Cantor axiom, we know that to every real number, there correspond a unique
point on a directed line and vice versa. Let us consider two mutually prependicular directed
straight lines in a plane intersecting at a point O such that the point O represents the real
number 0 (zero}. We observe that to every ordered pair of real numbers there correspond

a point in the plane and vice -versa. Thus a graph of the function can be regarded as a
collection of points in the plane.

e
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1R LIMIT OF A FUNCTION

Let f(x} be a function defined in some interval I containing a point a, but may or may not
be defined at a itself. We consider the behaviour of f(x) as x—a. It may happen that
the values of f become closer and closer to a number I as x—a i.e.,the absolute value
of the difference (f(x)-I) can be made smaller than any pre-assigned positive number

g, however small, by taking sufficiently close to a. In such a case, we can say that f(x)
approaches or converges or tends to the limit [ as x—»a. We can write

lim f(x)=l or f(x})— lasx—a.
x—=d-

Formally, we define.
Definition. Let f be aﬁmcnon defined in a neighbourhood of a except possible at a. Then
a real number | is said to be the limit of f as x tends to a if given £ >0, however small, there exists
8>0 (depending upon &) such that
If ) —ll<e whenever 0<|x-a|<3
ie., le< f(x) < l4+¢, whenever x ¢ Ja~5,a[U)a,a+5[.

ONE SIDED LIMITS
(i) Right hand Hmit. A function f is said to approach [ as x approaches a from right
if corresponding to an arbitrary positive number ¢, there exists a positive number

§>0 such that
[f()-| <c whenever a<x<a+§
It is written as fla+0)or lim f()=!
x—a+0
and fla+0)= lim fla+h)
h—0

(ii) Left hand limit. A function f is said to approach to ! as x apporaches a from
the left, if corresponding to an arbitrary positive number &, there exists a positive
number §>0 such that

[f(x)~1| <& whenever e—§<x<a

It is written as fla—0) or lim fGO)=!
x—a-0

If both, right hand limit (RHL) and left hand limit (LHL) of f as x—a exist and are
equal in value, then their common value will be the limit of f as x—a.
REMARK . ) S TRy %

» If either or both of these limits do not exists, the limitoffasx —a does not exist. Even 1f both
these limits exist but are not equal in value, then also the limit of f as x = a does not exist.

WORKING PROCEDURE, |

{i) To find the limit on nght put a+h for x in f(x) and then take limit as h—0.
= llm f(x)— llm f(a+h)

(ii) To find the hmlt on left, put a-h for x in f(x)

and then take limit as h—0.
= lim f(x) = hm f(a—h)
x—=a-0
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m GRAPHICAL REPRESENTATION OF RHL AND LHL

o RO D
Lety f() be a function. 1 e e
li If x—a, then for those values of x which S x ffd #*
[igreater than a, let [} be the limit of f(x) y 4 E 2 T
‘L, - i/rf\ -
! lim f(X) II1 or lim y=11. i ’T\ * *
x-at x=a-0 1« L, ! h
This has been shown in the figure (2) by an arround § "‘ = i l '*’% i
from the right because for RHL x—a from the right similarly, ol — X
the LHL = Iy, is shown in the same figure adjoining byant _ ~ “Fig.2 =
arrow from left.

I
lﬂ” LIMIT AT INFINITY AND INFINITE LIMITS
FEXE LIMITS AT INFINITY
(i) A function f(x) is said to tends to a limit I as x—¢ if for given >0, however small,
there exists a positive number 8, such that
L)1 <€ vxz=d
= l-g < f(x)<l+¢ Vxz8
and we write '

lim f(x)=l
Xx—poa

(if) & function f(x) is said to tends to a limit ! as x——oo if for given £>0, however small,
there exists a positive number >0, such that

00| <s Vx<-5

= l-e<f{x)<l+e ¥x=-5
r and we write

! lim f()=1
x—p—o0
{(E37] INFINITE LIMITS

| (i) A function f: A— R, where A c R is said to tend to the limit + « as x—»aq, if for any

given positive number 8; > 0, there exists a positive number 8, such that

x €A, 0<jx—a|<dy=>f(x)>8;
and we write lim f(x)=o
X—a

(i) A function f: A— R, where A ¢ R is said to tend to the limit —  as x-—a, if for any

given positive number 3,,3 a positive number §, such that

x €A 0<|x~al<d, = flx)<~8

and we write lim f(x)= —c0
X=a

(iii) If neither of the above two conditions are satisfied, then the function f(x) is said to
oscillate as x — g, if a number 8, can possibly be assigned such that
{f)| <3, whenever 0<|x ~a| < &,
then the function f is said to oscillate finitely otherwise infinitely.
(iv) A function f(x) is said to tend to o as x—, if for any given positive number N, f
however large, 3 a positive number & such that f(x)>N vx=5

and we write }1_131 )=

i ISelfilnstructionaliMatariall. -
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(v) A function f(x) is Said to tend to -® as x—, if for any given positive number N,
however large, 3 a positive number § such that f{x) < -NVx =z &"

and we write lim f)= ~e0
X=yoa

(vi) A function f{x) is said to tend to  as x— —, if for any given positive number N,
4 however large, 3.a positive number 8 such that fOO>Nvx < -3
(vii} A function f(x) is said to tend to —e as x—-, if for any given positive number N,
however large, 3 a positive number 3 such that f(x)c N Vxs-3

REMARK

e Ifa function f does not tend to a finite limit or to © or — then
{) if it is bounded in a nbd of g, it is said to oscillate finitely.
(i) if it is unbounded in a nbd of a,.it is said to oscillate infinitely.

\

N UNIQUENESS OF LIMIT

THEORENi‘1 The limit of a function, if exists is unique.

Proof. Let f(x) be a funcuon defined on an interval L. Let a & I. Also, let us suppose
11m Sf) exist.

4
Let if possible, f(x) tends to two different limits {; and I as x—a. (I} =)

Take e= 3 (| >0
Since f(x)-» I; as x— a, 3 5;>0 such that
[f(x) - ly | <& whenever 0<|x - al <8, (1)
Now, since f(x}— I, as x—a, 3 5,>0 such that
|f(x) - I3] < whenever 0< |x—a| <8, -.(2)
Let § = min{3,, 85}.Then
[ =1] =1l =f0)+ f() - I} whenever 0< ]x-a| <3
< [F) - 4|+ |f(x)-l5| whenever 0< |x-a] <5

<EgtE= “1-12'

= Th=lzf <12
which is a contradiction.
Hence, 11 = 12

= limit of a function, if exists is unique.

hAlGEBHA OF LIMIT OF FUNCTIONS
THEOREM 1. If J!l_’n':1 feo=tand ,P_,HL g{x)=m,then

@ lim [f)=g0d] =lxm (0 lim [f(x).g0)] =lLm

Gy lim S L orovided mo,
x—a g(x) m

Proof. (i) Given that
lim f()=l and lim g(x)=m
X—d X—da

By definition, for £>0 3 §>0 such that }f{x) -1| <&/ 2




i

—
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and |gC) ~m|<e/2for0Q < |x—a| <8
Consider | {0 280 ~(I£m} | = | (FO-DH(E0-m) | <] (Fe)-D | £] (gG—m) |
<g/2+¢&/2 =¢ for 0< |x-a| <8
= | {f(x)xg(x))-(I=m)| <& whenever 0< |x—a| <8 Hence, lim [f()xg(x)}=lxm

(ii) Since li_l':':lf(x)=l, then for ¢= 1 3 §,>0 such that
[fO)-1] < 1 for 0< |x—a] <&,
or [FO-E] + [I] <1+ |1} for 0< |x—a| < &
= lf(x} | = |fe)-L| + [ <1+11] for 0<|x-a| < & (1)
Also we have lim f(x)=1and lim g(x)=m
. X-3d X=3{

Then, for £>0 3 8,>0 such that

|f0)-1] <¢ and |g()-m| <e for O0< |x—a| <§2 (2)

Now, consider
[f(x).g00) — Im| = [f)g ()} m+f()m-ml| =|{fx) (g(x)—m)-i—m(f(x)—m

= |00 1g0d-m |+ [m| [fo-]| <1+ 1| +|m|)e [Using (1) and (2)]
= gy for 0<|x—a| <3 vshere 5= min {8,385}

= [f()g0)-Im| <g, for 0<|x—a|<s. ,’
Hence, llm f(x) g()=Lm
(i} Since, llm g(x) m=0, t.hen by taking £ = % m, we can obtain that
Eg(x)l>— fm . (1)
Also, as Im are the limits of f(x) and g(x) respectively, for £>>0 3 §,> 0 such that
[f() - 1] <e and |g{x)-m | <& for O< |x—u| <&, «(2)
Now, consider
7(x) 2| _|mf )~ tg(x)] _|m{s(x)=1)=Hg (x)-m)
|g(x) m| | ms() || lmIIS() \
=]+t
‘ Im|.|g(x)| |m|.(m|
2
=2 |_f_f__ﬁ+|2?l| e= g1 for 0<|x—a| < §,where § = min{8;,5,}
| [m|
= M-I <g for 0< |x-a| <3
g{x)
lll‘[‘l Lx] !
o [g X)J ;,prowded m#0
REMARK _ T a
. lim (f £ 230, lim (fg)(x} and lim {i] {x) may exists even if neither of lim f(x) and
X=a X—a g xX—a
xi_l_rEL g0x) exists,

|
l

For example. Let f and g be defined as follows :

_|-1i4f x<a _J 1if x<a
f(x]”{ 1if x>a a“dg(")‘{—l if x>a

Then f+ 2)00)=0¥ x#a and (fg}(x)=-1= (i} (x) ¥ x=a

i _ Ii e =lm (L
= i‘_‘g(ﬂg)(x)—ﬂ, o ()= l—xl_‘}g(g](x)-

T HIgEIfngtructionatiMateriall.. -
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But f_ﬂ fd)=-1 and 151;1 Jw=1.

= lim f(x) does not exist.
x-3a-0

Similarly, }1_1’1"11 g(x) does not exist.

Again, let f and g be defined as follows :

1if x<a -1if x<a
fix ={—l if x>a andg(x)={ 1if x>a
Then, f-x)=0 ¥x#a ’
= lim (f-g)()= 0, but lim f(x) and lim g(x} do not exist.
X+ X—+I X—a

-

[THEOREM 2. If lim f(x) =, then lim | f0)|=|1|.
X—

X—=

Proof. Given that lim f(x)=!

X—a

Then, by definition, for given £>> 0 3 a positive number 5> 0 such that

o) -l < g for0<|x-a| <8
Also, we have 1

16 -1 z| ] fo)]-|1f] ¥ xeR.
From (1) and (2), we have

[ =[] | st -] < efor O< |x—a| <8
= lim [ fO)| exists and lim |f(x)|=[].
X

mammmanrt o agpemreee

X =
REMARK
o Converse, of the above theorem need not be true

RS SO

_J-1if x<a
Fo'r example. Letf(x)—{ 1if x>a

Then |fx}| = 1 Vx=a
: = lim = lim =
)ltlm || = 1butx_m_0f(x) 1 and x—m+0f(X) 1.
=  lim f(x) does not exist.
X—a

e Converse of the above theorem is true only if {=0.

THEOREM 3. If lim f(x) = L then lim ) =l

A=

Proof.  Since lim f(x)=, then for e L5 £>0 3 a positive number 5>0

Such that log(eI —-g) < f(x) < log(el + g)
= el—£<eﬁ"'}<el+s=>}eﬁ'ﬂ-—e!|4a

Hence, lim e'f (x) =
X—da
THEOREM 4. If lim fGd) =1, then lim log f(x) =logl
xr—da

xX—ia

Proof. If lim fO)=1>0

X—a

For ¢ > 03 6 >0 such that

I o L . <! P
_;‘_, _i‘-’ﬁ’ . ‘R?&: 2»31 XL
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THEOREM 7.(Squeeze principle) If functions £ g and h are defined on a deleted nbd D of a

1
bl

Limit and Continuity -

e a— —— - ——— ] ——

O<|x-al<d=le—c< fix)<le +¢

= —-c<log f(x)-log I< ¢ = [log fO)-log I|<e
Hence, lim log f{x} = log!
X—=a

=

HEOREM 5. If f(x) is a function defined on a deleted nbd D of a point a such that f(x)=0, then
if[ lim f(x)=0 provided it exists. |
X—da

Proof. Let lim f(x) = 1.
————— x—=a
I Letif possiblel < Q.

Setting e= I—é-l, we can find a number 8 > 0 such that

[f) - I|<—for0<|x—a[<8 :
= I—u 4f(x)~<!+u forO<|x-a]< 3
= 2 <f(x)<— for0<|x-a) <3 [ezLIl:—laskO)
2 2 2
= f(x)<5 <0 Vx e D, which is a contradiction as f(x)>0.

| Therefore, lim f(x)=0.

X—d

THEOREM 6. If f and g are defined on a deleted nbd D of a point a and f(x)=g(x) V xeD, then
11m fOA= lim g{x) provided both limit exist.

X—=a

Proof. Let us define a function h on D such that
I h{x)= f(x)—g{(x) VxeD.

‘ Then h()>0
' [f(x)>g(x))
= lim h(x}=0 .{1)
X—=a
i Now hm h(x)— hm [f)-gG]= lim fx)- lim g0 . (2)

I: X—a X—d

Now, from (1} and (2), we have
[ lim f0)- lim g(x)]=0 !
X—ad X—a
lim f6)=z lim g(x)

x—a x—=a

point a such that
SO)=g0)=h(¥) ¥xeD and lim fO)="lim h(x)=!

X—=a x—a

then lim g(x) exists and is equal to L.

Proof Since )im f(x)— lim hQx)=l, then for any £>>0 3 a positive number 80 such that

!: o e |fx) = 1| <g and | h(x} - 1| <& for 0< |x-a} <5
or le<f()<l+e
and le<h(x)<l+e for 0< |x—a} <3.
Therefore, we have

le<h(x)=g(x) =f(x) <l+¢ for 0< [x-a| <8

i dGelfiinstructionaliMaterialie
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le<g(x)<l+e for 0< |x-a| <3
= (g0 | < for O< |x—a| <3

Hence, lim g(x) exists and is equal to L.
X—=a

REMARK v .

e The Squeeze principle is also known as Sandwitch theorem.

B s Kl
i
o e,

THEOREM 8.Jf lim f{x) = 0, g(x) is bounded in some deleted neighbourhood of a, then

X—=n

lim f(x).g()=0.
X—=a

Proof. Since g(x) is bounded in some deleted nbd of a, therefore, 3 positive numbers k and
&1 such that
|g(x}| =k whenever 0< |x-a| <5, (1)
Let £>0 since  lim f(x)=0 then 3 §,>0 such that
Xx—=a
Lf0)-0] <e or f(x)| < -E- whenever 0<|x - a| <3y ..(2)
Let § = min{§,, 5,},then.0< |x-a| < § ¥x.
|
Consider | fG)g(x)-0| = 1f()g0) | = 10 | g0 | < E k=¢ [Using (1) and (2)]
= [f(x).g0)-0] <¢
= lim f(x).g(x)=0.
Xx—a
CERTAIN LIMITS
O tim(1+1] - ) B (140" =
xl_l;I:o 1+ ; =e x-0
h .
i) Jim (1+5) i (143)-¢ ) im 28000,
X =0 h X—ea h x—0 x -
_at-1 \ e XP—yP p-1 .
(+) lim =loga Va0 (vi) lim ——=— = paP ™ ¥p=0 and a=0 if p=0
x—=0 X : x=0 xX-—-a
s . sinx - cas li =1
i) Jim SEen i e
s Solved Examples
n n
Example 1. Evaluate lim [x —a ]
- x—al X-a
Solution. Here we have 7 n
— )= x" ~a
fey= x—=a
(a + h)ﬂ -a" 1 n n~1 nn—1) 2.2 n
= fla+h)= i a =3 a +na .h+Ta B
Now, RHL=f(a+0) = lim Fa+h)=na""! (D)
- .
Similarly we can find

LHL = fla-0) = ﬂi_“,% fla-h)=nd"" A2

Now, from (1) and (2} we conclude that
fla+0)=f(a - 0)=na""
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o 1+x) ~1
Example 2. Evaluate lim L)"_
N =0 X

}
Saolution, Here we have

f(x) = .m-_xri

RHL= f(0+0)= 3. 30f(0+h) = M ((1+R)11/n
. = hm%[{1+nh+rt(nTg_llh2+";:},_l} =n

T R0

Also LHL=£(0-0)= 1 f0-my= 10 (¢4 pym 13, p

.1 n(n-1} ,
=fEl—rf(1)-—h|i{1 nh+Th +...}—1J=n

Now, from (1) and (2) we find that
LHL=RHL=n= lim f(x)=n.
x—0
1/x

Example 3. Evaluate. lim (1+x)
R x=0
Solution. Here we have

i feo=(1+x)
- . H T 1/h
RHL = f(0 + Q) = #_%f(0+h)- ’Ex_r)r:)(1+h)

1/x

[ 1(1_1]
. 1, h\n 2) 1 1
= 1+-—. —_— | =141+ — =
fim |1+ e —o (h * Tttt te

Similarly, LHL = f(0-0) = MM (3 _py~1/h

‘ = Hm
h—0

B
x

i [1+1+ 1(1+h) N 1(1+h](1+2h]+”}
h—0 21 3!

=1+1+—!—+l+ =e
2t 3

From (1) and (2) we find that RHL=LHL=e

= lim (1+x]1/x. =e
x—=0

Example 4. Evaluate lim (x sin %J

i x50 1
Solution. Let fOO)= xsin—
- . X

Now, RHL=f(0+0)= M fo+h)

h—0

. 1 1
=1 i =kl in=—
im (0+h)51n(0+hJ lim hsmh_

h—0

]'[ =0xa finite quantity lying between — 1 and 1 =0. ...(1)
|
[I

-(2)

(1D

e (2)

(1)
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LHL = f(0-0)= lim f(O-h)=,{ij‘},(‘?‘h)Si“[oih]

. 1 ®
= lim hsin— =0. (2
h—0 k 0 @)

Now, from (1) and (2) we conclude that RHL = LHL = 0

Hence, lim [xsinl) =0
X

x—=0

.o 1
Example 5. Using £ — 8 definition,evaluate lim x? sin =,
_ x—0 X

.1
Solution. Let f(x) =x?sin =
e l 2 . 1
. then | fo) -0|= x? sin= =|x lsm—
x| X
Now, since sinl <1 therefore
x
2
. fx) -0]=<|x | .
= [f(x) - 0] <& whenever 0< IJ::-2 | <€
i.e.,when 0< [x)< e i.e,when 0< x| <5(3% = ¢)
2
Hence, by the definition of limit, we have lim x sm—l- =0 |
X0 X |
li X _px ] o
Examgple 6. Evaluate xl_r’r:)[(a )/ X fp%
X _ bx |
Solution. Let flx)= =
0+h _ 1 0+h h _1h
a "-b a’ -b
RML = f(0+0)= li 0+h)= lim ——— = lim ———
_ S(o+0) hl-l?of( ) hoo (0+R)  hso K

=lim - 1+hlogea+ (]oge] op m{1Hhloge b+ o (logeb)

h—0
ra

~(log, a a)? + }

2
[ a*=1+x logea+

= lim [(Ioge a - log, b)+ jl-{(loge u)2 - (log, b)z} + ]
h—0 21

’ = logea - lOgeb= loge % (1)
Similarly, we can find
LHL = f(0 - 0)= }im f(O—h)=loge% 2

Thus, we find from (1) and (2) that both RHL and LHL exist and each equal to

a* -b* a
21 L =1 -
o, pese, 3 22" |1, 5

x if xisrational *
-x ifxis irrational

Example 7. Let f(x)= { « Check the existence of the limit of f{x).

""" =1QaifilnstructionaliMaterialt = |



\ fr —
L1m1]t and th;\tmmty -~ -
l

Solution. Here, we-have
}

) = { x ‘if x 'is'ratiqnal
—x -if x isirrational
Now, there are following cases:
Case (i) If a is @ non-zero rational number .
Here, LHL = f(a - 0)= }EIE}} fla-h)

j!irr:) (a -h}=a, if(a-h)isrational
ﬁ
lim <{a-h)=-q, if(a~h)isirrational

h—0

which is not unique.

= fla - 0) does not exist.

= lim f(x) does not exist.

Xx—d
Case (i) If a=0.
Here, LHL=f(0-0)= hrn f(O—h)— hrn f(—h)
|llm (—h) =, 1f hisrational ;I'I
_ JR=0

lim h=0, if-hisimrational -
h=0 !

Similarly, f(0 + 0} =0
Hence, f(0 + 0) = (0 -0)=0= l‘m o f(x) exists and is equal to zero. .
Case (iii) Ifa is an irraa’orgal number

Here, LHL = f(a-0)= A’_rﬂ, fla-h) | o —
(lim (a-h)=a, if(a—nh)isrational
{h—)o N

lim -{a-h)=-a, if(a- f;)is irrational
h—-0

i’_ = ljm f {x) does not exist.
Hence, we have that hmof(x) exists only when a=0.

| x—-2|
2

does not exist,

Example 8. Show that f(x}= lim
N T x—2

1

i, jx-2 .
p Solut!on. Let fx)= 2

|2+h~2| ~ R
N RHL= 2+0_hm 2+h_l —_— = - = lim 1=1
ow fA0= i A= e e h—g) — My T AT
|2 h-2|

= lim L= = im gy,

_f(2 0)_llmf[2 hl= (2 b 2) A A0

Since, f(2+0) * f(2—0).
Hence, lim 12221 4oes not exist.
x—32 X=2 1 i x<1
Example 9. Discuss the existence of the limit of the function f defnied by f= {2-x if 1sx<2
j - 2 i x=z2
| -
Solution. Here, we check the existence of the limitatx=1andx=2. . - -
| Case (i) Atx=1
| RHL =f(1 + 0)= hm f(l +h) - ~

-hm [2—(1+h]] llm (i- h) 1

' B! iSairtingtructionaliMaterialk.”,
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LHL=f(1-0)= ki —h)=lim1=1
f(1-0) h1_r)1r:}f(1 ) Jm

= fAQ+)=fA-0)=1= lirn1 fx) exists and is equal to 1.
X=3

Case (ji) Atx =2 ‘ ‘
RHL=f(2 + 0)= T =f(2+h)=lim 2 =2

= - = li - = li - - =i =
and  LHL=f2-0)= lim f2-h)= lim fl2 - 2~ K))=lim h=0

Since f(2+0)=(2 - 0),hence lim2 flx)does not exist.
X

Example 10. Using £ ~ 3 definition,show that lim —l-(x #0)= 1 '
. x-2X 2
. 1
Solution. Let flo)= e
11:1 order to show that lim f(x) =-;- , we are to prove that for any positive
x—2
number &, we can find a positive number 8, when & depend upon £ ie.,, 3 = 8(¢),
such that
flx) —% < g when O0<|x-2]<3.
e 11 1 2-x
Now, S
A ™
1| |x-2|
= fO) -5l = 2 | (1)

Now, choosing =1 and 0< [x-2| < §, we find that O-clx—2| <l,as8 =<1
ie, |x-2j<land |x-2|>0

= 2-1l<x<24+landx#= 2
= l<x<3andx = 2 o
1 1 1 1 1
= —>—>—andx=2 => il andx#2
1 x 3 . 3 x _
= L tandx=2 BTGV WLV
x| x 3 x |x|
Therefore, from (1), we have
1] |x-2] 1 &
e —<=l
fe) 2| 2 x| 2

5
Now;, let us choose & such that 2 < gle, H<2s.

Also & = 1, therefore, if we take 8 = min{1, 2 &}, we have

f(x)—% < % <& when 0<jx-2]<8
= lim f(x)= 1
x—2 2
Example 11. If lim (<) exists and lim g(x) does not exist, then show that, 1im [ f0O+g03)]
xX—=0 xX—=a ' X0
does not exist.

X—ra

Solution. Let lim f(x}=!Iif exists.



"
Limit-and Lontinuity
I Then by definition of limit of a function, we have
lim fO)= lim f(x) =l
x—a+} X~a-{

Also, given that  lim g(x) does not exist. So let

X—a
. hm g(x) =A1and lim g(x)=A, such that A, #),.
L x—a-0
Now, hm (fx)+g(x)]1= lim f(x)+ lim g(x) L+
xX—a+0 x—a+0 x—a+0
and lim [f0)+g0d]= lim ﬂx)+ lim g0d=l+A,
x—q-0 x—=a-0 x—3a-0)
_ Now,since A=y = L+A= L+A,
i = hm U‘(x)+g(x)] # lim [f)+g(x)]
‘i x—a-{

Hence, lim (ﬂxJ +g(x)) does not exist.
’ x=a+0

éxample 12. Evaluate lim ﬁ-l—x—l
}._____ x=0 X
| x=|x]

Solution. Let ()= -
' Now, RHL = f(0+0)= lim M f0+h)= lim ﬂh)-—hm—h—-—

= = lim =l =] —-__ _I=
and - LHL=(0-0)=, Tpf(0-h) = Jim fi-h)= lim

=1im 2 e 2 G o
h—»0o -h k=0 -h  R-0

|
M Since, f(0+0)=f(0-0). Hence, lin}) fx) does not exist.
X x—

(1)

.(2)

1 Find lim x_ﬁﬂ
X—32 x=2

l. Find lim SinX
” X

] 2x% -8
3 Evaluate the following limit, if exists. lim .
x=2 x-—2

ISeIf2IRStractionaliMaterialr
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TEST YOURSELF

1. Evaluate the following limits:

. 3 y nx .1 TeMx_
(i} lim x2 1 (i) lim ﬂ\ (iii) 1im & 1 (iv} lim ~e1_.l
-1 x° -1 x=0 X x-0 X x—0 /X 41
_|sinx . Ix .
) hmlv—| (vi) lim ; (vil) lim [x(a]/ Jc—1]],::1:«1
x—0 X x—0 V¥ 41 X—on
- .
wiiD) lim YEEVEX Gy g [ 2L ®  lim [“’3")
x=0 x x—0 (1+x)/ -1 x-1 x-1
X
&) lim |2
x=0 Ey

SIE [x] J[x]# 6 and f)=0,[x]=0 where [x] denotes the greatest integer less than or
X —— .

equal to x, then find lim fr).
x—0

2. If flx)=

3. Show that lim-fed)= 1M fx—q),
*350 xX—ra

x, 05xs1 : - ' .

. = 4 . 1 =2 = .
4, Let f(x) {3_ . 1£%<2 Show that x—:{: 0 f(x}=2. Does the limit of fx) at x=1 exists
5. If fix}= aox"+a,x“"_1.+....+an, then prove that chif)'zf(x) =f{a).

0. if x is irrati } .
6. Let f(x)= {1,’ ﬁ; ;: ;;? ;‘;}a‘ , then show that Jlrl_,“:l f(x) does not exist for any aeR.
ANSWERS

1. (i) 4 1 Gi)loga (iv) does not exist  {v) does not exist

2 1 RHL=1

LHL=-1 T
{vi) doesnot exist (vii} log a (wviii)1 Gx)2lg2 ()1 (xi)1

RHL=1LHL=0 "

2. does'not exist 4, does not exist

EEACONTINUITY :

A continuous process is one that goes on smoothly without any sudden change. Continuity
of a function can also be interpreted in a similar way. For better understanding, consider the
following figures. The graph of the function in fig. 3(a) has a sudden cut at the pointx = 4
whereas the graph of the function in fig. 3(b) proceeds smoothly. We say that the function of
fig. 3(b) is continuous, while function of fig. 3(a) is not continuous.

? S »

— e

¢

®

P Fig. 3
Also, while defining” lim f(x), the function f may or may not be defined at x = a. Even if

P T R e Ty FI A DM/ is defined atx = a, lim f{x)-may ot may not be equal to the value of the function at x=a. If
x=a

g
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;‘Lumt and Conhnmty

lim f(x)=f(a), then we say that f is continuous at x = a.
X—HI

CONTINUOUS FUNCTIONS
1

A function f, defined on some nbd of a point ¢, is said to be continucus at a if and only if
any one of the following condition is saitsfied.

[ @) lim £ = f(a)

: x—a

| (i) fla-0)=fa+0)=f(a)

. (iii) for e>0, 3 5>0 such that |f(x) - f(a)| <& whenever 0<|x -a| <3.

, The above all conditions are equivalent to each other, and being simple; are of common
use,

REMARKS o R A

¢ The definition (iii) is known as Cauchy's definition of continuity.
. @ A function fis said to be continuous in [ if it is continuous at every point of the interval 1.
' & From definition (jii), we observe that |f(x}-f(a)| <¢ implies that f(a)—¢ <f () <fla)+e.

¢ The interval ! may be any one of the

following forms ¥
]G.,b[, ]—00,00 [, ]a,m[’ ]_m,b[- i it ﬁ'g}

o If a function is not continuous at a! '
| point, then it is said to be discontinuous X <

e

at that point. N
¢ The value of & depends upon the "‘; ~
values of ¢ and a. v sy

e Checking the continuity of a function i
from the smoothness of its graph is not | ¢

a complete method. Consider the graph i —

¥y = )
Fig.4 _ 4+ __ |
of the function f(x)= x sinl, then we observe that it has no breaks in the nbd of x=0. But this
furntction is not continuous. CJ)fbsetve that the graph oscillate widely near zero.

EE¥] MORE DEFINITIONS OF CONTINUITY ,

a) If l1m f(x) = f(a), then we say that f is continuous to the right of a (or right

contlnuous ata).
(i) If lim o f(x) = fla), then we say that f is continuous to the left of a (or left
xX—ra-

continuous at a).
(iii) A function f is said to be continuous in an open interval Ja, b[ if it is continuous at
every point of ]a, b[.
(iv) A function fis said to be continuous in a closed interval [a, b] ifitis
(1) right continuous ata
(2) continuous at every point of la, b[
{3) left continuous at b.
(v) A function f is said to be continuous in a semi-closed interval [a,b[ if it is
(1) right continuous at a )
(2) continuous at every point of la,b[.
(vi) A function fis continuous in a semi-closed interval la,b] if it 1s
(1) continuous at every point of Ja,b{ .
(2} left continuous at b.
(vu) A funcnon fi is said to be continuous at aeliff hrn f(x) exists, finite and is equal to

it

f(a] othermse the. f'unctlon is said to dlscontmuous atx=a.

[SelfiinstructionaliMateriall
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T (X SEQUENTIAL CONTINUITY OR HEINE'S DEFINITION OF CONTINUITY
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The necessary and sufficient condition for a function £ defined on an interval I C R to
be continuous at a point of interval I is that for each sequence <a,> in I converges'to a, the
sequence <f{a,)> converges to f(a). Le., f is said to be continuous iff

lim f(a) = f(a).
(EX] GRAPHICAL MEANING OF CONTINUITY OF A FUNCTION

Continuity of a function f at a point a graphically means that there is no break in
the graph of the curve y = f(x) at x = a and given however small ¢ > 03 8 > 0 such
that the graph of y = f(x) from x = a - & to a+8 lies between the linesy = f(a) - ¢
and y = fla)+e.
jo ILLUSTRATIONS *

(1) Every constant function f : R— R is continuous on R.

For £>0, acR, |x—a|<e = Je—c|=0<e
(2) The identity function f : X — X R is continuous on R.

Fore>0,8=¢ and |x-aj<e = |x—a| <& VaeR.
(3) The functionf: X —» X", neN.is continuous on R.

ForanyaeR, lim f(x)=a"=fla). y

X—=a
(4) The polynomial funetion f(x)=ag+a;x+...+a,¥" is continuous on R.
For any acR, lij)“ﬂ fo)=f(a).

] DISCONTINUITY i ’ ..

(1) A function f which is not continuous at a point a is said to be discontinuous at

the point ‘a’, where ‘@’ is called the point of discontinuity.of f or f is said to have a
_ discontinuity at a.

(2) A function which is discontinuous even at a single point of an interval, is said to be
-discontinuous in that interval.

(3) A function f can be discontinuous at a point x = g, because of any one of the
following reasons :

() f(x) is not defined atx = a. (ii) Jll_r:la f () does not exist.

(iii) lim f{x) and f(a) both exist but are not equal.
X—da

EWI] TYPE OF DISCONTINUITY
tB[X] REMOVABLE DISCONTINUITY ’ .

A function f is said to have a removable discontinuity at a point a if llm f(x) exists, but
is not equal to the function value ata ,Le,,

fla-0} = fla+0)=f(a)

REMARK e ; IR
» A function f can be made continuous by assigning some suitable value to , such that
s 11rn f(x) = f(a) :

For example. Suppose f is a function defined on ]0, 1[ as follows :

2, 0<x<l,x=&%

f)=
1, 3c=l
2
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1 1 Lo
Then it is clear that f is continuous in )0, 1[ except at the pointx = 5 . At the point x = 2, we |
have |
1 1 1
~-0f=fl=+0f=2 but f[—]=
| d ( P ] d ( 2" 0] 2
i 1
e 1I f has a removable discontinuity at x= 3
i
i 1 1
The discontinuity at x = 7 may be removed by choosing f (E] =1,

DISCONTINUITY OF FIRST KIND

A function f is said to have a discontinuity of first kind at a point a, if both the limits

Sla- 0) and f(a + 0) exist but are not equal. The point a is said to be a point of discontinuity
.from[the left or from right according as

fla-0)2fla)=f(a+0)

or Aa-0)=fa)#Ka+0)
For example. Consider a function f defined on 10, 1[ as follows

[ 1/2, 0<x<l/2
f=1 o, x= %

-1/2, 1Y2<x<1 .
Obviously, f is continuous over the open interval 10,1/2[ and ]1/2;1[ \

At the point x= 1 .
N +
f@*"]:&%f(a”‘] -rf[%] '

= ' f(-%,—" q)-#f(}o‘]

= “fhas a discontinuity of the first kind at x =+ _

) 2
{EIX] DISCONTINUITY OF SECOND KIND

A function f is said to have a discontinuity of second kind at a point a if none of the Limit
f(a—O)and fla+0) exist at a. The point q is said to be a point of discontinuity of second kind
. from the left or from the right according as f(a—0) or fla+0) does not exist.

For example. Consider the function f(x}= cos (E] defined on J~e,e[. The graph of
the function is given below :

Obviously, at the point x = 0, both the llrmts ie, lim cos( J and lim cos( )do‘
x

x—0- x—=0+
not exist. Hence, x = 0 is a point of discontinuity of the second kind.

| MIXED DISCONTINUITY

A function f is said to have a rmxed discontinuity at a point a if f has a discontinuity of

second kind on one side of a and on the other side, a discontinuity of first kind or may be
continuous.

For example. For the function f0) = e/~ sinl then lim F0=0, lim f(x) does not
X x=0-"" x—0+
exist and the function is not defined at x=0. e

—
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Therefore, the function has a discontinuity of
first kind from the left and a discontinuity of the
second kind from the right at x=0. Thus, the function
has a mixed discontinuity at x=0.

INFINITE DIiSCONTINUITY S —

Afunctionfis said to have an infinite discontinuity
atx = a if fla+0) or fla - 0) is +w or —o. lf fhas a
discontinuity at a and is unbounded in every nbd of
a, then £ is said to have an infinite discontinuity at a.

For example, Suppose f(x)= < in J—o,02(, Fig. 7 %

It is clear that f is continuous onl ]-,%[ except o o
at x=0. At x=0, the limits do not exist but tends to infinity. S0, x=0is a point-of infinite
discontinuity. Hence, a rectangular hyperbola is a curve with one point of infinite discontinuity.
JUMP OF A FUNCTION AT A POINT

If f(a+0) and f(a—0) both exist, but not equal, then the jump in the function at x = a is
defined as the non-negative difference f(a+0)~f(a—0).

HEMARK - W 4 . ;fg_&%m ,

o A function having a finite number of jumps in a given iaterval is called piecewise continuous
ot sectionally contim.}ous.

[EWEN FOR FUNCTIONAL LIMITS

Let us suppose the function f{x) be defined on the closed interval [a,b] and let xye [a,b].

Let the upper and lower bounds of the function f(x) in the right hand nbd [xg, xg+h] of
xo be denoted by M and m respectively where M=M(R) and m=m(h). Let the sequence of
diminishing values hj, h,... be assigned to h, which converges to zero, then M(hy), M(hy),
M(h3) ... is a decreasing sequence and so it possesses a lower limit.

Similarly, the sequence m(hy), mhy), m(h3)... is an increasing sequence and have an
upper limit. These lower and upper limits are respectively known as the upper and lower

limits of the function f(x) at x=x, on the right and are denoted by f (xo + 0) and f (xo F 0) .

Flxg +0) = lim M(h) and f(xg +0) = lim m(h)
-0 = 0

If the right hand upper lirnits f(xo +0) is equal to the right hand lower limit flxo+0)
common value is known as the right hand limit of the function f(x) at X = X¢ and is denoted
by flxo + 0) ,,

ie., firo +0) = fOrg+0) = flxo+0)

Similarly, if we consider the left hand nbd [xg—h, Xo] then the upper limit of m(h)and the
lower limit of M(h)are respectively known as the lower and upper limits of the function f(x) at

x=xo on the left and are denoted by flxo+0) and f(xq+0) respectively. A
If the left hand upper limit f(xq -0} is equal to the left hand lower limit _f (%0 -0),

then their common value is known as the left hand limit of the function f(x) at x = xg and is
denoted by flXg—-0)

SelfZInstructionatiMateriall = ¢

ie., flxg-0) = flxg+0) = f(X0+0)
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REMARKS eF ]

e The four numbers f(xq +0), flxg+0) | 'f(xo -0} and f(xp—0) are known as four
functional limits of the function f(x}at x=x,.

# The four functional limits of the function f(x) at x = xy are independent of the value of the

. function f(x) at x = xg.

. ® Atx = 0, the functional limits are denoted by f( } L"‘O),f(—ﬂ) and f(-0).

leg

Example 1. Show that f() = J; _11 is continuous for all values of x except x=1.

ISnIutinn. If X1, then f(x)= (x+ 1)=A polynomial = f(x) is continuous for all values of x=1.
' If x =1-f(x) is of the form 9 , which is not defined and so the function f{x} is
discontinuous at x =1. 0’

o ——

2
Example 2, Show that the ﬁmcnon f(x) is defined by f(x)= { X i: 1 is discontinuous at x =1.
Solution. Here thevalue of f(x) atx = 1is 2. = v f1)=2

Now, RHL = f(1+0)= ,111_’,'}} fa+h)= Pll{_ff}) (1+h)? =1 .
| also, LHL=f(1—0)=;Ei§},f(l—h)=,lli_{,‘}, (1-h?=1

Therefore, we have f(1+0) = f(1- 0} = f(1) !
. .= = f{x} is not continuous at x=1.
Example 3. Examine whether or not the function

t F)= 281%,l-when.vc;to
2, whenx =0
is continuous at x = Q.

 Solution. _QEEIL that f(x)=2, whenx=0 = flo)=2
] . _ [2sin(0+h) ( . sinx J
= = ]. = — e | = A llm —=1
Now, RHL=f(0+0)= lim f(0+h)= lim [ D) 1 2 (v am—
2sin{0 - h)
~ and LHL=f(0 - 0)= lim f (0 - k)= }i| =5 | =2

[ sin (-h)=-sin (h}]

: Therefrore, we have f(0-+0)= f(0 - 0)= f(0)=2 '
Hence, f(x)is continuous at x =2.

' Example 4. A function f(x) is defined as follows

i ( Z/a)ma ,, whenx<a

IJ fey=3.. 0, whenx =0

i! —(az/x), whenx > a

‘I Prove that f(x) is mﬁtinuous at x=a.

Solution. Here; wehave

. . 2
RHL:f((I.'{‘O): Agr‘l._)f(a +h)= }!l_l’)l’;l) [ _ (aa+ h)]

sy

2 .
- |:By using f(x}=a- a? for x>a

CElftnstructionaliMateria
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s ciNotes "E. SR a2 ,
=[d— —-—] =(ﬂ.—ﬂ) = (1)
a
2
. . a-h
and. LHL=f(a-0)= iT, f(a-h)= lim [(——a—)—~ ~ a]
2
By using f(x) = o afor x<a
_ |
== =0 (2)

Also f(x)=0 for x=a
= - fla)=0 - (3)
Now, from (1),(2) and (3), we have fla+0)=f(a-0)=f{a)=0
= fx) is continuous at x=a. .
Example 5. A function f(x) is defined as follows
on T2 153
check the continuity of f(x} at x=2.
Solution, Here, we have

LA =1+4+20r5-2=3 1)
Now, RHL =f(24+0) = lim A2+ k)
) h—0 )
= ,}1_‘{}, [5~(2+h)])= ;{’_’f}; 3-h=3 (2)
and LHL = f(2-0)= lim f(2-h)=lim [1 + (2-#)) =3. -(3)

Now, from (1), (2) and (3); we have
f2+0) =f(2) = f(2-0)= 3
Hence, the function f(x) is continuous at x=2.
Example 6. Show-that the function f defined by

0, for x=0

%-’-x, for 0<x<%

1 1
f(x)=1-, or X=-—

2 f 2

g-—x, for %<x<1

1, for x=1

has three point of di.sco-ntinuity. Find such points. Also draw the graph of the function.
Solution. Here, we observe that the domain of the function f(x) is closed inverval [0,1] when
O<x< % , the function f(x) = % —x, which is being the polynomial is continuous at

each points of its domain. ;
= f(x) is continuous at each point of the open interval ]0,% { when 3 <x<l,

Fo)= %- x, which is also a polynomial in x.

= f(x) is continuous in the open interval ] % A1

CelfInstructionaliMaterial s Now, we check the continuity of f(x) atx = 0, % and 1.
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() Atx=0,
At x=0,

and

fG)=0

(1
= =1l = li =1 s
RHL=f0+0)= lim f(0-+h)= Jm fi= i, _(2 &

= f(0)=f(0+0)

l = f(x) is not continuous at x=0.
ol
) Atx =

f

Atx =

B = B

~ h—0

1 1
=>f(5)¢f(§*0]

= f(x) is not continuous at x= % . |
(iii) Arx=1.
Atx =1, f(x)=1

- - = lim}3_ =lim [=+h|=1
LHL=f(1-0}= hm f(l._h) im [2 (1- h)] %1_% ( J >

= f(l)if (1-0)

) is not continwous at x=1.
Hence, the function f(x) has three points of

} =

discontinuity given by x= 0, % and 1. )
| Graph of f(x). The graph of the function consists _ | i
of the point (0, 0), the segment of the line y= —1- —
‘i 1
x for Q<x< 3 the point

1
- =, th tof
:i [2 ] e segment o

(0 0)

T e et

E

ﬁ".

the line y —E—xfor 5 <x<1 and the point (1,1). , '4

.The graph of f(x} is given as fig. 8.
Example 7, Test the following functions for continuity

(0 f0o) = xsin%, x#0, f(x)=0 at x=0.

(i) fo)= , X0, fx)=0 atx=0
1-e74*
Solution. (i) Here, we have ) )
LHL = f(0-0) = N fo-p)= Hm q_py

= %i_r’ré[—h)sin(_—lh] = lim hsin%

h—0

=0x (a finite quantity lying between 1 and -1)=0

and RHL.= f{0+0)— hm f(0+h)- hl'ﬂ f(h)w lim hsm% =(),
Also f(0)=0 given

= f(0+0) = f(0-0) = f(0).

Hence, the function f{x) is continuous at x=0.

=2IGHIfnstruc tionaliMateria
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(ii) Here, we have

LHL= f(0 - 0)=" 1M f(0-h) = lim f(—h)- i -

1

=0
R

and RHL= f(0+0)= lim f0-+h)
li = li 1 _
- im = i, L =1
Also  fl0)=0 €
= fl0+0)=f(0-0)=f0)
Hence, f(x) is discontinuous at x=0 and this discontinuity is of first kind.

Example 8. Discuss the kind of discontinuity, if any, of the function.

ﬂ{_‘.’ ffx;eo

fl=% x
2, ifx=0

Solution. ‘The given funétion is continuous at all points except possible the origin.

Nowatx =0
—h-~|-h|
-h

LHL= f(0 - 0)= 10 f(0 - )= lim 4y = fim =2
and RHL = f(0+0)= llmf(o+h)— llmf(h) 11m h— |h1

h
Also,  fl0)=2(given)
= (0 -0)=f0)=f(0+0).

Hence, the given function f(x) is discontinuous atx = 0 and this is the. dlscontmmty
of first kind.

Example 9. Discuss the continuity of the function f(x) defined by

x? for x<-2

foy=14 for -25x<2
x? for x>2

Solution. Here, we shall check the continuity of f(x) atx = -2 and 2.

Atx=-2
We have f(~2) =4
Now LHL =f(-2-0)= Ilm f(=2-h)= llm (-2-m?=4

=J |=- =1 —_ =l i =
and RHL =f(-2+0) hll"%f( 2+h) IF!1_1)1':)4 4

= f-2-0) = f(- 2)=f(-2+0)=4

Hence, f{x) is continuous atx = — 2.

Atx =2 /

We have f(2)=4

and RHL=f(2+0)= lim fl2+h)=lim (2+))*=4
h—0 h—0

LHL =f(2-0)= lim f(2-h)= lim 4=4

= fl-0)=A2)=f2+0)=4
Hence, f(x) is continuous atx =2,

Example 0. Show that the function f(x) defired on R by

-

f) = 1 whenxisrational
~1  whenxisirrational

-is discontinuous at every point of R.

—— N e — o A e g A R
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Solution.  Let us first suppose, x be rational. Then f{x)=1. For each positive integer n, let x,,
be an irrational number such that |x,-x| < 1 Then the sequence <x;> converges
n

to x. Now by definition f(x,)= -1 ¥ n.

f = o Jim fee)= - 1#f00.

| Hence, fis dlscontmuous at each ratjional point. :
Now suppose x is an irrational number. Then f(x)— 1. For each positive integer
n,let x,, be-the rational number such that |x,-x| <2 . Then, the sequence <x,>

n >
converges to x. Now f{x,}= 1 ¥ n so that
lllTl fO)=1=f(x).

Hence fis dlscontmuous at each irrational point.
Therefore, f is discontinuous at every point of R.

REMARKS N P

e This function is known as Dirichlet's function.

Example 11.

and

Solution.

4 STUDENT ACTIVITY

1. Find the function defined bezlow for continuity at x=0

— —_— e e e e g e — —_

JRUNE R — F.

11. Let a function f : R—R satisfy the equation
fx+y)=fx)+f(y) ¥xyeR
show that if f is continuous at x=d, then show that it is continuous forall xeR. .

Since the function f is continuous at a, we have
fla)= fa-0) = J{g}})f(a—i'l) = gl_r)r:}f(a) + ’yg})f(—h) _
=fla)+ J]llll_r)r:) fi-h) -
= lim f{-h)=0 ..(1)
h—o. _ ' . i}
Similarly  fla)=fla+0)= A{I:}) fFa +h)= gl_% fla)y+ f{l_l‘:}] S
=fla)+ AI_I’I}) fh)

= J'El_r)r'a E@ =0 - (2)
Now, let x be any arbitrary point of R, then we have

Ax~0)= gin‘(l) Sleah) = fl.lin}) foo+ }!irr:) fR)=f(x) [By using (1)]

— - -
and flec+0)= lim flx+h)= lim fix)+ lim f()=fx) . [By using (2}]
h=0 h=0 h—0 -
7 Thus, fOO)=fx-0)=f(x+0)

= fis continuous at xeR.
Since x is arbitrary. Hence, f is continuous for all xeR.

- -

sin ax

S = for x#0 | -
x . - -

Fx)=1 for x=0,
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PSR T E T 2. Examine the continuity of the function
-x? if x50
f)= 5x2—4 1f0<x$1
{4x“-3x ifl<x<2
13x+4  if x22
atx = 0,1 and 2.
3. Test the continuity of the function at x=0
fl) = xcos[—l-), if x»0, f{0)=0
- _
ef%s TEST YOURGELF
1. Discuss the continuity of the following functions :
) f(x)=.cos(1] when x20f0)=0 @) fo0= % x20/(0)=1
X
. -1
(iii) feO= - 11 = when x=0,and f(0)=0 (iv) f(x)= S'“x X x=0,f0)=1
—¢
Yx g Ix _
) o= ) a0, and f0)=0 () A= St x20/(0)=0
1+e” e’ +1
1/x
(vii) f0) =3x*+2x-1 at x=2 (viii) foo)= ""—lﬂml ,when x=0,f(0) =0
1+el/x x
(ix) f(x)= ——sin—— at x=a () fOO)=sinxcos~ ,when x=0,f(0)=0
X—da X=-q X

1fx

i) fO= "—H ,when x=0,f(0)=0 (xii) foO= {
1+e'*

cosx for x20
~cosx for x <0

e xz__4_{...t.3_ forx=1 . 1 1
(xiii) fO) = »2_1 xiv) flx)= " cos-;
2 for x=1
2. Examine the following function for continuity at x=0 and x=1

2 if x£0

fOO=1{1 if0<xgl
1/x if x>1

3. Find out the points of discontinuity of the following functions.

-1
(i) 'f(x)=(2+elfx) +coseV’™ for x=0, (0)=0.

1
(i) -f(6) = — for =7 <X £ —,n=0,1,2, and f(0) =0
an 2

2R+l
.. ISgitilnstructionaliMareriall |




fLimit and Continuity *

x, i xisrational iza Noted iy, -1 &
4. A function f defined on [0,1] is given by f(x)= 1 . Show that f takes every
3’ if x is irrational ;

R e

- value between 0 and 1, but it is continuous only at the point x=

. 1
5. A function f : R— R is defined as f(x)= +_q Discuss the type of discontinuity which the
' function f(x} has in ]-,0[. -

_ ANSWERS
1. (i} Discontinuous at x=0 (ii) Continuous at x=0
(iii) Discontinuous at x=0 (iv) Contnuous at x=0
(v} Discontinuity of the second kind at x=0
; r? (vi} Discontinuous at x=0 (vii) Continuous
$ I {viii) Discontinuous at x=0 . (ix) Discontinuous
: (x) Continvous for all x . (xi) Discontinuous at x=0
r‘ (xii) Discontinuous at x=0 (xii} Discontinuous at x=1

1! (xiv)Continuous for all x except at x=0

5
2 Dlscontmuous at x=0 and continuous at x=1

3 (i) Dlscontmuous at x=0, mixed discontinuity . Tu

1
(u) Dlsconunuous at x= 3—- 1n=1, 2,, discontinuity of first kind.

Jf.i

5 At Xx=4, funcuon has 1nﬁmte discontinuity and is continuous at all other points in R,

[ 1.12 | THEOHEMS ON I:ONTINUITY

THEOREM 1. If f and g are two continuous function at a potnt ael then the function
' ® f+g o
(iif) fg _ (iv) f/glg(@)=0) are also continuous.
Prool. Since f and g are continuous at a, then
hm f(x) =fla) and lim g(x)}=g(a)

X—a

(D) By definition, we have (f+g)(x)= f(x) +g()vVxel
- hm (F+a) ()= llm [f(x) +g00]= lu‘n f(x)+ lim g(x)

X3

= ( f+g) is continuous.
(i) By definition, we have (¢f) ()= ¢f(x}) Vx eI
Therefore, lim (c)0) = Um of()= ¢ lim fx)=cf(a) = (N (a)
xX—a X=3d X—ra

Hence, cf is continuous at x=a.
(iii) By definition, we have {8 ()} =f00).g(x) vxel.
Therefore,

lim ()00 = lim [f{x).g0)] =[Iim f('x)].[lim-g(x)] =fa).gla)={fg)(a).
X X—a X—1 X3

Hence, fg is continuous at x=a.
(iv} We have

[E](x) i: 8 Vxelg()=0

i, s )1 2 2. 0o

Hence, £ is continuous.
g

elflingtriictionaliMatzriall ;2
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B ITHEOREM 2. If f is continuous at ael, then |f] is also continuous-at d.
Proof. Since f is continuous atx=a = J{{_}n‘:1 fo=fa), .
We know that Lf] )= 1fe) |, xel
= lim {f{ ()= lim |f(x)]| =‘ lim OO} =[fl@)| = 1f| @
x—a X->a x—=4a N

Hence, |f| is continuous.

REMARK .
e. The converse of the above theorem need not be true. For example: consider a function fon
R defined by N

Fx) = 1, if x is rational
—I,] if x is irrational

then |fl(x}=1 VxeR, therefore |f| is continuous at x=0 but f is not continuous at x=0.

THEOREM 3. The necessary and sufficient condition for a function f defined on an interval Ito be
continuous at a point I is that for each sequence <an> of I converges to a, the sequence
<f(a,)> converges to f(a). B

Proof. (i) Necessary condition. Let us first suppose f be continuous at x=a and let th
séquence <a,> in I be such that

lim q,=a
R—bc0

Since, fis continuous at a, therefore for a given £>0 3 a positive integer m such that
Lf)-f(a) | <e whenever |x-a| <5 (1)

Also, lim a,=a, therefore, 3 a positive integer m such that ’
R la,-a| <8 Ynzm ) w(2)

Put x=da,,, in (1), we get
|flay)-f(@)| <& when || <8 we(3)
! Now, from (2) and (3}, we get '
a |fla)fla}| <& ¥V n=m.
. Therefore, I}I_I&f (ay) = fl@).

(i) Condition iz sufficient. Let us suppose the sequence < f(a,,)> converges to f(a)
if every sequence <a,> iii I'eonverging to a.Then, to show that the function f is
continuous at a. T
Let if possible, the function is not continuous at a~Then 3 a positive number £>0
such that for every §>0 3 a x such that o

1
|an_ai4;{

but |fla )@} >« (- fis notcontinuous.)
This shows that r}1_1')1'1 a,=a. Also <f(a,)> does not converge to fla)ie,
lim f(a,)#=f(a)
n—ee
which is a contradiction. _
Hence, f must be continuous at x=4. /
THEOREM 4. A function f : R—»R is continuous on R iff for each open set ACR, f__1 (A) is an open
setin R
Proof. (i) Necessary Condition. Let us first suppose f be continuous on R and let AcR be
" open. Toshow f ' (A)is open. Let -1(A)= ¢, then £ 1(A) is open.
(- ¢ is an open set)
Iff'l(A) >4, let aef‘l(A), then f(@)eA. Since A is an open subset of R containing

“SeletlnstructionaliMaterialiet
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fla), 3 8>0 such that
Ifla)—, flay+e[c A
Now, f is continuous at x=q, 3 §>>0 such that
|f()-f(a) | <&, whenever |x—a| <8

or xela-da+dl = f(x)el fla)-¢, fla)+&[

= fla-3, a+8) c fla)-¢, fla) +s[

= Ja-3, a+8[ < f 1 fla)—¢, fl@+el < f T (A).
Thus for each aef'](A) 18>0 such that Ja - 8, a+8[::f'](A)
= f -1 (A) is open.

{ (ii) Condition is sufficient. Suppose for each open set A in R, f 'I(A) is open. To

show fis continuous on R.

Let aeR :>f(d)eR.

For >0, ] fla~€), fla+¢}[ is an open interval and therefore an open set in R. Then,
by our assumption f -1 1f(a)—¢, fla) +¢[ is an open set containing a.

= 35>0 such that Ja-5, a+8 [ <f {Ifa)—e, fla) +¢[}

or fla-38, a+8)c= If(a)-¢, fla)+el.

Hence, for a givene> 0 3a & > 0 such that [x-a| <8 = [f{x) -fla) | <&
= fis continuous at @,
Since, a is arbitrary. Hence, f is continuous on R.

!

| THEOREMS. A function f: R — R is continuous on R iff for every closed set Bin R, f “1(B) is closed

in R

Proof. Let us first suppose f is continuous on B, where B is a closed subset of R. To show f ¢:))

is closed in R.

Since Bisclosed = R-Bisopen,

- £ R-B) is open and f " (R-B)=R-f(B)
Therefore, we have R—f 1@ isan open setin R,
=, f “1(8) is a closed set in R.

Conversely, let f ~L(B) be closed in R for every closed set B in R.To show, f is continuous.
Now let A be an open setinR

= R-Aisclosed = f -1 (R-A)is closed
= R -l (A) is closed = f ) is open.
Hence, fis continuous.

mli:OREM 6. Let f be a function defined on an interval I, acl and let g be a function defined on

|

|
l

1 . . .
Proof. Since, f is continuous at ael;

an interval I such that f(I,} < Ip. If f is continuous at a and g be continuous at f(a),
then composite function g o f is continuous at a.

B

= il_r)a}l f0) = fla)

i Also, g is continuous at f(a)ely = lin-i )g(y) =g(f(a)]

x— fla
By definition, (g o f}()=glf(x}Ixel; = (g of)a)=g{f(a)]
Now, suppose the sequence <a,> in I; converges to a.
Since, Hi fo)=fiay = m flar)=f(a)
Also f(I} € I and <f{a,)> is a sequence in I,, and -

lim  g()=glf(a)]. Therefore lim g[f(a,)]=g[fla)]
y = f(a) nye

i+~ (SelfInstructionaliMateriatiest
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= lim (g 0 (a=(g of)a).

R—e
Since, this is true for every sequence <a,> in I converging to q, therefore,

lim (goNH}=(gofa).

R—yoa
Hence, the composite function g o f is continuous at a.

REMARKS Y

¢ Borel's theorem. If f is continuous function on the closed interval [a,b], then the interval

can always be divided up into a finite number of subintervals such that & > 0. LGy -
flxz}| <& where, x; and x, are any two points in the same subinterval.

THEOREM 7. (Boundedness theorem). If a function f is continuous in a closed- interval
[a,b),then it is bounded in [a,b].

Proof. Let if possible f be unbounded on I. Then for each neN 3 xpel such that [f(x,)|>n. The
bounded sequence <x,> inIhas a subsequence (xnk ) such that it converges to a point

Xp el )
(- every subsequence of a convergent sequence is convergent.)

= <xnk> —xp and |f(xnk) >m V meN

= ( f (x,,k )> cannot converge to f(xg).

= fis not continuous at xg which is a contradiction.

This contradiction leads to the resuit that f is bounded on 1.
REMARK —

¢ The converse of the above theorem need not be true. For example, the function

1
60 = sm; for x * 0
0 forx=0
is bounded on [0,1] but net continuous in [0,1]. (- It is discontinuous at x=0)

THEOREM 8. If a function f is continuous on a closed and bounded interval [a,b],then, it attains
its bounds on {a,b].
Proof. Since, the function f is continuous on the closed and bounded interval [a,b],
therefore, it is bounded.
= supremum M and infimum m of f exist in [a,b].
To show, there exist two points xj, xze[a,b] such that f(x;)=m, flxa) =M
Then, by definition of supremum f(x)<M Vvxe{a,bl.
Let if possible f(x) =M for any xe [a,b]; then f(x} <M Vxe[a,b]. Therefore,
M - f(x)>0 VYxela,bl.
Since, f{x) is continuous on [a,b] and M is constant, therefore M-f(x) is continuous on
{a,b].
Also M — f(x)=0 for any xe[a,b]

= —L— is continuous on [a, b)

M- f{x) e
1 .

= . ———— is bounded on [g, b]

M- f{x)
= 3 a number k>0 such that
- 1
. ——— =k ¥ xelab)
: M- f(x)
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= M-flx)= % v xe[a,b]
=5 fo) = M- % vxe[a,b]

=M —% is an upper bound if f on [a,b] such that M - %<M=supf(x) which is a

contradiction

= J a point xy€[a,b] such that M = f(x,).

Similarly, we can show that if m= inf f(x) 3 a point x; such that
m = flx))

THEOREM 8. If a function f(x) is continuous at x = a and f(a)#0 then 3 a number §>0 such that

f(x) has same sign as f(a) for all values of x in 1a~8,a+8[.

Praof. Since, f is continuous at x=a, for a given >0, we can find a nuriber 5>0 such that

|f0)—(a) | <€ whenever |x-a| <8
= fla)-e<f(x)<f(a) +& whenever a- §<x<a+3.

Now fla)=0= f(a)| >0. Let.us choose O<g<|f(a)|, then we have f(a)-¢ and
f(a)+e having the same sign as f(a) -

| = ftx) has the same sign as f(a) for all x in the interval Ja-5,a+5[.
|
THEOREM 10. If a function f is continuous in [a,bland f(a), f(b) have opposite signs, then there is

at least one value of x for which f(x) vanishes.

Proof. Since, the function f(x} have opposite signs for @ and b L.e,, fia) <0 and f()>0.

Let us define S= [x:xela, b], f(x)<0].
Now, since f{a) <0, therefore ae$§ = S=¢.
Let it =supS.

Now, to show a<u<b and f(u)=0.
! First, we shall show that usa. Since f(a) <0 and f is continuous at a,

‘ = 3 a number 3 such that f{(x) <0 ¥ x € la, a+35;[.
= [a,a+8;]1 S
= sup S must be greater than or equal to a+35,. Therefore, uza+8§;=u=a.

Now, to show ustb

Since f(b)>0 = 3 8, such that f(x)>0 ¥ xe[b - §5,b]

] ]b—&z,b[ S

i = u=sup S=b-Hy<b = u=b «

Now, we shall show that f{u)0. Since a<u<b, Therefore, if f(i1) >0. Then we can find
a number 84>0 such that f{x)>0 for u—83<x<u+84.

Also, u=sup S. Therefore, I x;€8 : u-d3<x;<u=> f)>0.

Also x1€5= flx1}<0; which is a contradiction

= fu)»0.
Now, we'shall show that f(1}«0. If f(u) <0, then we can find a positive number &, such

thart o
u+34<b and f(x) <0 for u—S4< x<u+3,’

If x5 is any other point such that u<x,<u+8,. Then f(x,) <0. But this is a contradiction
to the fact that u is the supremum of $ consequently f{u)+0.
Hence, f)=0.

_{SelflinstructionaliMaterialF.
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THEOREM 11. (Intermediate value theorem). Let f be a function coﬁtinuous on the closed
and bounded interval [a,b].If k be any real number between f(a) and f(b), then there
exist a real number ¢ between a and b (a<c<b) such that f(c)=k

Proof. Let us suppose Ya

f@)<k<f(b). () PRCRLO)

Define a fucntion g such that ‘ _ /
K

g0)=f)-k; xela,bl. (2} e
@ £ @)

Now, since f is continuous on [a,b] ‘and k is
constant, g is continuous on [a,b). ...I(S'] "
From (1), we say that k lies between f (a) and 5[ »X
f(b). Therefore, either Fig. 10

fla) <k<f(b) or fib)<k<f(a).

From (2), gla)=fla)k<0 = gb)=fb)-k=>0
= gla). gb)<0 w(4)
Now, from {3) and (4) there exists a point ce]a,b[ such that g(c)=0
= fle)-k=0 = flo=k
Hence, these exist a point ¢ such that a <c<b and f(c)=k.
REMARKS LB

¢ The above theorem can be restated as:
If a function f is continuous in the closed interval [a,b], then f(x) must take at least once aof all
values between f(a) and f(b).

o This theorem guarantees only the existence of the number c. It does not tell us how to find
it.Also the number ¢ need not be unique.

e Iffis continuous on [a,b] and let ke[mM] where m=inf. f and M= sup. fon [a,b] then there
exists ce [q,b] such that f{c)=k.

e If fis continuous on [a,b], then f{[a,b])=[m, M].Also, f([a,b]) is a closed set.y

e If fis a continuous, one to one function on a finite closed interval [a, bl,then f is also
continuous on its domain.

ERE] UNIFORM CONTINUITY

We know that if a funcdon f{x) is continuous in YW
the closed interval I, then for a given positive number ¢
g, 3 a positive number 3>0 such that

lfe)-f(a) | < for |x—a| <3,acl. e i

+ Here, we observe that the number & depends on, p(=

I
besides &, on the point a as it is a function of a. In A i
general, 5 is different at different points in L. ! .y
For this, let us consider the figure, where PQis © x=a x=b i
divided into equal parts, each of length e. Fig- 11

The corresponding subdivision of I=[a,b] is such
that § is not the same for all points x in {a,b].

Therefore, if we can find a positive nurnber 8 such that for a chosen &, |f(x)-f(a}| <& for
|x—a | <8, where the number 3 is independent of the point a, then the function f(x) is said to
be uniformly continuous on {a,b].

Definition. A function f(x} defired on an interval I is said to be uniformly continuous in




! !

Lini;it and Continuity

e

[— - —

Iif tlo_ each £>0 3 a positive number &0, (depending upon &) but independent of xel such that

| |flep)—f(x1) | <& whenever |x,-x;| <8
"rl-vhere xq, Xgel,
REMARK R A :
. l:A function f is not uniformly continuous on I, if there exist some >0 for which no 5>0 works
i%’.e., for any 3>0 3 x;,x; € I such that |f(x;)-f(x)| =& for }xy-x;| <8.
. "rI‘he uniform continuity of f on an arbitrary set S can be defined by replacing the interval I by

S in the above definition.

THEOREM 1. If a function f is uniformly contintous on an interval I, then it is continuous on I
m Let us suppose that f is uniformly continuous on I
E = given €>0 3 §>0 such that
if _ |} — fOx) | <&, whenever |xg~x; | <8 Wiy, xpel
| In particular, let us take x € I, then we have
Ix) — fixy) | <g, whenver 0< [x—x; [ <8
= f(x) is continuous at x; el.

| Since, xy is arbitrary, consequently f{x) is continuous on 1. ,
REMARKS [ —

£y

e & Y L A >
[ . ]-'.The converse of the above theorem is not true as can be seen in the example, given below:
Consider the function f(x)=x? ¥xeR which is continuous for all xeR but not uniformly

continuous. )
¢ The uniform continuity is a property associated with an interval and not with a single point
i.e., the concept of continuity is local in character, while the uniform continuity is global in

I+

character.

I

THEOREM 2. If a function f(x) is continuous on an closed and bounded interval I={a,b], then it is
' uniformly continuous on [a,b).

“Praof. Since f is given to be continuous in the interval [a,b].

“ Let & > 0 be given =-[a,b] can be divided into a finite number of subintervals such that
P foe)-fle) | < % , where x,, x5 are any two points of the same subinterval.

Let us divide the whole'interval [a,b] into n sub intervals, say

[XO =d, x]], [xln x2]s [x2s x3]; v ‘,[xn—]: X =b]
.I =  |fx)~fxD)| < % , where x ", x” belongs to the same subinterval ..{1)

|!!Let 8=min{,, 8, ...5,, ...5,} where 5, denotes the length of the /™" subinterval ie,,

6r= I_xr_xr—ll
x c
| | | | | | I | |
|- I | | | I | | |
a=x N X Xyt X1 % Xpy t X G
]
Fig. 12

Let x and ¢ be any two points of (a,b] such that | —¢| <8.

Since 3>-0, less than the length of each subinterval. Therefore, following two cases may
arise:

elf lStFic tionat|Materialia:
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Case (i) When x and ¢ belongs to same interval:

= L) | < -% , when |x—|<8&; wherex, ¢ € [a, b]

= function f is uniformly continuous in [a,b].
Case (i} When x and ¢ belongs to the two consecutive sub intervals say
xr_l<x<xréc*~’-xr+1.

Consider

LA} = L) +fx)-f(} ]
= If(x}‘f(xr) | + |f (xr)_f © |
< % + %when |x - ¢] <8<¢ when jx-¢| <8
Given £>0 3 §>0 such that |f(x) — f(c)| <& where x and c are any two
pomts of [a, b] such that |x—c} <3
=  fis uniformly continuous on [a,b].
Hence, f is continuous on a closed and bounded interval {a, b]
= fis uniformly continuous on [a, b].

Solved Examp

Example 1. Show that the function f() = x+3x, xe[-1,1) is uniformly continuous in [-1,1].
Solution. Let'c>0 be given
Let x;, X3[-1,1)
= (o)) | =] G +3xp)-0cr”+3x1) | =] 0 ™) +30-x) |
=] (xpx1) G431 +3) | =] Xy || Xp+x7+3]

< | x| (] g+ [xy [ +3) =5[] xp¢, | (c1, Xp&[-1,1})
=>|x1|$l and |X2|$1 e
= [fedfox) | <efor x| <3

Thus for any <0, 3 8= E >0 such that

|flxeg) — flx) | <& whenever [xo—xq | <8 ¥V xy, xp€[=1,1].
Hence, f{x) is uniformly continuous in {1, 1].
Example 2. Show that the function f defined by f(x) = is uniformly continuous on [-2,2].
Solution. In order to show that the function f is uniformly continuous we have to prove that

for a given >0 3 8>0 such that e
fiC e itatl <£ when 0< | x5 | <5 where xy, X536 [<2; 2]‘”
Consider [flx)-flx) | = x2 > '
=) () G+, 2+ xp03) |

<l G L] + [x? |+ Jxyep ]
<12| X=Xy | ( xl, Xn€ [—2,2] = |x1 I =2 and |X2 | 52)
[f(xz){(xl) | <& whenever |x;—x; | < E
Therefore, given £0 3 8(=¢/12) such that
|flxy) —f0x1) | <& whenever |xp—x;| <8, X1, x3€[-2, 2].
Hence, f is uniformly continuous on (-2, 2]. .

Example 3. Show that the function f defined by f(x)= % ,¥x&]0, 1] is not uniformly continuous
) in 10, 11.
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Solution. In order to show that the function f is uniformly continuous in }0,1] we have to

prove that for a given £>0 3 §>0,independent of the choice of x, x€]0,1] such that
1
[fG)—-f(c) = < ol <& whenever 0< [x—<| <&
‘Le, | <6 = e
o
ie., xele-8,c+8[ = [L=X| <¢ (D)
C.x .

. Let us take c=4, then ]¢-5, c+8[ = ]0, 26[.
Since, the condition {1) must hold for all xe10,256[
as x—0, M —0 anﬁ xe]0, 28(
Le., if we choose x close to zero, then condition (1) does not hold.
= f)= L s not uniformly continuous in 10,11,
X
Example 4. Show that the function f defined on R¥ as

fod=sin, v x>0
X

is continuous, but not uniformly continuous on R
Solution. LetacR™.

— 1
— B o _limsi _nl
! *  We have LHL=f(a-0)= F111_13'6 fla-hy= lim sin—— = sin—
; 1
= =1 = lim si = sin—~
RHL=f(a+0)= ;'™ fla+h}= f11_1)‘:1bsm — SN
- fla)= sin%
= fa+0) = fla)=f(a-0)
= £ is continuous at a.

Since, a is arbitrary point in RY. Therefore, f is continuous on R
Now, to show £ is not uniformly continuous on R™.
Let & be any positive number, Take

! = i = 1 = - h Z+
Xy — s Xo — R/Z (2]’1 N 1)(1‘() WNETre Ne
1 2 '
such that x;—x,= E__"——(Zn T <3

' . 1,
Now, |x; —x5| <8 but [f(x;) —fl)| = 51nnn—sm5(2n+1)n =1>g

which shows that for this choice of g, we cannot find a 60 such that
|FGe)f(xp) | < for |x;-xp| <8 Vxy,x; € R
Hence, f is not uniformly continuous on R*,

1. Show that f(x)=x is uniformly continuous in {0,1].
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TEST YOURSELF

1. Letf: R—R given f(x) =x?. Show that f is not uniformly continuous on R.
2. Show that the function x* and x* are not uniformly continuous on [0, [.

3. In each of the following cases, show that f is continuous but not unifermly continuous on their
respective intervals.

6))] f(x)=sinl vxe]0,1[ (ii) f(x)=2—1x vxe [-1,0[
(i) fO)=—— ‘v‘xe]O 1[ (iv) fO)=e" vxe[0,0]

4. X flx+y)= f(x) .f(y) ¥x, yeR, show that fis continuous on R if and only if f is continuous at least
one point of R. If f is continuous at some point a<R, prove that f is uniformly continuous on
every bounded subset of R. 5 1

, x“sin— for xz0 . . . .

5. Show that the function f defined by f(x)= %2 is uniformly continuous in

0 for x=0
(-1,1].

6. Show that if f and g are bounded and uniformly continuous on an interval I, then the product

function fg is also uniformly continuous on I.

wIf f and g are two continuous functions at x = d then f+g, f~ g, fg, £ {g #'0) are also
continuous at x=a

« If f is continuous at x = a then |f} is also continuous at x,= a. Converse is not necessarily
true.

= Composite of two continuous functions is a continuous function.

= Every continuous'function is bounded. Converse is not true.

= [f a function fis continuous on [a, b] and ¢ e Ja, b[ such:that f(c} = 0 then there
exists some & > 0 such that f(x) has the same sign-as f(c) ¥ x ¢ J¢ - 8, ¢ +.8[.

» If a function f is continuous on [a, b] thefy

() f(a) > 0= 38> 0 such that f(x) > 0 Yxe g, a+dl
(ii} fla) < 0= 338> 0such that f(x) < 0 Ve [a, a+8{

(iii} f(b) > 0= 36> 0 such that fx)"> 0 v x&1b-8,b]
(iv) f(b) <.0 => 35> 0 such that f(x} < 0 Vvxelb-8bl

= A function f : R — R is continuous on R if and only if for every open set A in R, f_l (A)
is open in R. .

» A function f : R = R is condnuous on R if and only-if for each closed setAin R, f' (A)
is closed in R.

= If a function f is continuous on a closed interval [a, b] such that fla) and f(b) are of
opposite sign that there exists at least one point ce]a, bl such that f{¢) = 0

= If a functon f is continuous on a closed interval [a, b] and f(a) + f(b) then f assume
-every value between f(a) and f(b).

w A function f which is continuous on a closed interval [a, b] assumes every value between
its bounds.
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Limit and Continuity T
AR R i e i i . . ey s mmmemeae
- wEvery.uniformly continuous furiction is continuous. T Y T 7 e
I-t-‘li’ a function f is continuous on a closed and bounded intérval [a, b] then it is uniformly
-contlnuous on {d, b N v S .
SN : R SERAL - i e ’M o o i
FILL IN TI-IE BLANKQ Y A o L M
o - N TE A L g
_' 1. L!l‘nlt of a functlon, 1f ex1st s~ s i w0 oy ’
: w1 e . - .
v 2. [f lun f(x} = { then [un = prowded . e g -
S f(x) L. - T
.3 ’The Iumt of the quonent isequalto-the weof the lumts PUEI O
4. A funct!on f(x) is connnuous atx=aif lim f(x)=, . - . sHN e ”
x<sa B -
. 5, 11m (1+x)”" N Lt
© |x—0 T i PR "y "
by T F
o & 5.
W e L.
U S ; A@ T
8 A polynormal functlon is always . T
NN = -- h}: " E ’ »«. ;;w ”""":%‘ ;
R Y B 8 F1 ., s &r_,@
10.°A functlon is said is' have : if fla+ 0).= f(a 0): f(a) T, A
R ' b - . L I
TRUE/ FALSE . L ¥ dw
Write ‘T’ for true and ‘F’ for false statement. o _ .
4
1 Every continuous- function in clpsed interval i is bounded - :
j-1. Every continuous fur . ar
2 Every continuous function in open interval is bounded i ko + x (T/F)
3. For lim f(x} to exist, the function f(x) must be defined at x-= a. ﬁw A * 'fT/F)
I xoa T i b g
4. The limit of a products is equal to the product of the limits. ° . et (T/F})
3
. x?=1 3
5. flim ——==. v (T/F)
"xﬁlx -1 2 g s . ar .
6. For a function'f(x) to be continuous at x = a, it is necessary that lim f(x) _rnu"s’t exist. (I/F)
. ) . Xoa
7. The function must be defined at the point of continuity. (T/F)
8. Ifa function having a finite number of jumps in a given interval then-function is called
piecewise continuous, _ . (T/F)
9:-Sum of two continucus functions is not necessarily continuous, (T/F}
10 If a function f is continuous in the closed interval [a, b], then f(x} must take at least once all
?' values between fla) and f(b). (T/F)

MULT_I_PLE CHOICE QUESTIONS

Choose the most appropriate one
1, If lim FOoo) = [ and f(x) > 0, then
X=ra

(a) =0 (b) I50 () Iz20 (d) noneof these

2. If lim f(x) = I, then lim [f()] =
X— X=q

(a) M) |1] (cy O @ 1
3. If lim f(x) =land lzm g{x) does not exist,

then:

(a) lim f(x). g{x) does not exist (b} lim f(x). g{x) exist necessarily

X —poo X—pe
(i:) lim f(x}. g(x} may or may not exist (d) none of these
t‘ X oo

|
)
|
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x—=2 x—2__°_ o
(a) 0 ) 1 {© 2 (d) does not exist
5‘ The value of lim' L is:
§ x—)[] X &
(a)v%l *o B0~ () © (d) “does not exist.
6. The value of  lim sinx is: . ”
Y X—jeo wx " B - . p,%—;,"g 5 .
*(a) 1 ® o (c). . @ 27
2. If lim f(x) and_ lim g(x). do not e)nst then lim[f(x)+ gl RETRRIE J y
Xx—a 4 x—-m 5% x—a : P ) ES
+(a) does not exist . ' (b} necessarily exist . % LN g‘ 4
(c) may or may not exist (d) ‘néne of the above “® {
8 The equanon l1m f(x) = lun f{x —a) is: . l
(a) always true . , (b) may or may not be true ey ]
(S (c) always false # (d} depend upon the value of a. -'é-’g. oW
. sme f X200 Tose WS
9. The valuc of K for Wthh fxy= ? © s conn‘nuo’us atx = 0is: .
. k B if X = 0 iy 3
1 - “ . 5
@ 3 ., ®2 © 0 @ 3 .
: _ _.*a;:l_'t
10. Let f (k)= {;x ;i x< 2 , then the value of A is: “J‘T o
2 T3 e
(a) 2 (b)_ 3 © 3 (d) Z v up
" 5 .
ANSWERS - - .
FILL IN THE BLANKS . =
1. ‘Unique 2. 120 3. quotient 4. fla)
5. ¢ 6. ma™ 7.¢e - 8. continuous
9. loga 10. removable discontinuity '
TRUE OR FALSE 4
1T 2. F 3. F 4T 5 T 6. T 7. T
8. T 9 F 10. T
MULTIPLE CHOICE QUESTIONS _ ¥
1. (© 2.0b) 38 (@ 4@ 5 @ 6. (b) 7. (¢
8. (a) 9. (d) 10. (@)

0000
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® n  differentiation of some Standard functwns — U —
@ Use of partial fractions __ _.. by e mm i e % i
) Lelbmtzs theorem . NI & S —— _q@;w L
® Determination of the value of derivativeof a functlon atx=0___ ¥ s
I‘ ot Summary r—..—:;m.:w—'—a—: = o T‘. B =
lr ® Objective Evaluatlon = R T:c
_.J LEARNING OBJECTIVES
e

After going through this unit you will learn:
® How to differentiate the given functions upto finite number of times
® Leibnitz2’s rule which is applicable for the product of two or more functions

AN INTROBUCTION

Let y = f(x) be a function, then the differential coefficient of f(x) denoted by f"(x) is
defined as follows

——— TR

Flx+8x)- f{x) &

i x

If the limit exists (iLe., limit is finite and unique), then f(x} is called first differential
coeﬂ‘!_i.}:ient of () with respect to x. Similarly, if f(x) is differentiable twice, it is denoted by f"(x),
if it is differentiable thrice, it is denoted by f™* (x), i.e.,

f»(x}=£[ﬁ]=ﬂ

T,

| delde) 22
' , dy| d
£(x)= [ dxz] =

Ify = f(x) be a function of x, then we adopt the following notations,

;' n=F= 2 < 0y(r)= £{11x)
T s el - S

d &
1= £"(s)= 5 =D fl)= (0]
! e e
| Yo=F(x )=—"= 1= {1t

Definition. Tht.s process of ﬁndmg the dt_ﬁ%renttai coefficients of a function is called
successive differentiation.

'
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2.2 n™ DIFFERERTIATION OF SOME STANDARD FUNCTIONS

@) y = fix) =x". .
Wehave ¥=f(x)=x"
n=Fx= 1

¥y = f{x)=n{n-1)"7
ya=f"(x)= n[n-l)(n—2)x"'3

¥, = f(x)=nfn-1)(n-2)..32.14°

dn
= Ex—n(x“) = Yp = 1!

(i) y = f(x) = x™
Wehave y,= f(x)=mx™?, y; = f7(x) = m(m-1)x""2,

) [m(m - 1)Em -2)..{m-n+1){m- n)...3.2.1]xm_n

A my M men
= yn "'dxﬂ (x ) (m——n)'x
1
@) y = £60 = Gax41)-
a f ( ) a?.2
We have = f(x)=- ,  Ya=f"lx)= ,
7 (@ +7
.23 n.n
= f* = - ny ("*l) a .2.3.4...
o= (ax+b)* 2 oo o =f"x)= n+1 -
ax +b)
_ﬂ[ 1 J_(-l]n.an.n!
= yn_dxn ax+b _(ar+b)n+] .
(V) y =) = ——
(ax +b)
a?.m(m+1)
* am ' =f” =
We have ylsf[x)=—mg Y2 f (X) (ax+b)m+2 R

a?‘.m(m + 1)(m+ 2)
(ax+b™ o

am{m+1)(m+2)..(m+n-1)

ya= £7{x)=-

In =fn(x)-=(_1)n

{ax+b)™"
d" 1 a".(m+n-1)!
= =(-1)"
= I [(ax +by™ ] (m 1)1 {ax+b)"""

(v) y = f(x) = sin (ax + b).
Wehave y, = f‘(x)=acos(ax+b)=asin(12[—+ax+b),

Ya= f”(x) = a? COS(-;E+ax+b) = q® sin(2%+ax+b]

SelfZiastructionaliMateria
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y3=f"{x)= asms[z.g+ax+b]=a3 Sin(B.%+ax+bJ

f"( )-a cos((n 1} +a.x+b] a"sin(n.%+ax+b)
n

= Yp = :x“ [sin{ax + b)) =a" sin(%f&x+b}

(v) y = £00) = cos (ax + b).

We have y1 = f'{x) = -asin(ax+b) = acos(g+ax+b) ,
¥z = f7(x) = -a? sin(g +ax+b)=a? r:os(?zE +ax+ b)
Y3 =f"(x)=-a® sin(2.g+ax +b)=a° cos(3%+ax+b)
= f{x)=-a" sin((n - 1)1;~+ax+b] =a" cos(—nzﬁ+ax+ b]
=

n
Yn= i?[coé(ax +b)]=a" cos(%T£ +ax + b]

(lvt'ii] y = f[x] = eax+h. i

We have yi.= f(x) = ae™*?
yz = f”(x)= az'eax-l-b
)’3 = fm'(x)= a3.eax+b
;: fn( ) —nu-n ||a-x+b arran
| dn
' - Vi ':E'x?( ax+b) ae ax+b
(Viii) y = f(x) = log (ax + b).
We have = 4 .,
X1 f ( ] ax+b

Now using result (iii), we get

mn
| yn = £ ()= (-t 2D

[ (ax+b)n
l
. dn‘ _ a“(n—l)!
: = —[log(ax +b)] = (1P 1 =222
! = ¥n dxt B (ax+b)n
(
We have yn=F(x )=ae‘“.sin(bx+c}+be“" cos(bx +¢)

= e {asin(bx + ¢} + beos(bx +¢)]

ix = f(x) = eV sin(bx+¢) |
[
|
1

Put a=rcos8,b=rsind = r2=a2+b2andtan9=b/ai.e.,e=tan_lb/a

i Therefore, y; = f'(x)=r.e™sin(bx+c+8)

= (a2 + b)Y? o= sin(bx +c+ tan~? 2]
a

< 5B RS tionaliMateFia
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Slrmlarly,
= f(x)= (a® + b2Y2(a? + b2 )U2 o% gin(bx + ¢ + tan~ L bfa + tan “1bja)

= (a? + b2)¥2 ¢ sin(bx +c + 2tan " bja)
y3=f"(x)= (a® + b2)¥2 e sin(bx + ¢ + 3tan ™" bja)

.......................................................................................

.......................................................................................

vy, = )= (a?+ B2YY2 € sin(bx +c+ ntan”! bja)

n
= Yp = %[e“ sin(bx +¢)] = (@? + b2V ™ sin(bx + ¢ + ntan " b/a)

i

(x) y = f(x) =e™cos(bx +c).
We have y1 = f'(x) = ae™ .cos(bx +¢) - be®™ sin(bx +¢)

= e [acos(bx +¢) - bsm[bx +¢))
Put a=rcosH, b=rsinf= O =tan" b/a and r = (a + b2

¥, = £(x) = re™[cos®cos(bx + )~ sin@sin(bx + )]

1/2
)/

&% cos(bx + ¢ +8) = (a2 + b2)Y2.e% cos(bx +¢ + tan~* b/a)

Similarly, ¥z = f"(x}= (@®+ bz)m.e“x cos(bx +c +2tan™! bja)

¥y =f"(x}= (a? + b2)32 = cos(hx + ¢+ 3tan~" b/a)

.......................................................................................

.......................................................................................

= f(x)=(a 2 ¢ p2)V2, “"cos(bx+c+ntan 1p/a)

n
d - [e cos(bx + )} = (a® + b2YV2 6™ cos(bx +c + ntan ) bfa)

Example 1. Find the nth differential coefficient of tan X,
— a

Selution. We have y = tan"1 X
SUten . a .
_a a
= 7 2 4+q2 (x+ia)(x-ia)
Let us suppose
a _ A B

{(Using partial fractions)

ri i ria)  x—-i)
= q = Alx—ia) + Blx + ia)

To find the value of A, put x = —ia

We get = 1

2i
and for B, put x = ia, which gives B= 2l therefore, we have
1

1 1 ! 1 . =1 . -1
== - =—{(x—ia) " ~{x+ia

N Zi[x—ia x+ia] 21'[( ) ( )
Differentiating (n — 1) times, we get

Yn= 51;[(—1)”'10: “DIx—ie)" - (D" - I(x +ia) "]




Successive Differentiations

! n-1
= D oDl oy - (i)
2

| Putx = rcos 6, a = rsin 6, we have
. _ =0 a1
R

n-1
=£i££ﬂr‘“[(cos n@-+isinng) - (cosnd ~ {sinn)]
=D -1
2i

= (1" Yn-1)1r " .sinnod

[r™"(cos8 - isin@)™ —r "(cos@+isin) "]

r " 2isinnG [~ sin (- n@) = - sin nB)

-
=(-D" -0t | i since r = —=
(-1)""(n D{sine] sinnd [ praw:

: = (-1)""}(n - 1)1a " sin" 0.5inno
Example 2. Find the n'™ differentia! coefficient of log(ax + x%).
Solution. Lety = log(ax + ¥%) = log[x(a + x)] = log x + log(a + x)

Differentiating n times, we get
” n n

d
Yn = (logx) + J log(a + x)

n

_ (—1)"‘1(:—1)1.1" PG A VIS -1"n- 1)![L R ]
_ x (x+a)" x" (x+a)
Example 3. Find the n" differential coefficients of
(@) e sin bx cos ox
. (i) e sin®x
Solution . (i) Let y = e sin bx cos cx
i

1 L .
= —;-e“"‘ [2sinbx coscx] =—2~e‘”‘ [sin(bx+cx)+sin(bx —cx)]

[ =—;-[e‘"‘ sin(b+c)x +e™ sin(b-¢)x]

..(1)
Differentiating (1) n times, we get

n

dxﬂ

¥Yl=y, = %[{a2 +(b+c)22ex sin{(b+c)x+n tan~! (b +c)fa}
+{a? + (b~ 1y sin{(b - c)x +ntan~) (b - c)/a}]
(i) Let y=eZsin’x.
Now using the result
Sin3x = 3sin x - 4 sin’x
We have
sin’x = %(SSin Xx —s5in3x) 4
Therefore,
y= lez"[B sinx -sin3x]= Eez" sinx - —1~e2x sin 3x.
4 4 4
, Now; differentiating n times, we get 7
¥n =‘%[(22 +12)Y21% sin[x + ntan™! 1/2]

s - %[(22 +39)Y27eX sin[3x + nan~! 3/2].

Example 4. Find the n'" differential coefficients of sin®x cosx.
S
1, :
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Solution . First we reduce sin®x cos x into a function consisting sine function of multiple of x.
Let z=cosx+ isinx.
The 2 !=cosx-isinx
247} =2cosxandz -z =2isinx
Also, by De-Moivre's theorem, we have
7" 4+ 27" = 2008 mx
and M-z = 2isin mx
Now (2isin x) (Zcosx) = (z A + (z + 3z )3
= 27 1 sin xcosx*(z 'g) 2(z —z'6) 2(2 z"")+6(z2
= 2 sin 8 —4 i sin 6x - 4tsm4x+121sm2x
= sin®x cosx = 27 [sin 8x — 2sin 6éx - 2sin 4x + 6 sin 2x].
Dfferentiating both sides nt times w.r.t. x, we get

D"(sin® xcos® x) =277 [8" sin[sx + Fi—[—} —-2.6"sin [6x + %’1)

-2.4" sin[4x + n—;-) +6.2%sin [Zx + 5275)]
[PX] USE OF PARTIAL FRACTIONS

To determine the n derivative of any rational function, we have to split it into partial

fractions. .
Partial fractions for .
fx) __A B ,_C

O Grot-bE-0 G-® x-b) (x-0

N f(x) A B C

(ii) = + F

x-(x-b) (x-a) (x-a)* (x-b)
F(x) A B C D
= + +

i (x-a(x-b) (xX-@ (x-a)? ¥ (x-a)® (x-Db)
(iv) f{x) _ A B T Cx+D

(x—a)(x -bY(px? +gx+r) (x-a) * (x-b) ¥ (px?+qx+71)
To find A, B, C, D etc., we put each linear factor of LCM equal to zero. The remaining
constants are obtained by comparing coefficients of like powers on both sides.
REMARK PR N
+ Forming partial fractions is converse process of taking LCM.
e To resolve a fraction into partial fractions, the degree of the numerator must be less than the
degree of denominator.

Solved Examp

Example 1. Find the nth differential coefficients of

Opp— @ e
1-5x+6x7 [Cr G
' ) 1 1 2 3
. Lety = = = -
Solution. (i) Lety 1-5x+6x2 (Bx-1(2x-1) 2x-1 3x-1

(By resolving into partal fractions)
= 2(2x— 1) 3@ -1
Dlﬁerenthg, n times, we get
= 2(-1)"m12"(2x - D31y @ - )™
- (_1) n|[2n+1(2x 1)—n—1 3r1+1 (3= 1)—n—1]




Successive Differentiations

x2

[(x+2)(2x+3)]

Since, the given fraction is not a proper one so, divide the Nz, by Dr., we observe
that the quotient will be 1/2.

So let 52 1 A B

==+ +
(x+2)(2x+3) 2 x+2 2x+3

(i) Lety =

which gives A =-4,B=9/2

Therefore,
1 4 9 1 -1, 9 -1
== =4+ 27+ 22
2 %42 2m+3) 3 xFA 543

Differentiating n times, we get
Yp = =411+ 2T 4 %(—1)“.n 127(2x +3)™1

g9.2n-1 4 }

=(-1)"n! -
( ) n (2r+3)ﬂ+1 (x+2)l1+1

i enT

REMARK e

e If none of the standard formulae is applicabie to find ¥n in any problem, then find y,, ¥y, v3
and then generalise.

More Solved Examples

Example 1. Ify = Jx +aq, findy,.
Solution . We have

¥y = Jx+a=(x+a)"?

J3) 5 Jecr = 0 R arsn

_(2n-1)

-1 1.3.5...upto (n-1) times (x+a) 2

2?‘!

.yn = (_1)“

2n-1
y,I:(__Dn-l_l-B---%s:z(m){ =)

i Il\/mx"-)-l}
X

|
Example 2. If y = tan~ »show that

Yn = %(—1)"‘10: —-1)Isin” Bsinngd,

where 6 = cot lx.

Solution . We have y= tan‘l{ (1+x°) 1}_

x
i
1 Put x = tan ¢, then

1 |V +an?¢) -1 tan‘l[sec¢_1]

| =tan {——— =
Y tand tané
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Solution. Let y = xlog X
- x+1

—— — g et - [, g ety

Lt i;“CALCULUS;

L 5
BTN L
b Sy —r iy e i g, e

. A -
1

) [1 - cosq:] _ tanil( _ 25in%(¢ / 2) J
sin¢ 2sin(¢/ 2)cos{¢ / 2}

=tan" tan(¢ /2D =¢/2= le—tan'lx

BPMR MR S ¥ (T
201+ x%) 2(x—1)(x+1) 4i X+i
Differentiating (n-1) times, we get
n= (—_B%:‘m[(x -7 = (x+)7)
Now putting x = r cos8, 1 = r sin8, we have
"' -1

- el —-n_ .-n :ad —n
% [r (cosB —isinG) r"(cos0+isinB) ]

¥Yn=

IR B LTI Y
=(_D_ﬁl_l_)'r‘"[(cosn9+isinnB)—(cosnB—isinnB)]
1

-
1 - 1 .
= %(—1)"_101—1}1!"” sinn® = E(—l)" Yn —1)![—Sine] sinnd

=)
-
sin®

—;—(—1 ¥ Yn-1)Isin" 6sinnb where O = tan~! 1_ cot~ ! x.

x
Example 3. Ify = sint nix + cos mx, prove that y, = m" [1 + (-1)" sin me]u2

Solution . We have

dat . a" S b n T
y"_ﬁ(smmx”&?((:%m) =m sm[mx+n2]+m cos[mx+n5]

o 1/2
al] . R [ 1:)
=m sinf mx+n— [+ cos| mx +n—
2 2
1/2
n . n 4
=m [1+25m[mx+n5].cos(mx+n5}]

=m" 1+ sin(2mx + n‘ﬂ:)]]"2 = m"[1 + sin 2mx]/?

- =m0 [1+ (-1)" sin2mx]'/2.

—x~1 x-n X+n
E le 4. =xlo
Example 4. If y = xlog= = }

,show th ={-1)"%(n-2)! - )
show that y, =(-1)" “(n )l(x-—l)” D)

-1

= y=xlog (x-1}-xlogle + 1) (1)
Differentiating (1) w.rt. x we get

¥ =}xj+log(x—1)~ﬁ—108(x+1)

1 1
=1+ 1 -1 _1+___l 1
x—l+ og{x—1) P og(x+1)

——-1—+-—l—+log(x 1)—log(x+1) : ’ ...{2)
x-1 x+1 .

Differentiating both sides of (2) wirt. x, (n - 1) times we get
Y i (T VLI o o O 0 Vi O o Vil G

n

(x-1)" (x+1)" (x-1)*1 (x+ 1!




Successive Differentiations K

(x~ (x+1)"

=_(_71Jn—2(,;~2)|{ .(i_.l_lil.)?‘_l},,( D2 - 2),{ (n—l)—(x+l)}

. g P, I

I ST x—-n x+n . w4

T = =.c_.~.1)"'2(n—2)! — |

_ Rt ' (x-1)" (x+1)"
Exanlaple 3. Find the n' denvaave of LI

]i x? +a®

- 1 1 1 1 1 -

Solution . Let 'y = = R |
— Y _ x2?|-a2 (x +ia)(x ~ia) 21a[x ia x+za] W

 Differentiating (1) n times w.ct. x we get

y O B G Vi U G Vi T _= 1)rt ! 1 )
A [ 2ia (x _ ia}i’H'l (X+fﬂ)ﬂ+1 (x m)n+l (X +Ia)l'l+1 ’ .

Letx =rcosdanda = rsind i.e.,0 = tan~!

% (&

in (2), we get

(=1t 1 _ 1
2iar™! | (cos@ - isin®)™!  (cos®+ising)t™

(-1)"n! 1 i 1
- 2iar™1 | cos(n+1)8 —isin(n + 10 cos(n+ 1)9 +isin(n+1)0
( D'
21(1 n+1
i _= Dn+1 [2tsm(n+1)e] (~1)".nlsin{n +1)8

2ia an+1 ' »
a sile [ a=rsing]

_ (=1)".nIsin(n + 1)Bsin"*1 9
- o an+2 ’ 3

[{cos(n +1)8+isin{n + 1)8} - {cos(n + ne isin(n +1)8}]

/1. Find the n™ diffetential coefficient of log[{ax + b)(cx + d)].

2. Find the n™ derivative of y = cos®x.

3. ify = sin(sin x), show that [dxy] (jx]tanx+ycns x=0.
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If y = A sin mx + B cos mx, show that Ex—)z'+mzy =0.

2

If y = ¢™sin bx, show that ix—z -m%%az +bH)y=0.

Find the n'" derivatives of
(i} sin3x (i) cosx cos 2x cos Jx (iii} eaxcosx sin x
(iv) sin5x cos3x (v) sin ax cos bx {vi) sin2x sin2x
Find the n'™ derivatives of
4 . x 1 1

. x .
® (x-D(x-2) G 1+3x+2x2 (i) {(x-2)(x- 1)° )

(x-a){x-b) x5 — 25x2 — 29x + 20

. Find the nt derivatives of

@ tan™ [L’ff} (i) tan“[ 2 2]
l-x 1-x

Show that the value of the it differential coefficients of d

5 for x = 0, is zero if n is even
x

and is - n}, if n is odd and greater than 1.

Ify= x(a® + )71, show that Yn = (-1)"nta ™ sin™! Bcos(n+138 where g=tan! (E).
X
[MUMBA-2007]
2

(i} fx=a(t~sint) andy = a{l + cos t), prove that -‘;:'; = ZIECOSEC4 [%) (MADURAI-1990, 2004)

d2
(i) If x = a(cos ® + 05in @),y = a(sin 6 —fcos 8), find Ex%
’ 2 2.2
If p2 = a%cos28 + bZsin26, prove that p+ j—eg— =1 g .
P

. : n
Prove that the value when x = 0 of E‘i—”(mn_l x}.is 0, (n ~ 1! or ~ (n - 1)! according as n is

of the form 2p, 4p+1 or 4p+3 respectively.

. ‘3. ne) 1 X nn
1.0) yn=zsm[x+——)—_z.3" sm[3x+—2—

?ITMRS

2

%
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P P AP, P

N Y ' T
L (i), yn 6" cos[ﬁx S nrt]+4rt cos 4x+ Et—]+ 2" cos(Zx +£T£]'
4 2+ 2 2
# e

sin(3x+ntan~13/ a)l

y = =" [8" sm(8x+ ; rm) 2. 6" sm(ﬁx + ;mt] 2.4" sin(:ﬂfx_+ %nn] +6.27 sin(Zx + %mt):l

% (;J) ] fr';, = —;— [td + b};' sir'_l",{(a + bjﬁx +% mt}_ +(a - b'j’.T smf{[a =b)x + %n:rt”

¥ .

(\n) Yair=2 1sm[2x+;mt] 4" 151n(4x+;mr]

?:fl)* Iz GOl 2) " :'(:Ml)'" 1 Giyrs (—1)’5”![(x+;)n+1 " ex ful}
}.é(iil){ ylg; ( 1)+l n'[an 2)(n+1) +(x[i11-]1,12 +--'(-x _1),?,,} _ . :‘z)nﬂ] ‘&

W] s %(—..1}“.n!{(_:q..~: Q™ = (x ¥y}

I h{v)f: Yn= {EalTé,r;![(x _a:)n+1 e _b:)n+1:|;

(“){; Y = (1" nl[{zx.'zz)nﬂ (3x2+-?:)n+1 _,_-(x i)nﬂ] .

3. (l]ti Y= (—1)"' .(n = 1)1sin"9 sin nd, where § = tan 1%
- 1.1:% 1 sec?s

(llJ y "—'2( 1)" {1 - 1)!sin"9 sin ne, where 8= tanl=" o 6 (11) Y= =i
. ': " x 8

E.l LEIBNITZ'S THEOREM

This theorem help us to find the nth differential coefficient of the product of two functions
in terms of the successive derivatives of the functions.

Statement. If u, v be two functions of x, having derivative of nt® order, then
D" () = upv+ "Crty_1v1 + "Cotty gV + oot "Coly_pVy + o+ "Cruav,
where suffixes of u and v denote differentiations w.rt. x.
Step 1.Iet y=uwv '
= Y1 = Uy +ouvg
and Y2 = ugV +ugvy + vy + uvy = ugv + 2ugvy + uvy
= u2v+ ZC]_LI'.]_VI + 2C2HV2.
Thus the theorem is true forn = 1, 2.
Step 2. Let us assume that the theorem is true for a particular value of n say m,
then we have
yl’l’l =L£mv+ C]um_lvl + Czum__zvz +...+ mCr_lum_Hlvr_l + mCrum_rVr +..+ mCmuvm.
(1)
Step 3. Now, differentiating (1), we have
m m m :
ym+1 =Up vt Un¥y + Clumvl + Clum_IVZ + mc_zum_]v2 + Czum_2V3 +ee
m m m
a2Vt Gl Ve + T Gl
m m
+ MC iy Vpsy ot " Cty Vi + MC otV -

=Upyq vt ( mC] + l)um v +( mCZ + mCI )L[m_l Vy +...+(_mCr + mCr_l )um_r+1 Ve
Fot TC UV

elfIngtrectionaliMateri
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Now using Pascal’s law, given by ™¢_ | +™C_ = mHic

Forr=1,23,..

We have MCo+MCy = ™0 = 14 M6 = TG,
mc'l + mcz = m+1c-2

and mcm =1= m+ cm+]

Therefore,

_ m+1 m+l m+1 m+l
Yme1 = Uma1V + T Cpttvy + T CqUg gV e+ T Gl Ve + ot T G Wi
— If the theorem is true for n = m, then it is also true for the néxt higher value n =m + 1.

Then, by the principle of Mathematical induction, we can say that theorem is true for any
positive integer n. -

Solved Examples

Example 1. Find the n'™ derivative of x*sin x.
Solution. Let u=sinxandv= .

Then, u_n = SIH[x + E}
2
. . n
Up_y = sm[x +(n- I)E)

U, 5 = sin[x +(n-2) g]
Also, vy =26 vy =2,v3 =0
Now, by Leibnitz’s theorem, we have

it
%(UV] =Ug.Vv + "Clun_l.vl + nCZU.n_z.Vz
n

= %(xz sinx) = sin [x + %)xz

dx .

+1Cy sin[x +(n- 1)-;-] 2x+"Cy sin[x +{n-2) 2]2
= x? sin(x + EJ + 2nx sin[x +(n- I)E]
2 2
, T
+n(n-1) sm[x +({n-2) E]

Example 2. Find the nth derivative of ¥ og x.

Solution. Let y =" og x (D
Differentiating (1) wir.t, x we get )
n-1
yl=x"‘1.l+(n—1)x“'2logx=x”‘l.l+(n—1)x log x
x x x
= = "1 +(n-1y ...(2)

Finally, differentiating (2) both the sides (n — 1) times w.Lt. x, we get
Yax +(n=1Dy, 1. 1=(n-1DH -1y
{n—-1)!

Hence, y, = .
X

elfiinctrictionaliMaterial
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Example 3. If y = a cos (log x) + b sin (log x), show that xzyz +xy1 +y=0 and xzy 2+ [8
} 2n + gy, 4 1 +(n? + Dy, = 0.

Solution . We have

I y=acos(ogx) + bsin (logx) (1)

Differentiating (1) with respect to x, we have

= *Esin(log x)+ 2f:os(log x)
x x

xyy = —asin(log x) + beos(log x)

I Again, differentiating w.r.t. x, we get

XYs+¥ =—% cos(log Jnr)-E sin{log x)

= x? ¥3 +xy; = —acos(logx)
“bsin(logx) = -y

= xzyz +xy;+y=0 «(2)
Now, differentiating (2} both sides n times by Leibnitz’s theorem, we get
D"(x%y;)+ D"(xy;) + D(y) = 0
= (D"y)x? + "CiD™ L y,) (Dx?) + "Gy (D" 2y, ) (D% 2) + (D y)Dx
+ ¢, (D" 1y )(Dx)+ D"y =0

1 nin-1)
' = xzyn+2+2m9'n+1+ (

2y, + Xy +ny,+y, =0
= X2 Y g + 20+ Dxy,eg + (2 + 1y, =0

Example 4. Ify = ¢*5%' % show that (1 ~3PYWn 42— @0+ Diyper - 0 + 0Py, = 0.
Solution, We have

y= easin"x =y = easin“x. a
1-x2
L .1
¥ ’1-—x2 = qedSin x =ay
= y1(1-x2) = a®y? (1)

Now differentiating (1) with respect to x, we get
2y,y,(1- x2)+y (~2x) = 2:123011

= 2y, - xH - xy; —a?y] =0 [ 2y1 # 0]
= [yy(1-x*)-x1 -a%y]=0 2
Using Leibnitz’s theorem, differentiating (2), n times, we get
D"[y,(1-x*)]-D"(y;x)-a?D"y=0
n(n-1)

2

= I:-yn+2(1_x2)+ Y41 (—2x)+ yn(_z)]_[yn+]_x +nyn]—a2yn =0
} 12 (n? a2y
= (1-x)yp2 - (2n+Dxy,,y - (° +a*)y, =0

f
Example 5. f cos™! (%J =log [%) . Prove that Jnrz_y,,1 +21 @n+ Doy, +2.ir12yIrt =0

Solution . 'We have

#
I;
i

n
ros”] (1} _ Iog[ij = nlog X = n(log x - logn)
b n n

[SelflnstructionaliMateriail .
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Now, differentiating with respect to x, we get

1 yy_n
__J,ET? T x
bt
or ———L = 2
p2_y? X
or y12x2 = n(b? _yz)

Again, differentiating, with respect to x, we get
2x3y1y2 + 2xy,? = ~2rtyy
Or y,X +y1x+n2y 0. [ 2yy = 0]
Using Lelbmtz s theorem, differentiating n times, we get
)’n+2x + ClJ’n+1(2x)+ "Co¥n(2+ Ypx + "Crya +0 %Y =0
=X .Yn+2+(2"+1)1yn+14'2n Yn=0.

Example 6. If y = 02 - 1)®, Prove that 0 = 1)y 4+ 2 + 2041 — 0+ Dy, = 0.

Heru::se:pr‘rt =-;%(x2—1)" show that %{ - x? di:':}+n(n+1)Pn =0

Solution. Wehave y=(@-1" D
Therefore y; = nod - 1" Lox
or 0 —1)y; =n0é-1)"2x
= (F- 1)y = 2nxy. ..(2)
Differentiating (2), (n+1) times by Leibnitz's theorem, we get
Dn+1[y1(x2 -1D1- 2nD"+1(yx) =0
nin+1)

'oryn,,z(x2 D+ (n+Dyq-2x+ V2= 2y x—2n{n+1)y,.1=0

or (x2 =) ¥pen+2XY e i+ Dy,=0
Hence, the first result. From (2), we get

(x% - 1Dy, +2xDy, —n(n+1)y, =0 (3

n
Putting y —Ed-x—-(x2 -1)'=

equation (3) becomes
(x?-1)D?P, +2xDP, —n{n+1)P, =0
or —(1-x*)D?P, + 2xD(P,) —n{n+1)P, = 0

or _i{(l—xz)ppn}—n(nﬂ)pn =0

or %{u xz)a }+n(n+1)P =0

Example 7. If y = sin(m sin” x) Prove that (1 - xz)yz -x + mzy = 0and (1 - xz)yn+2 -
@Cn+1)0ns1 - (n®-m )yn =0.

Solution . Let y = sin{m sin 19 A1)
Differentiating w.r.t. x we get

m

¥ =cos{m sin”! x).

= yl\ll--x2 =mcos(msin'1 x)

l—x2

{SelftnstructionaliMateriall |
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= ylz(l —x%)= mzzcosz{m sin~! x}= m2[1 - sinz(msin;'l xH
=m*(1-y%) ()
Again, differentiating both sides of (2) wr.t. x we get

; a- x2)2_y1y2 - 2xy12 = -2m?yy,

| = -2y, -xy; =-mly

= (l—xz)yz-xy1+m2y=0 ..{3)
A Finally, differentiating (3) r times, by Leibnitz’s theorem, we get

[ Ynr2(1= 3+ "Y1 (-2 + "Cay (-2~ [ Fnarx + "Cyy |+ Py = 0

¥
= A-x¥ypen - 20541 1+ DY, = XYy — Y + My, =0
or (1- x'z)yn+2 - (2ﬂ + l)xyn+1 - (n2 - mz')yn =0

m
Example 8. If cos™! (%’—) = log[%] , Show thcttxzy,I 2+ @+ Dxy,q +(? + mz)yn =0
]

L

m
Solution . We have cos™ (%J ='log[ X )

m

‘f = y=bcos(mlog[’£)]
m
y1=-bsin{mlog(i)}m L i
m (x/m) m

: = = —bmsin| mlo [i} i

Again differentiating, we get

x
- Xys +y; = —bmcos {m log(;]}.m

1
(x/m) m

o

3=

[ = x2y2+xy1:—m2bcos{mlog(

xzyz + Xy +m2y =0
Differentiating both sides of the above equation, n times by Leibnitz’s theorem, we

get : }
[J’n+2'x2 + "Cly"+1{2x)+ "Czyn(2)]+[yn+1(x)+ ﬂClyn(l)]"'mz‘yn =0 ‘
= X2Y e + (20 + Doy peq + (0 +m?)y, =0

) (L4 y 1+ 2Dy (1), g = 0.
Solution. Let x = tan(logy)

= y=oean X 1)
an~! x 1
. = »1=¢€ T
| 1 +x?) -
iy A+x¥)y =y . -+(2)

Differentiating (2) n times by Leibnitz's theorem, we get
Yo+ x2) + nclyn(zx) + nCZ.)’n—l(z) =¥n
= ('1+x2)yn+1 +(2ﬂ-1'—1).)’n + n(n_l)yn-l =0

-

- ISelfilnstrictiohaliMateriall ™

1 — -~
Example 9. If x = tan(log y), prove that
Example 10, [f ¥ = (1- )%, prove that (1- X)pa1— 0+ 0y - ey, = 0.
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M Solution. We have y=(1-x)"%e™ LD

=y == %—0e )+ e (~e)(1 - x)"*T(-1)
=e ®(1-x)¢ (-—a + L}
1-x
= y(1-x)=oxy ...(2)
Differentiating (2) n times by Leibnitz’s theorem, we get
Yrs1 (1= X)+ €1y (=1) =aly, () + "C1 ¥y (D]
(1= x}yp4y +(-n—0x)y, —noy,_, =0

= [1-x)¥he ~ M+ o)y, —noy, =0

e STUDENT ACTIVITY

1. Find the n'" derivative of x°cos x.

2. If x= cosh[-!—log yJ, prove that (x? “Dypsz+ (2n+1)xyn+1+(n2 - mz)y,, =0,
m

3. Ify =sin log(x2 + 2x + 1), prove that (1+x2)yn+2+{2n+1)(1+x)y,,+1-{n2+4)yn= 0.

4. Ify = sinh[mlog(x + ¥xZ +1)), prove that (x2+1)y, ,,+(2n+1)xy,, +(n° —m?)y, =0

5. If sin"ly = 2log(x +1), prove that (x+1)2y,,, +(20+1){x +1}¥py +(x?+4)y,=0.

. d' [legx]| (-1 .n! 11 1
6. Prove the following E[T]= e (logx—l ————— ..‘——].
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3 TEST YOURSELF

1. Use Leibnitz's theorem, to find y,, in the foliowing cases :

) 2™ (i) x%¢* {iii) *sin ax iv) x’logx
. (V) ¥*¢* cos x (vi) €' logx (i) «"logx (vii)  x%tan"'x

’ n
2!l1f I,,:i—“(x”logx), prove that I, =nl,_;+{n-1)! and hence show that

|
| 1 1 1
NI =nllogx+1l+—w=4_. +=
i n o8 2 3 n
_ tan"lx 3
Ify= > prove that (1+x%)y,., +[2n+Dx~1]y,,, +a{n+1)y, =0

]

5.1fy=

4.11fy= (sin"! x)?, provethat (1~ x%)y, - xy, ~ 2= 0 and (1 - x?)y,,, - x(2n + 1}y, -y, = 0.
-1
ﬂ\/_—‘z, prove that (1 —xz)y,,+1 -(2n+Dxy, - nzyn_l =90.
(1-x%)
6..1fy = [log{x +/(1+x*}}I2, prove that (14 x3)y,,, +(2n+ Dy, ,y +n2y, = 0.
7. Differentiating n times the equation :

dy dy o " 2d2y. dy

—__ —_— = —_— ———fe =O.
® 1+x? x o otay 0. (i) x dx2+xd¥ y
8.[Ify =[x +J(1+x2)I", prove that (1+x%)y,,0 +(2n+ Dy + (02 ~mDy, =0

9.01 ¥/ +y ™ = 2x, prove that (x% -1y, ., +(2n+ Dxypy +(né-m?)y, =0
10.! I‘fy = cos(log x), prove that xzy,”z +(2n+1)xy,33 +{n?+ Dy, =0,

. n
11, |If x + y = 1, prove that %{x" ¥y =y - (P2 x +(7C,) 2y 2R+ (-1) X",

12.. If y = x cos(log x), prove that Xy oaa + 2N+ Dxy, g + (72 - 20+ 2)y, =0:

172
13. Ify = (1'”‘] , prove that (1- xz)y,, =[2n-Dx+1ly,;-(n-1D(n-2}y,_, =0.
. 1-x

sinh™! x
14. Ify— J_ , prove that {1 + x2 Waep + (20 +3)xy,py + (n+1)2 Yp=0

15, |Ifx = sint, y = cos pt, prove that (1-x?)y, - xy, + p°y = 0.
‘Hence, show that (1-x%)y,,, ~(2n+1xy,,; —(n% - pHy, =0.

ANSWERS
(i) r:""a"'g[n:tax3 +3na®x?+ 3n{n ~1)ex +n{n— Din-2] (ii} e"[x2 +2nx +n(n-1)]

1
{
i (iii) a" [a x> sin (ax + > ]+ 3na?x? sin [w_c +i{n-1) -g]+ 3n(n ~1axsin {ax +(n —_2)2}

+n(n-1)(n -2)Sin(ax+(n -'3)%]]

a-1,
(W)( 1} [__ 3 .3 1 ]

n n-1 n-2 n-3

+ “7[Selftinstructionhal Materiall ~
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(v) e [2“’2 cos[x+n4] 2(“‘13’22nxcos[x+(n -D= )+:g(""2)’3n_(n—1-1qqs(§-i;(n—:g.)g)]

Vi) e*[log X+ "Cpx ! M " 21x78 — L G -1 A= )
& -
! ST

(Vll) Yasi:= ;
L T ) . }
(\nn}( l)“’l(n MNlnr-Dn- 2)x? sm ¢smn¢ 2n(n-1)sin '1¢51n(n—1}q> & i
* * pn(r=1)sin"2 ¢sin(n - 2)6] where: = tan’ b !;
* . Loy e x- =3
S k]
2 7(1) (=% Y 3 =20+ DY =(nk-a*)yy=0 5
(D) x2¥ g + (20 + 1xyy,g + (12 4 1)y, = 0. - _;?_

23 DETERMINATION OF THE VALUE OF n™ DERIVATIVE OF A FUNCTIONATX =0

Swe 1. Put the given function equal toy. -

Step2. Find Y1 = - Then
(i) .Take L.C.M. (if required).
(i) Square both sides, if square roots are there,
(iii) Try to gety in R.H.S. (if possible). .
Step 3. Again differentiating both sides wirt. x and get an equation in yy, ¥; and y.
sterd.  Differentiate both sides n times wirt. x by Leibnitz’s theorem.
Step 5. Put x = 0 in equations of step 1, 2, 3, 4.
Step 6. Putn = 1,2, 3, 4, ... in last equation of step 5.
Step 7. Discuss the two cases, when n is even and when n is odd.

Solved Examples

-1
Example 1. If y =% *, show that

(1= x3)yaz =20+ Diypyg — (0 +a2)y, =0
and hence calculate y, at x = 0.
Solution. We have y =¢° cos”! x . (1)

-1 ~a a
_ arosT X _ Y _ o)

yi=e 'Jf—xz_ Jlﬂxz
= Jfl\ﬁ_—? =-ya
Now squaring both sides we get
2 - x?) = y2a?
Differentiating w.r.t. x, we have
(-x2)2y1y, - 20n° = 22",
= (l—xz)yz—xyl=a2y

..(3)
Now, using Leibnitz’s theorem, differentiating (3), n times, we get
(1- xz).)’n+2 —2nyp41 — n(n -1}y, = Xype1 =W = a2yn
= (1-xV) Y- Cr+Dxyg, —(n* +a®)y, =0 ..
By putting x = 0 in (1), (2), (3) and (4), we get
y(o) e eﬂ..ﬂ:/z




l
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,}’1(0) a.ﬂ,’z
yz(o) =a y(O) a eﬂ RS2
[ = Y4200 = (1% +0%)y,(0) ..(5)
| | Put n -2 for n in (5), we get
, l | YaO=[(n-2)% + %1y, _,(®) ..(6)
. i Again put n — 4 for nin (5), we get
v Y200 =[(1-4)? + a®1y,_4(0) (D)
' From (6) and (7), we get
Ya@=[(n—-2)*+a?)[(n-4)* +a%y,_4(0) (8
: Again put n - 6 for n in (5), we get _
V Vg (@ =[(n -6 +a?ly, 4(0) - (9)
i From (8) and (9), we get
Y20 =[(n -2 +a®)[(n - 4)* + a®}{n - 6)* + a?y,_s(0) ...(10)

Now there are following two cases :
l Case I. When n is even.
i

¥, (0) = [(n - 2)% + a1 [(n - 4) + a2 (n—6)* + a?]...[22 + a2]a2e™/2
Case II. When n is odd.
yn(O] =[(n-2)* +a?][(n-47 +a*){(n - 6)2 +a?]...[1% + @] (—ae™2)
Example 2. If y = tan™ x, prove that (1+x2}y,,; +2nxy, +n(n -1y, =0. Hence, determine

the values of all the derivatives of y with respect to x whenx = 0,
1

Solution. We have ¥ =tan™ " x. (1)
0 1
= ...{2)
e 1+ x? (
= y+ xH=1.
Differentiating, n times by Leibnitz’s theorem, we have
yn+1(1+x2)+ ny?.2x+ n(n ) ¥n-1.2=0
= (1+x2)y,, + 200y, +n(n—1)yn_1 =0 ..(3)
Putting x = Q in (1), (2) and (3), we get
y(©) =0
no=1
Yn41(0) = -n(r -1y, ,(0) BCY
Putn = 1in (4), we get y5{0) =0
Putn -1 for n in (4), we get y (0)=—(n-1)(n~2)y, ,(0) ...(5)
Put n - 3 for n in (4), we get ¥, 2(0) = -(n-3)(n—-4)y,_4(0) ..(6)
From (5) and (6}, we get
Yn(0)={n-1}(n-2}(n~3}(n-4)y,_4(0) (D
There arise following two cases :
_ Case 1. When n is even.
’ ¥a(0)= (D" 2(n ~1)(n - 2) (r - 3)(n - 4)...4.2y,(0)

= (DD 2D -2)(1-3)(n-4)..320 =0 [ y,(0)= 0]
l Case I1. When n is odd.

¥a(@ =DV 20 _1)(n - 2)(n -3)..3.2.1y,(0)

SelfiInstractionaliMaterial]

= (V2 1)1y, (0) = (DD 2 (0 - 1) [y =11 |
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Example 3. Ify = [x + Y1+ X217, find (y,)o-

Solution. We have y =[x ++1+ P i . . D
Differentiating both sides w.r.t. x, we get

yp =mlx +¥1+x2 1 14 X
;1+Jc2

or =m0 [x+\/1+7]m
V1+x2
or v1+x2 ¥ =m[x+\[1+—x2—]’“
or 1+x2-y1=my‘
Squaring both sides, we get ‘
yi2(1+x2) = mPy2 - . (2)
Again differentiating both sides, we get
2y, {1+ x2)yyg+ 2.xy12 ==-2m2yy1.

or (1+x2)y,+xy; —m’y =0. : (3
‘Applying Leibnitz’s theorem to differentiate n times, we get
D[(1+ x2)y,1+ DM () - m2D%y = 0.
1+ X2y g + "Cr¥as1 DL+ X2) + "Coyn D1+ x%)
At "Clgan(x) —-m2y, =0

" n{n-1)
o (1+x2)Ypin+MYpy 20+ > Y24 XYpp1 + Mg —M>y, =0

or (1+)c2);,fn+2+Jc(21'1-¢»1)3.',,+1+(r12—mz)y,,I =0. . )
Putting x = 0 in (1), (2), (3) and (4), we get
~ / Og=1
0o = mlyp) = m
Odo = mz()’)o = m2
and  (ne2do = (M -1 ¥ne. ...(5)
Put n - 2 for n in (5), we get
o =Im% = (n - 271 (¥,-2)o .(6)
Putn -4 for nin (5), we get
Wneado = [m? = (n =921 (¥n-4)0 o (7)
From (6) and (7), we get :
(o =[m? ~(n=2)"1[m% - (n=4Y U ¥,_aDo- ..(8)

There arise two cases :
Case I. When n is even.
(o =tm?—(n =221 m? - (n-4Y]..m%* - 22) (32,
= [m? — (n - 2% [m? - (n - 4)*]...[m% 2% ]m? [-(y3)p = m?]
Case II. When n is odd.
(¥n)o = [m? - (- 221 [m? = (n — 4)21...(m* = 1%)(y1)g
=[m? —(n - 221 [m? ~ (n = 4)*1...(m% - 1¥)m [2(y1do =m)

Example 4. If y = sin{a sin™ x), then, prove that (1- x? Yy —xy1 + a?y=0
and (1- x2)y,.5 —(2n+10xy,,1 + (@* —n?)y, =0. Hence, find y,(0).
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Solution. We have y =sin(a sin~! x) .' (1)

Differentiating (1) w.r.t. x we get
a

¥ = cos(asin™! x),
V1-x?
= y; = —2cos(asin™! X)
L =
E V1-x2

= (m)yl =acos(asin™ x)
= (1- xz)ylz =a? cosz(a sin™! x)=a*Q1- sinz(a sin~? x))
2 A-xPyf=a?1-yh ()
| 1 (Using (1))
I Differentiating (2) w.r.t. x, we get
(1-x*)2y1 5 - 20,% = a?(-2yyy)
"2 A-xP)yy~xy +aly =0 -3
Now differentiating (3) n times by Leibnitz’s theorem, we get
(A= %)y pez + "C(=20)Y 01 + "Co(-2)y, ] - [X.Vn+1 + nlel)J’n]-‘" a?y, =0

= 1- X2).)’n+2 +n(=2x)¥p41 + nn—1) (-2yp —Xyps1=nly, + azyn =0
S (1= x*)Y g — (20 + Dy +(@® —n? —n+m)y, =0
b = A= xDypp - (204 Dy, +@® -y, =0 o (d)

From (1},

¥(0) = sin(asin?0)=0
From (2}, a
y1(0) = Ta'cos(a sin~! 0)=acos0=qa
From (3},
(1~0%)y,(0)-0.y,(0) + a2 y(0)=0
’ = ¥(0)=0

Form (4), :
! (1-0%)y,,,5(0) - (21 +1).0+ (a® — n?)y, (0) = 0
D (0= (0 - a?)y,(0) : )

Case 1. If nis even.
Put n = 2 in equation (5), we get

¥4(0) = (2% —a?)y,(0)=0
Putn =4in equation (5), we get

¥6(0) = (4% ~a®)y,(0) =0
Put n = 6 in equation (5), we get

¥8(0) = (6% —a?)y4(0) = 0
= Yp{0)}=0,ifnis even

Case IL. If n is odd.
Putn = 1 in equation (5}, we get

¥3(0) =% -a%)y (0 =% -a)a
! Putn = 3 in equation (5), we get
¥5(0)= (3% ~a?)y3(0) = 12 - ¢®)(3? - P2

L2 igelfiinctructionaliMatarializ s




g ey oL S

Put n = 5 in equation (5), we get
¥5(0) = (52 - aD)ys(0) = (17 ~a?) (37 -a®)(5” - a®)

- 5, (@=02-a)@*-a®)(5*~a)..Ln - 2* —a®)]a
ifnisoddandn #1

. 0 ifniseven
Hence, ¥,(0)= {(12 a1 (32 —a)) (5 ~a?)..[(n-2* -a*la ifnisoddandn#1

- STUDENT ACTIVITY

1. if y = sin(m sin~1x), then prove that y,,. 2(0) = (-~ m?) {yn}g and find y,(0).

2. Iy =¢850 % show that (1 - x2)y,4p — X201+ Dynes — (7 +a?)y, =0 and hence, find the

value of y,{(0).

3. Ifx =sin [-:Ilog y), find {yplg-

2% TeCT YOURSELF

1. If y = sin"’x, prove that (1-x2)y,,, —(21+ Dy —n?y =¢ and also find the value of
¥a(0). (SVTU-2009)

2. () Ify={log{x+4(Q +x2)}1, find all the derivatives of y w.r.t. x when x = 0.
(i) If y= (sinh™! x)?, prove that

O+ %2y, + (204 Dxy, 3 +ny, = 0 Hence, find y,(0).

3. Ify =[x+ V1+x* 1™, find y,(0).

ANSWERS

1. When n is even, y,(0} = 0; When n is odd y;(0) = 12.3%5%...(n - 2)
2. (D),(ii) when n is even, y,(0) = (-1)"?.2.2%.4%..(n - 2%, when n is 0dd y,(0) = 0
3. When n is even, y,(0) = fm? - (1 - 2)21[m? - (n = 4)%],..(m" -~ 29)m’

When n is odd, ¥,(0) = [m2 -(n~ 2)2]{m2 -{n- 4}2}...(m2 - 12)m




d” ( 1 ]-= 1y a®(m+n-1!
"\ (ax+b)™ ) L (m=1D)iax + b)Y
1 n ; -

- ""i—n(sin(ax+b))=a“sin(%+ax+bJ

0
{ - ;&‘i—“'(cos(ax+b)) =q" cos(n—;-!;ax+bJ

d"
» T (ea.x+b) :\aneax+b

- id [oglax £5)] = (-1)" s -1t
dx" (ax +b)"

» :(fx“ (e sin(bx + )1 = {a® + b?)2 % sin(bx +¢ +ntan~! b/a)

" [ cos(bx +c)]= (a° + h*)Y2.e™ cos(bx +¢ +ntan™! bfa)

FILL IN THE BLANKS

1. Bl'"(log X} is equal to
. Tafind the n derivative of the product of two functions we use
. Ify sm(ax+ b) then D (ax + b} =
= (ak + b) ", then (e + b) 1=
If-y_= ¢ sin bx, then y, - 2ay; =
Ify=e X sin’x, then D'(y) =
D3(x )=
D" 1) =
. D(sin x) =_
Ify= tan”x, then (¥s}q is equal to

TRUE/FALSE

© » N .msn.w-w.n

[y
-]

theorem.

Wi'ite1 "T’ for True and ‘F’ for False statement.

1. To find the n™ derivative of the product of two functions we use Leibnitz’s theorem.  (T/F)
2. If ‘we observe that one of the two functions is such that all its differential coefficients after a

r.'ertam steps, become zero, then we should take this function as second function. (T/F)
3. Ify = a cos({log x) + b sin(log x), then x2y2 +x =Y. (T/F)
I
4, D"(log xX}= - ——. (T/F)
x" .
s, The n™™ differential coefficient of Yiisthe (n + ™" differential coefficient of ¥. (T/F)

MULTIP].E CHOICE QUESTIONS

Choosa the most appropriate one,
1. D™e™ * %) is equal to :
®) s + b

(a) ae

) aﬂbneax+b (d)‘aneux+b




CALCULUS

2. D"log x is equal to :

(n-1)) o EDO-D o GO R-D (g (-D)"n!

x" X x" x

(a)

42
3. Ifp* = a%c0s?® + bsin®0 then p+ EEg is equal to :

@ & & @ @ o
P P L b

4. ify = Asin mx + B cos mx theny, + m®y is equal to :

(a) © (b) 1 (c) 2 ) 3
5. If y = é™sin bx then y, — 2ay, is equal 1o :

(@) (@ + %y ) «@+by O 0 @
6. Ify = sin then-{l—xz) % is equal to :

@ X ® 2% @ 2 @ 2

dx & -- dx x dx

7. Ex =alt—sint) andy = a(1 + cos ), then %;% is equal to:

(a) 4a cosectt {b) 4iacosec4 (t/2) () :Ec; sin*f(t/2) ) 4a sint

2
8. If x = a(cos & + 0 5in 8) and y = a(sin 6 - 0 cos 6) then d_); is equal to :
dx:

(a) «1-5e(:39 (b) asec’® -1—3 {(d) a8 sec>®
a abcos” 8
9. D"(sin’x) is equal to :
(a) si nn | ) sin (x+r—lf;)—£sin(3x+ﬂ)
sin x+?] 2 5 3 | )
{) icos[3x+%] {d} none of these
10. [coszxsin3x] is equal to :
I . .
(a) %[2sinx +sin 3x —sin 5x] (b) Jgl2sinx +sin3x—sin 5x]
U] 11—6[sin X +sin 3x — sin 5x] (d) none of these
ANSWERS
FiLL iN THE BLANKS
n-1 oo ;. NW
;. ED7 (-1 2. Leibnitz’s 3 4@ sm(ax+b+?]
xi’l
4. (-1)'ntad(ax+b)y " 5. ~(@® +bD)y 6. %[e" —(5/%¢* cos(2x + ntan™! x}]
7.3l 8. 0 9, 35in(x+§£)_£sjn[3x+ﬂ] 10. 4
4 4) 4 2
TRUE/FALSE
1. T 2. T 3. F 4. F 5 T
{MULTIPLE CHOICE QUESTIONS
1. (d) 2. (a 3. (b 4. (a) 5. (b) 6. () 7.

8. (o 9. (b) 10. (b)
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| | 5 Partial Differentiation

e /'Introduction

® Rules of partial differentiation

® Partial derivatives of the higher order
L B Homogeneous functions

® | Total differential

{Impllmt relation of x and y

® | Differentiation of implicit functions

| Change of variables

. ® Summary

! ®. Objective evaluation

T

]

LEARNING OBJECTIVES

After reading this chapter, you should be able to learn:
® The partial differentiations and its rules

® The concept of homogeneous functions

® Euler'’s theorem on homogeneous function

¢ The concept of total differentiations

® The differentiations of implicit functions

m INTRODUCTION

'We know that the differential coefficient of fOc} with respect to x is !1m &H—a;xml
prowded this limit exists, and it is denoted by

f{x)y or a[f(x)]
If u = f(x, y) be a continuous function of two independent variables x and Y, then the

differential coefficient of u w.rt. x (regarding y as constant) is called the partial derivative or
pamal differential co-efficient of u w.r.t. x and is denoted by various symbaols such as

du Jf
o Y S

ISymbollcally, ifu = f(x,y), then agm flx+bx, g’; f(x,y)
—0

1f it exists, is called the partial derivative or partial differential co-efficient of 1 w.ct. x and
is dgnoted by
' du of
— or — or or u
| ax ox fx
‘ Similarly, by keeping x constant and allowing y alone to vary, we can define the partial
derivative or partial differential coefficient of u wirt. v. It is denoted by any one of the symbols

du iaf

¥

|Symbohcal]y, o _ f 6y +8y) - fO,y)
: ay 8y—>0 Sy
- provided this limit exists.
. For Example :
du o

If u-—ax2+2hxy+by then__zax+2hy and — = 2hx + 2hy.
i - ox ady

. ]
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DIFFERENTIATION

Rule (1) :
(a) If uis a function of x, y and we are to differentiate partially w.r.t. x then, y is treated

as constant,
(b) Similarly, if we are to differentiate u partially w.rt. y then x is treated as constant.
(e) If u is a function of x, y, z and we are to differentiate partially w.rt. x, then y and 2

are treated as constant.
Rule (2) : If 7 = u 1 v, where u and v are functions of x and y, then
dz du  ov

Rule (5) : If z = f(11), where u is a function of x and y, then

— —f — — = 4 — *

x e YTy t
Rule (3) : If z = uv, where u and v are functions of x and y, then

%=%(uv)=u-§—;+vg—; and %z=%(uv):u%+va—u.
Rule (4) : Ifz = —u—,where u, v are functions of x and y, then

v

du ov V?E_u__@l
8_2__3_(5J_ "o "% and Ez_gi[E}M
x oax\v) 42 dy ay\v v2

dz oz du dz 9z ou
= and —=—.—.
dx du o9x dy du oy _
REMARKS - . =
e Partial means a ‘part of”. '
. . . oz dz
e If z is a function of one variable x, then Fotalat

e If z is a function of two variables x; and x5, we get 2 and &
ax dxy

. . . 9z o=z 0%
e Ifzis a function of n variables x,,x;,...x, we can find —=,=—.,...5—
axl axz ax;

n

KRR SYMMETRIC FUNCTION OF X AND Y

A function u = u(x, y) is said to be symmetric if, on interchanging x and y, u remains
unchanged.

PARTIAL DERIVATIVES OF TRE HIGHER ORDER

% just as we found those of u forglianda—u

ax

We can find partial derivative of g_u and
X

are itself functions of x and y.

The four derivatives, thus obtained, called the second order partial derivatives of u or

f(x, ¥) are
253G 5)

and are denoted as

Pu Fu Fu
ax2’ dyax’ oxdy ,Byz
or fxx!fyxafxy’f_yy-
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Partial Differentiation

— i

2%y 3y
| » | The partial derivatives —— axay aya are distinguished by the order in which u is successively

“differentiated by the order in which u is successively differntiated w.r.t. x and y, but it will be
seen thart, in general, that are equal.

leg

&£ Solved Exam

Example 1. Verify that aia? aiau whereu = xsiny + y sinx.
Solution . We have u = xsiny + y sin x. (1)
3 Differentiating partially both sides of (1) w.xt. x and y respectively, we get
| é-gzsiny+ycosx .(2)
and £=xcosy+sinx. ..(3) |
Again differentiating (2) partially w.r.t. y and (3) w.rt. x, we get
i 82u
| —= + N
! o COS Y + COSX 4)
2
and i—;y=cosy+cosx. ...(8)
Form (4} and (5), we obtain
' %u B %u
dydx  oxdy
Example 2. If i = xzy +y2z + zzx, then show that — du au —+ g— ={x+y+ z).
- Z
Solution. Given that u = xzy +y2z + 2%, ..(1)
. Differentiating partially both sides of (1) w.r.t. x, y and 2 respectively, we get
| au = 2xy + 22 ~+(2)
8!1 2
— =X +2yz ---(3)
| dy
! and %=y2+2zx, 4
z
Adding (2}, (3) and (4), we get
%+%;— ?—ngwz +x2 +2yz+ y? + 2ux

=x*+y2+22 4 2xy + 2yz+ 22 = (x + y + 5%

Example?o.ffu:f[y) show that x%+y%=0.
— x

Sotution . We have u=f[%) (1)

Differentiating (1) partially w.rt. x and y respectively, we get

| s r(35)

(eI NSFUE tionalMatetialie:




Example 4. If z = fx + ay) + ¢(x - ay), prove that %E =q"—.
v

Solution .

CALCULUS

L oy [l) (2)
X X

M _Y L l] 3
= Yy " x f ( 3
Adding (2) and (3), we get
du du
X—+ a =0.
2 5 a2
ax?
Given that z = f(x + ay) + ¢{x—ay). LD

Differentiating partially both sides of (1} w.r.t. x and y respectively, we get
E o fleray)+¢xc-ay) -..(2)
ax

and %: af (x +ay) - ap’{x — ay). ..(3)

Again dlfferentiating partially both sides of (2) w.rt. x and (3) w.rt. y, we get
g Z = fr(x+ay) + 6" (x—~ay) (D
x

2
and g;2~=a2f”(x+ ay)+a29”(x—ay). ...(5)
Form (4) and (5), we get

a?'z 2 82z

L

2
Example 5. If u = log(x® +y° +2° = 3xyz), show that[i+i+—q-] u:——9—-—.

Solution .

dc dy oz

We have u= log(x® + y3 +2° - 3xy2)

Differentiating partially with respect to x, we have
du _ 1

x Biydez

3 (3x% -3y2)
-3xyz

a_u: 3(x? - ¥z}

. (D
ox x3+y3+z3 - 3xyz

Similarly,
du_ 3y -=x)
dy x3+y3+z3—3xyz

2_
and §E= 3z° — xy)

9z x>+yd+gd-3xz
Adding (1), (2) and (3), we get
du |, du 8u_3(x2+y2+zz—yz—zx—xy)

x dy oz 2+ yd 2 - 3xys

. (2)

...(3)

_ 3(x2+y2+zz—-yz—zx—xy) N 3
e+ y+ )2+ y2+2° —yz-zx—xy) (x+y+2)




i
|
Part;'al Differentiation

i
Example 6. If u = sin ™! x +tan~? R4 , show tharxg_" +y

] Y

1
X+y+sz

d

)5

1
X+y+z

)

(Jnr+y+z)2

X

(x+y+z)2 -
9

(x+y+z}2 —(x+y+z)2

|

du
» gy——O.

Solution . We have u— sin™! X +tan™! L
—_— x

(1)

u___t 1. 1 (.VJ
) 27172
A
-5 .
S S
| Jri-x? F4y%)
i du X xy
! = X— = -
51 ox J(yz x?) x +y2
ou 1 [——JE-—]«{— 1 [l]=_ x x
l Yol (=) 1+[l]2 ) ylyR-a? 2Pyt
| v x
= yﬁ=— X X

dy J(yZ_x2)+x2+y2
On adding (1) and (2), we get
X+ ya—u =0.
dx T ay
Ifu = f(r), where r* = ¥ + y°, show that
We have r? =x* + _y2
ar

o
dy

or

i

2
Example 7. du

+?=

o%u

o2

. F10Y 4 £,
Salution .
. = 2ri =2xor
ax

! or
2r—=2yor
l and e 34

Since, u = f(r)

dut s
P [f(n].

Pu 3 [au]

q S8
an axz ax \ dx

o e

X fr)
-

[x-lf ’(r)]
-

|

J

o

-(2)

1D

. et
I T
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Solution .

Example 9.

CAI.CULEIS

= 1.1.f’(r)+[xf’(r)][—~12-a—r]+£[f"(r)]ﬂ"
r rdox| r ax
2
- l.f'(r)—iz.if'(mx—f”cr)
r rer
2
-2 U )—x—sf (r)+ f”(r) (2
Similarly, we may get
2 1 §2
gyz Liey-2 L e Lo (3
*  Adding (2) and (3), we get
azl{ azu 2 ’ x2+y2 ’ X +J’ »
sx—2'+a—3=—-f(r)"—r—3'—f(f‘)+ 2 frr)
2
=; S }——f (r)+ > f7(r)
2 L + L4 1
= ;.f (r— ;f M+ = f(r)+ ;.f’(r).
2,
Example 8. If X"y'2” = c. Show that atx =y = 3, aa " = —[xlogex] !
Solution . We have YF =c (1)

Here z can be regarding as a function of two independent variables x and y.
Taking log of both sides of (1), we have

xlogx+ylogy +zlogz=logc. ..(2)
Differentiating (2) partially w.rt. x, we get

x.l+1.logx+[z.l+1. log z]a—zzo
X z ax

az (1 +log x)
i TQ+logz) - 3)
Similarly differentiating (2}, w.rt. y, we get
oz _ (+logy)
Iy (l+logz)’

&’z dz)_ 9| (1+logy 3 B
A0 acay ax[ayJ ax[_[nlogz]}=‘(1+1°33’)—[(1+logz) ]

—(1+logy)[ (1+Iogz)‘21 az] (1+log y) (1+logx} .
x| z(1+logz)? | \1+logz

BN Y

Forx =y = 2, we have
9%z - (1+logx)*> 1 -1

: - = {loge =1}
oxdy x(1+logx)3 x(1+logx)  x[loge +logx)
-1 4
=— =[xl .
*Toa(en) [xlog(ex)]
d du
Ifu=(1- 21y+y V2, prove that {(l— 2) } _{yz—}=0_
ox dy | I
We have u =(1—2xy+y2)"i-’r2 .1

Differentiating (1) partially with respect to x, we get

du

== ——(1 2y + y2y ¥ (-2y)
ax




B

el If

T L g e il i it #.h;-«..-..\a.w. ——

Partial. Differentiation, e " - " .

. i e e ——— T

dut 24-3/2
— = y(]l-
or ™ y(1-2xy+ y°)

3
= (I—xz)%=y(1—x2)[l—21y+y2) 2

Again differentiating partially w.r:t. x, we get
3 (. 20u
ox {(1 x )Bx}
:y[ ~2x(1-2xy +y?y 2 +‘(l—x2)[_%](—2y)(1—2xy +y2)_5f2]

= —2xy(1-2xy + y) ¥ 4 35201 - x2)(1 - 20y + )2

%{(1 - xz)g—;} = 201 + 3y23(1 - x2S [Using (1)] ...

3
Differentiating (1) partially w.r.t. y, we get %=_%(1_2xy+y2)‘5{_2x+2y}

or % ={x-y}(1 —2xy+y2)'3>’2

- yz?gu: (x=y)y2(— 2oy + y 2y ¥2

Again differentiating partially war.t. y, we get
ayl” oy
= 2xy(1 - 2007 + ) ¥2 - 3y 21 - 2wy + 202 4 3y2x - YY1 - 20y + y2) 2
= 2(1- 20 +y*Y ¥2 - 3y2(1 - 20y + 2 YA~ 27 + y2) - (- y7%)
= 2071 - 207 + 2 ¥2 - 3521 - x) (1 - 20y + 22
2l

oy [T ¥
Adding (2) and (3}, we get

9 g 2y0ul, 9| 2dul_
ax{“ x )ax}+ay{y ay} 0

Example 20. [Fu= (x2 + y2 + z2)Y2 show that

Pu Fu du_
@ xa—u+ya—u+zﬁu—=-u (i) —+—I-£ -

ox T dy oz %yt 3

Solutlion . () Wehaveu=(x2+ y2 + zZ)—lfz

Differentiating (1) partially w.r.t. x, y and z respectively, we get
3
g%{—% ](Jc2 +y%+2%) 2(2x)

gti —~X

ax - (x2 +y2 +z2)3j"2

ou -x2

X (x2+y%4 z2)¥2
Stmilarly, ¥ 7 W
2
and za—u = ;
% (x2+y’+z

29372

3
i[yz a—”):(ZJLy—Syz)(l—ny+y2} 2 +{xy2—y3)[—%](—2x+2y)(l — 2xy + y2)?

}=2xyu3—3y2(1-—x2)u5 [Using (1)] ...(3

A1)

.(2)

.3

NCY

(2)

)
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Example11. If g = t“e‘rz/ 4t find the value of n for which iz —éa—{r
r r

Solution .

CALCULUS

Adding (2), (3) and (4), we get

Bu au au -2 +y+a®) -
it v R
BT T
o > -

2
(ii) We have gu_ i(é&] _9 -x

__ 1 3 2, .2 252
|:(x2+y2+22)3f2+x{[ 2](2)()(1‘ +y“+z%) H

(y P 2x2)
572

L 1 _ 3x2
(x2+y2+22)3;2 (x2+y2+zz)5f2

2 2_,2_ .2
a_u_ 2x° -y“ -z (5

a2 - (x2 +y2 + 32)5’{2
2 2 .2 .2
Similarly, 9—- &y - x -z
ay2 (x2+y2+22)5”2
and iz__— 2z2—y2—x2
a2 (kX +y?+ 222
Adding (5), (6) and (7), we get

(x +y +z)

..{6)

A7)

2 3_9] _ 99
ar) o’
We have g = (R~ /4t (D
r n—le-rz/4t

8_9_ -r/4t( 2") __r
Then ar t|: at )|~ Zt

3
2
_ __rn—]e—r /4t

A 208) 1 a1|q 2 :r¥a -r/4r(*2f
Nowar{r Br)_ 2t [Bre +re at

3 1 -2 1 G Y
_32m1 4 1 oan2, /4

1 9 200 3 no1-ra
..rz.ar(r ar)_ St +

Again from (1), we get
@ = ntn—le—r2/4r e~ /4r [_2]
ot 4¢2

00 n=l —
or Zont 1, 24t
dt

%rzz"-%-r’f*“ .2

+ 4r -2 ortfat (3

Since 1 —a—(rza—e) 9
’ r2 “or ar at
Then from (2) and (3), we have
_ _:_3_ tn—le—r2/4r + _1__ r2ti'|—2€—r2/4t

2 4

nt

n— l -r /4t 2tn—2 —r2/4t
4

n=->
= 5"
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Partial Differentiation N

l: 2
1. I}u(x +y¥)= X +y2, show that (@g_a_u] = 4(1_3_”_ au],
i Ih ax dy ox ay
B
Lo
2. Show thatiﬁ+ o 5 =0, if (1) u=e™ cosmx (i) u=tan_1l.
.t a2 X
i;
[
l:
|.
3. If z = e ¥ Pf(ax - by), show that b%*“% _ 2abs.
1. Firu:lé}--li anda—uwhen:
ax dy .
. . x x? ¥t
D u=log(x?+y?) (i) u=cos™? —) (i) u="—+2a-1
N W a* b
2, 2
(iv) uztan‘l[fiJ
xX+y
2. Find the second order partial derivatives of log(e* + ).
2
3. Venfy that aiay ax 2% where
2,2
{1) 1t = log(y sin x + x sin y) (ii) u:log[x ty J
' Xy
(i) u= tog u (iv) wu=sin'E ) u=x (vi) u=logtan(l)
1 Xty y x
(Vii!)u=x4+x2y2+y4 (viii) u—log( a4 2} (ix) u=xlogy
“ x2 +y
f 0, how that o = X X _ 99
4. Ifx =rcos y—rsmﬁsowtatax PRt
5. If u = log(tan x + tan y), prove that sin2x-§—+sin2ygy—u =2,
X
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ap -

-y CALCULUS

—— i -

2 2_ .2
. Ifu=x?tan™ L - y? tan~! X prove that —a—u=-x—y—2_
x Y axdy x*+y

2 2
7. Ifu = 2ar + by)? - (& + 2 and a® + b® = 1, prove thac 94, O o
ax2 ayZ

8 Ifu= log(x3 + y3 —xzy —xyz), prove that

. du du a . u
Oty Y W ey
d d
9. ifu = f(x + 2y) + glx - 2y), show that 45)(—1; = é-y—l;

= (1+3xyz + x1y25%)e ",

=-4(x+y)7

u
dxdyaz

10. If u = €Y%, show that

ANSWERS:

1 X 2y * st '.

IS
b?
ot .
0w

L]

- = (iii) 2
ey L T g S
r© X NyEEa? J_'_A'/yz.—xz a
RPN C o Y 1 MO 2 . . 5
G YR+ 0+ ¥y + )2+ (P + Y42
Y&y * ex-l'-'y s

2% ., 2y '
1. ()~5—:—5—5 (D
24y a3

€
2. (i) — » T !
R S R e e

[FX] HOMOGENEQUS FUNCTIONS
A function f(x, y) is said to be homogeneous function of degree n, if the degree of each of
its terms in x and y is equal to n. Thus

agx” +apX Ly +apx™2y? 4t a0 Hay” (1)

is homogeneous function in x and y of order n.
REMARKS N - __:’Jé o 3
e This definition of homogeneity applies to polynomial functions only. To widen the concept of

homogeneity so as to bring even transcendental functions within its scope, we defineu as a
homogeneous function in X and y of order or degree n, if it can be expressed in the form of

o)

e This definition also covers the polynomial function (1), which can be written as

[ao+z+(z](z]] 12)

- It is a homogeneous function of order n.

& To test whether a given function f(x, y), is homogeneous or not we putx = hx andy = hyinit.
If we get f{hx, hy) = h"f(x, y), the function f(x, y} is homogeneous of degree n, otherwise f(x,
¥) is not a homogeneous function.

« A homogeneous function in x and y of degree n can also be written as ¥'f [i)

e A function u of three variables x, y, z is said to be homogeneous function of degree n, if it can
be expressed in the form
Y z ne|X 2 ne|X Y
u=x"f|=.— or == or z [-,— .
fl(x x] Yfz[y y] 5 z..z]
In general, a function u of several variables x1, Xy, ..., X, i$ said to be homogeneous function

ips 4 . Xs X X X, X
of degree m if it can be expressed in the form u=x]'f; [-2,—3,“.,—“] or x5 f [—L,—3,...,x—“]
1% N Xz Xz X3

Or etc.




Partial Differentiation

THEOREM1. If u is a homogeneous function of x and y of degree n, then 9 and %4 du are

homogeneous function of degree (n - 1) each. ox
Proof! Since, u is a homogeneous function of x and y of degree n therefore, u can be
ir expressed as i =x”f(%]. ...(1)
| Now from (1) '
| du_ -l (Z] n (1) YNl AN XYy
e Y A vy ey b nf(_]+f(_§](_;

i =x"_1xafuncn'onof% x1 [ J(say}

which is a homogeneous function of degree (n - 1).
Also, gﬂ:x“f’(l]{l):x"”lf’(l)=x"'lxafunction of £
dy xJ\x X

X
= x"‘lg(l] (say).
x
which is a homogeneous functon of x and y of degree (n - 1).
THEOREM 2. [Euler’s Theorem on Homogeneous Functions].

fu be a homogeneous function of x and y of degree n, then x & du 4 y— du = nu.

ox dy
Proof. Since, u is a homogeneous function of x and y of degree n therefore, u can be

5 expressed as

| wsei(3)
) 2)

ey

o et ()

T Y

REMARK - LR S

¢ Euler’s theorem can be extended to a homogeneous functions of several variables, Thus, if u

Hl‘e:

be the function of m independent variables x4, xy, ..., x,, of degree n then, Eulers theorem

du ou du
states that x;— + Xy —+...+ X, —=nit.
) Ya, tox, ™ x,,

|
THEOREMS3. If u is a homogeneous function in x and y of degree n, then

2 2 2
ng;c—g+2xy%+yza—g= n(n - 1.
Proof, Since, u is a homogeneous function in x and y of degree n therefore, by Euler’s
theorem
i X9 Lo _ ‘ (D)

| ax Iy

Differentiating (1) partially w.rt. x, we get

a(xauJ+-a— a_u ——a—(nu)
ox ox ya‘y T ax

:' .+ Each of ou and u is a function of both x and y
‘ ox dy |

SelflInstructionaliMatert



CALCULUS

%u  ou %u du
= L lty——=n—
X 2 Tw Y axay "ox
%u ?%u du
- ={n-1'— (2
= Xx—+Yy %3y (n-1) o (2)
Again differentiating (2) partially w.rt. y, we get
%u Fu du.
Tl x 2 =(n-1= .3
Tt oy =13 ®

Now, multiply (2) by x, (3) byy and then adding, we get

2 9%y azu )2 u [ au]
+ 2 ={n-Dlx—+ (n—Dnu=n(n-1u.
w2 Vo R xay s

REMARK * A
e If z is a homogeneous function of x and y of degree n and lf z = f{u), then we have the
following results :

du du fluy
(i) x=— ”ay f'(u)'G(“}

&G -11
ay

E}xdy

Solved Examples

Example 1. Verify the Euler’s theorem for the function u = axy + byz + cax.

Solution. We have u=ay + byz + cax. ...(1)
which is a homogeneous function of x, y and z of degree 2.
To verify the Euler’s theorem, we must show x du +y— au au = 2u
ax 8y az

Now, %:ayﬂz, gyu =ax+bz, gz =by+cx.

x—g%+y%+ z% = x(ay +cz) + y(ax + bz) + z(by + cx).
= 2axy + byz + czx) = 2u.
Hence, Euler’s theorem is verified.

2, .2
Example 2. If u = sin~! I:x—:i:l, show that xa—u + ygli = tanu.
24

Solution. We have sinu = Xty
— X+y

x2+_y2

x+y
= v is a homogeneous of x and y of degree 1.

Let V=

Then, by Euler’s theorem, we have ‘

elfIngtructionallMaterialk:

g: /yg; y (D)
v=sinu= »_ cosua—u
ox ox
and -al=cosugg.
oy %y




f
!

’I

Solution .

|

Solution .

Example 3. Ifu=tan”

Pa I%tial Differentiation

Put these values in (1), we get

xcosua—u+ cosua—u— v
Y dy

du du_ v  sinu

= X—+ty—= =tanu,
ox yay cosu  cosu
3..3
—+—y,pr0veb‘1at
x—
2 2 2
2 07U J“u 3 a
X°— + 2xv +y*—— =(1-4sin®u)sin 2u.
ax? axdy Ay
3yl
We have u= tan_l 4
xX—y

3

x3 1+(—Ji]
_x3+y3_ X |
x-y x[ Y
x
l]wirhn=2

X
- tan u is a homogeneous function in x, y of degree 2. Then, by Euler’s theorem

tan u is of the formx"f[

x—a—(tanu) + yi(tanu} =2tanu
ax dy

2 Ju 2 ou
= xsec"u— + ysec u-— = 2tanu
0x %y

=>xa_u+yau &ta%—zsinucosu=sin2u (1)
dox sec’u

Differentlate (1) partially w.r.t. x, we get

2 2
[xa—£+—a£]+yﬂ— = 2cos2u(_3l—u

ol ox dxdy dx
Lu P @
—— =(2cos2u-1)—
E}x —+y 8 . (2cos2u - )
Interchanging x and y in {2}, we get
2u 2u
Yy— = (2cos2u ~ 1) (3
Nova-‘fnulnpﬂ'ﬁﬁ% (2} byx, (3) by?’and then adding, we get
2 2
2 i §2 o°u [ du au]
_— —(2c052u Dix—+y—
Y . "y

K

= (2§r_g52u ~1).sin2u
=[2(1 - 2sin®u) — l]sin = (1 — 4sin® u)sin 2u.

Example 4. If 1 = sin~ ' | < [+ tan™ [ £ ,show that X a}_."'y 3 = = 0xu=0
y X

We have u = sin™! [—{] +tan ! («J’-J = x9 [sin_l[ 1 J+ tan ! (ZJJ
y x ¥/x x

= u is a homogeneous function of order 0.

Then, by Euler’s theorem,we have
Ju  Ju
X—+y—=0xu=0
ay

ax

elfiInstructionaliMaterial




‘ . CALCULUS

Example 5. If y = (xl”“ + y1f4)(x1,15 + yus)_

Apply Euler’s theorem to find the value of x a—z +Yy zli

ay 1
Solution . Here, we have |
u(x,y):(xl*“' +y1,f4)(x1;5+y1,f5)

11 11 1 1
=ultx,)=t4 (x4 +y 5 (x3 +y5)

= 20,4 L VA Y5 ¢ 1Sy 2 ¢920y(x, y)

Clearly, u is a homogeneous function of degree i

Hence, by Euler’s-theorem we have x o +y ou u_2 u.

o ay 20
Example 6. Verify Euler’s theoerm for f(x,3,2) =3x2yz+5.xjy2 2 +4z.
Solution. Let flx v, 2) = 3x2yz + 5:9/22 + 42°,

of

.-.%:6m+5yzz;$:3x2z+10xyz
and gi = 3x2y+5xy2 +162°
'z
xa—f+yi+z E)c—=J«(E:.vc‘yz+53/22)"' y(3x%z +10x2) 4 2(3x%y + 5xy® +162%)
ax “ dy oz
= 4(3x%yz +5xy2z +42%) = 4f AD

s, sn-<[o2 22 ()]

is a homogeneous function of x, y, z of degree 4.
Hence, by Euler’s theorem

A .
Yy Y @

From (1} and (2) we conclude that Euler’s theorem is verified.

Example 7. If y = f[%).h[xz +y2,showthat xg—:+y%_= x2+y2 .

Solution. Letuswrite u =v +w

where v=f[1]=x°f[l)
x X
! 2
and w=\Hx2+y2 =X 1+(£—]

Therefore, v and w are homogeneous function of degree 0 and 1 in x and y
respectively. Hence, by Euler’s theorem

elfInstructionaliMateri

xg—;+y%-—0v 0 RN
and xa—‘t+y@—=1.w= )c2+_)r2 ..{2)
dx oy
On adding (1) and {2), we get
d ow dv w|_ (2. 2
[ax+ax]+y[ay+ay]_ ity (3

Fia
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T

|

| Y

jal leferentlatlon

du

nple 8. If 2 = x" fl( J+y f( ]thenshowrhat

2 9%z
a_z

2
28 az+_)ra—2:=irlzz

2%z
%”75 2 %y

So!utli_on . lety= x"fl ;J,v = J’-ﬂfz (%]

Example9.

f
Solutio

|

z=uUu+v

au= 'x2+y2 .

Now, since u = v + w, then using (3) we get x—~+ y—

...(1)
- {(2)

Clearly, u and v are homogeneous functions of degree n and —n respectively.

Then by Euler’s theorem, we get

0%y FPv .
dx* = +2
an ax2 x}’axay

Since z=u+v = —=—4—

and a—z au Bv

EE ay
Adding (3) and (4) and using (7) we get
0z 0%
x—+y—=nlu-v)

ox T gy
Similarly, adding (5) and (6} and using (7) we get

e ax? o oxdy dxdy d a)’z ayz

=n(n-1u+nn+1v

232 ¥z 9%
2 3y +Yy ;=n 2w+ v)—nlu-v)

P (az oz
=n‘z-|x—+y

dx 7 ay

2 2 2
2aZ 3z 23 +x _q“zh+ya_z=nzz

mw+ya2 ax 7oy

3
le9. If u= ; ysz 3+log[g+y§+zx]ﬁndthevalueofx
x*+y*+z x“+y©+

3.3.3
. Xy’z _ Xy+yz+zx
n. Let Ve and w-log[————2 3 2]

X“+y  +z X“+y“+z

>)

|

..(3)

(4}
-..(5)

+y ?=(-n)(—n—l)v=n{n+1)v -..(6)

.-{7)

...(8)

(Using 8)

au Ju

ay za_z'
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Clearly, v=x

3
z
x]

CALCULUS

3
1+(1] +
X

Bl

isa hoﬁogenwﬁs function of degree 6.

.. By Euter’s theorem
x~al+y-az+zﬂ:6v (1)
dx “dy o
Y L ELE
X X X | i5a homogeneous function of degree zero.

Further, w = log| —%

Thern, by Euler’s theorem
o a0
dx dy 0z

Adding (1) and {2), we get

x(ia-v'—+a—wJ+ ﬂ+§£ +z{ﬁ+a—w)—6v
x o) Ny % o9z,

ax Y dy dz 'x3+y3+z3

STUDENT ACTIVITY
1. If sinu = m,show that xa—u+ya—u+z% = =3tanu.
e+ yB gt ox " dy 2
2 fu= X + B4 + z , show that _xgy-a}-_y?-)g--}-z-alli:o_
¥Y¥+z z+X Xx+y ox dy oz
3,3
3. lflogu= Xty , show that x.a_u+y-3_u =2ulogu.
3x+4y dx T dy




Partial Differentiation

du Jdu du
4 Fu=x"+y"+ 3 that x — — 45— =3
| u=x3 ¥ + 2% + 3xyz, show xax+y8y+ pw 3u

TEST YOURSELF

1. Verlfy the Euler’s theorem for the following functions :

(i) lf—ﬂ);—);) (i) u=x sm( J(!u] u=x log( ] {iv)
x*+y x
2
) u=x"sin’ V) x*logd (vii) U=108[x ty ]
x X xy
V3 4 13
(viii} u=m

2. () Ifuzxf[y) proxethatx%z—+y$ u.

(i) Ifu:f[ ) prove thatx—+y%u=0_

[Z] prove that xgy--i-yau 2u,
x

(iii) Hu= >

au 92
aJ’

(1v) Ifu= log[ }, show by Euler’s theorem : x == =1.

+
3, lfu-tan 1(x Y ],showthat
X+ Yy

2 2 2
xgx—u+y%—sm2u and x g;li+2 ;t;y+yzgy—z=2c053usinu.
4. Ifu=tan -1 y,show that(using Euler's theorem) xa—u-c-ya—u:o,
. e By
, x+y
5. lfu=5m , show that
-\{_+\/_ show tha N
au ou 1 9 8211 82 2 %u _sinucos2u
(1) x— ==t (i) x —+ =
1 xax”ay 2 ax? aay 8_)/2 4cos®u
6. :Ifu=sin' J;;JJ:,showthat xgx+ygj—u—0
4
+y ou dut
7. (i) u=lo , show that —=3.
g Ty w tha xax yay 3
: 3..3
(:n) 1fu=logxx:§ , show that X%z"")’g 2.
} xzyz au du
. inu = —+y—=3tanu.
8 JIIl’smu x ,showthatxax yay
, 2.2 2 2
x“y a“u du ou
9. Hu= » sShow th et X—=2—,
?(1) u Xty show that yByZ xaxay ™
a2 P L%

P Xy u
i U= 3 —_—
:I(u) 1f x+y show that x +2.xy

axay Y ot

Selflnstructional|Materi
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2.2 2 2
(iif) 1fu = ify,show that xgx_“”;a‘; g_:.
8%u Fu %
10. Ifu= [ ]+ ( ] show that x2—+-+2 2 =0.
xfy f 2 5y +y 2 ‘
11. () Ifu= log(J_ \/_) show that xa—-t-ya; ; ‘
o xt eyt exty? du_ |
(i) Ifu—logm-——,showmat x$+yay 3. |
2
12. If z be a homogeneous function of degree n, show that xa_z+ yai—ay =(n— 1)_
EER TOTAL DIFFERENTIAL
Let u=flx,y _ ...(1)

be the given function of x and y, which have continuous partial derivatives of first order
w.rt. x and y.

Let &x and 8y be the increments in x and y respectively and let du be the consequent
change in u, then we have
w+du = flx+dx,y+8y)
= flx+dx,y + 8- f(x,y) ...[2)
=[flx+8&,y+8)~ fO,y+ 0]+ Lflx,y +3y)— fx,¥)]
Su _ [f(x+5x,y+8y)~f(x,y+5y)]+[f(x,y+5y)—f(x,_y)]

5t &t 6t
du i Su

o sta0 of
- lim SO+ 8¢,y +8y) - flx,y +8y) 6x f(x y+%)- flx,y) 5)']

Now,

8t—0 o 6: dy ot
. . ..(3)
Since & and dy tends to zero, when &t — 0 so we have
lim SO+ o,y +8)— flx,y+8y) _of _ a_u
3x—0 & gx  ox
Similarly, m SO,y +¥)-floy) _of _du .4 llrnE=E 1im—=g
’ Sy—0 Sy dy dy 5t—08t dt ac—0 8t dt

du_du dr u dy
dt ox'dt ay dt’
REMARKS TR e
» This result can be extended as follows ; - -
If u =f(xy, X3, ..., Xp) antd x7, X9, ..., X, all are functions of t, then
du_du dq | u dn | B d'.r

de ?Jxl dt ax2 dr ax

o The differentials dx and dy of the mdependent variables x and y are the actual changes S
and 8y but the differential du of the dependent variable u is not the same as the change &u,
it being the principal part of the increment 8u.

X3 IMPLICIT RELATION OF x AND y

In most of the cases, we are mainly concerned with the case in which y is expressed
explicity L.e., directly in terms of x. There are so many cases in which y is not expreesed directly
in terms of x, but functionally it is implied by an algebraic relation f(x, ¥) = 0 connecting x

Therefore, from (3), we get

and y.
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Pa‘r,tigl-'Différentiat'ion

| The relation of the type f(x, ¥} = ¢, where y is not explicity in terms of x are called implicit [T

funcnon
1 - DIFFEHEMTIATIO_ILI]F IMPLICIT FUNCTIONS
!' To find % for an implicit function f(x,y) = O or fooy)=c:
IiLet flx, y) be a function of two variables x and y and y itseif is a function of x i.e., f(x, ¥
may be consider as a composite function of x. Then, we have
o _of dx ¥ dy d_F F dy
...(1
b xax b d " ox 3y dx M
Since f(x, ¥} = 0, therefore .‘.i_f_ =0.
'Now from (1), we have 8f gi (‘g 0
d_y AL N 'R
de ax ¥y f, . provided £, = 0.
nit. S0lved Examples.
Example 1. if x +y = o’ ﬁnd%. ,
Solution. let flx,¥) =x+3y - a = flxy)=0
dy __f/ax __yx* '+ y*logy
Therefore = = - =- .
dx  foy  xVlogx+xy*!
Example 2. If u = log [6Z + yz)/xy], find du.
Solution. Let u = log (x* + y*) - log x - log y.
Bu 2x "l_2x2—x2—y2='x2—y2
o x2 + y2 X x(c? + y2) x(x? + yz]
and du_ %y __1.- 2yt y2= yiox?
eyt oy oy +y 5 yxPey?)
2_.2
Now, du=2" gy 4 O —dy= 5 —y 2 a4 =X 2)
ox dy x(x?+y?) y(x?+y%)
2 -yH
= ————>~(ydx - xdy).
. xy(x + 2) ’ 7
- o 9g dz_of 3
Example3 ffecy) =0andg(y, 2) = 0, showthatay % T 3
Salution. Let f(x, y) = 0, then we have
& _dfox (1)
dr of /oy
Also, letg(y, 2) =
dz _ ag/ay
dy  ogfor’ ~(2)
Now, from (1} and (2}, we have
de_(f B\/[f %
de'dy \ox oy dy Iz
dz Jf dg o dg

1 = R g og_

dx dy oz auc ay




o

a,.

Example 4. Ifu = xzy, where X + xy +_y2 = 1. Fmd%
Solution . We know that jxu gu g; 31
Giventhatu —x2y
du 2
—_— d——:x
2xy an 5
B f(x,y) x? +J¢y+y -1
Then dy  dffox _ 2x+y

dc ffdy  x+2y
Putting all these values in (1), we get

o du ou du
= X =T
dx dv ow

ou i—)uav au ow . duj 1 du
Further, —=—.— = —| — |+ —(0)
urther, =y oW av[ﬂ} (
pdu_
dy ov

Zp it = (0)+

oo v dudw_du 1
Similarly, & = 5 5 T aw o ov [ )

z

du 2 (_2x4Y)_ o, X @x+Y)
dx-2;y+x.( x+2y]_2 x+2y
d
Example 5. If u = x log (), where © + y3 +3xy = 1. Find Exli
Solution. We have u =xlog ().
du [1 }
= —=x| —.y plogxy=1+logxy
ax | X
du (1 } x
and —=x|—.x|=—
4 Xy y
Also it is given that
x3+y3+3.)of=1
Differentiating (2) we get
5 dy dy
3 3 =0
x? + ¥ dx+3( dx+y] .
_ Ay [Py
dx x+y?
du du dudy _ (x*+¥)
Now, — = — +-— =1+log(xy)+—q———5——
dx  ax dy dx { (2 +x)}
2
:1+log(xy)_ix_2_+.y_)
y(y° +x)
Yy-x z-x u ou ou
Example 6. Ifu = u , showthat x2S 4 y2 S 1222 =
If ( > J xt ==ty ay+:: 3
Solution. Suppose V:y—le_l andwzz_x=l__1_
- xy x ¥ xz2 X z
Then dlearly, u = u(v, w)
7 Ow_du ov Jdu dw _duf~ 1 LJouf 1Y
a 3 gvax ow ax avl x2) awl x2

CALCULUS

(1)

D

.(2)

(D)

(2}

(3}
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|
Par;‘.ia_l Differentiation

20U du -
z2¢—=——
= dz  ow (4 o
Finally, adding (2}, (3} and (4}, we get
zau zau zau
—+y? =422 0.
| xC-ty £)y+z az
i' | 22y 2r - 2pgs+ p?t
Example 7. Iff(c y) 5 O, show that 22 . T T <PB+p L
E ‘ ax? 7
Solition. We have gy_=_af /ox =P
- dc  Jffdy q
d’y d{d d _qgfgﬂ,ﬂ
- dy_d _J'J=.._ P Tde "dx D)
dxz de | dx dx q . qz
| dp _dp dp dy p] gr - ps
' Now, —=—"—+-— —=r4+5|-=|= ———
| dc ox dy dx q 4
i dg_oq 99 dy _ ( p)_gs-pt
i d ™ 5’;+ay'dx s+t q . \

Putting all these value in (1), we get
d%y 1 qr -~ ps gs—pt qzr —2pgs + p’t
?e}fg_q_?-[q( q }_p[ q J]:_ 3
Here,pza—f,q=a—f,r=§,2_£_a_z°
ox dy ax%  ox
sz_a.z_f_=a_q’t=£f—-=a—q
dxdy ox ay? oy

\ Pz Pz %z 0% . .
2. Show that—5+ ——+-—2wherex =ucosa—-vsing,y = usina + vcos o,

Ju a_v-z_ - el

TEST YOURSELF

1. If (tan %Y + () = q. Find the value of%.

d
2. Ifu = sin(? + ¥%), where a®® + bzyz = ¢*. Find the value of Eu
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Ju=fly-z,z-x,x-y), provethat au u 5;3
By oz
. Ilesafuncnonofxandy,wherex-e +e’andy=€e“~¢" shm.\rthatgf1 gj %—ygy—z.

. Find the total derivative of u with respect to t, when
4

(i) u =cosh(l],wherex = tz,y =g
X

(ify u=e"siny,wherex =logt,y = t*

. dfu= \l(x2+y2J and x* + y® + 3axy = 5a”. Find the value of%I atx=ga,y=4da.
. Find & and ﬁ from the following implicit relations.
dx 2
() x?+y*=q? (i) x%34 y¥3 = q¥3

Y 3 e 3)
8. If f(x,y,2) = 0,show that [ — =-1.
az X const. ax ¥ const. a'y 2 CONST.

ANSHERS

_ y(anx) “1sec? x - y** log y.cosec? x

cot x-1

' 2
2. 2xfeos(®+yHll 12
(tanx)” log tan x +cot x y fcos(x®+y 1]( 7

Ldu 1, Y Lodu X T
8. M T ;“f(_xe - Zyt]smh; - (i) i T(smy +2t2 cos y), where x= logt,y =‘et
—a® 13 42

o Ay qV3
@ o o X2

6. 0 7. 0 T ) ey T R vy s
y? B xR 3x%3y /3

e | =

I&'Tﬁm

»If u = f(x, ¥) be a continuous function of two independent variables x and y, then

the differential coefficient of u wir.t. x (regarding y as constant) is called the partial
derivative or partial differential co-efficient of u w.r.t. x and is denoted by various

symbols such as gu ) Ll =, fe e,y fe.

» If i is a function of x, ¥ and we are to differentiate partially wirt. x then, y is treated as
constant. a

» Similarly, if we are to differentiate u partially w.r.t. y then x is treated as constant.

» If u is a function of x, y, z and we are to differentiate partially w.r.t. x, then y and z are

treated as constant.
9z ou, ov dz du v

wifg=utv, whereuandvareﬁmcuonsofxandy,menax ™ iax dé}' 54'5
0z dv du
w If z = uv, where u and v are functions of x and y, then -—_—(u v)=u—+v— and
dx dx dx  ax
a—‘ﬂ:--—a—(ma)—uév—ﬂa-e-’E
Iy Ty w
. —_—— Y
»Ifz:g,where u, v are functions of x and y, then.?f._-_i Ul _ox _9x and
v ox ox pz
av
9z _ ( ) ay By
B T2

= If z = f(u), where u is-a function of x and y, then % = _E}_{ L] and =— % a_z @-

dx du Ox dy oudy
w A function u = u(x, y) is said to be symmetric if, on interchanging x and y, u remains
unchanged.




Partial Differentiation

= A function f(x, y) is said to be homogeneous function of degree n, if the degree of eachZ=T

of its terms in x and y is.equal to n. Thus aox" +a;x" 1y +apx" 2_yz +ot 2y Vg, y”
; 1s homogeneous funcnon inxandy of order n. :

-

- lf ubea homogeneous funcnon of x and y of degree n, then X = ou 4 ya_" ="nu. )

L

| 3, lf u-em*"cosmx then Jqu gu_~

. o R

5" An expressmn m WhJCh every term is of the same degree is ea].led L f‘uncnon

® t‘ az - = b !_' - : " ..M_
| o o oz . . . B
7. Ifz = xy fly/x) thenx[a J”{ay} is - _ R - .
8. Ifu=e‘m,then-a—zrs .. - . ’
dydz T
b9, fulx, ¥} is a homogeneous funenon of X, and y of degree &, then xaztu )+Jf&yfﬂx)-
' S a,u‘,‘ '—'""' e - ¥, et kS : Ag" B " _
! ; __H—_ whete I'J ég . _( R ) e ‘\ . ‘ h . ?; -._.1._:;_. N .L
| 10. If u= f(x y) and its’ partial denvanves aré fonnnuous, ‘then order of dlﬂ'erennat:on =
| TRUE/FALSE =" R . S
| Write ‘T’ for True and’ ‘P for False statement ¥
‘ 1. An expression in which every ferm is of same degree is called hornogeneous funenon ('['/l'-‘)
| 2. In homogeneous functlon every term is not necessarily of same degree Co ;;r 7. (T/F)
3, If uisa homogeneous funcnon of xandy “of degree g, then % and-g}- are also homogeneous
function of degree n. - o (T/F)
‘ l If x and y are connected by an equation of the form S, y) 0, then g; ; g (T/F)-
¥
!} 5 Ifu:sahomogeneousﬁmcnonofdegreen,menxg— +y5y—|sequa]ton (T/F)
i
{ i
¥ ¥ _PF _¥FF 3
6. Iff(x. ) be an implicit function of x and y and p =.— o .5 andt .
i .)'2 p. . ax Ty ol &xay ayz
then i%zﬁ;wg ] (T/B)
P g _
R ou Bu du .
7. fu= (x? + y? +z]d1enxax ay ——1seq1.mltou. (T/F)
8. The Euler’s theorem for homogeneous funcnon is not true for a funcnon of more than two
variables. (T/F)
If u = f(x, y}, where x = g(£) andy ¢(0), then gu au g‘: g; g{ (T/F)
— sin-! Y du’ oou_
10, Ifu sin [y]+tan (IJ thenxax+yay 0. (T/F)

!

- —
&L-
4
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CALCULUS

XFEVY|MULTIPLE CHOICE QUESTIONS

Choosge the most appropriate one.
1. sin™ (y/x} is a homogeneous function of degree :

@1 (k) 2 (c 3 @ o0
2. Ifz=xyf[%)menx'§+y%;iseq'ualto: - |
(a) z ®) 2z © xy BN GO
. 2, .2 '
_ 1] XT Yy . E_f_ i s ; ..
3. If f =sin [-—-——x+y. .]thenxax+}_rayls_. . | o
@ f | ® 2 . @ @nf (@ sinf
4. Afunction f(x, y) is said to be homogeneous of degree n if - o
(@) fx, ty) = tznf(xy} ) . b) itis of the form x"f(x/y]
. S .3
{c] it is.of the form x"f{y/x) ? (le) % a{t : .
5. ,Ifz ’= ‘e™sin by, thenay—a is : L L

@ oeeoshy (b), . be™ sin. by ( abe™coshy (@) abé™ sinby
610 /) thenx(gx]+y[az]i;-,:;_._ AR

. .
- {a) 1 : b) 2 2 {c) -2 ) @ o
7.9z = ﬂx+ay)+¢(x ay)‘thengyz ;
2% 2 P 2 3%z 2 8%
(a) F (b G_? . ~{c) Cl 'a'—z (d) 1 &E
- 3,3, .2 ou u N
8. Hu=loglx" +y +53 &xyz)then ax+ay >
~ ! . -3
(@) — oy o —> 9 —2 @
c{x+y+2) CXtY+ R (x+y+2)° X+y+z
) :
9. Ifx-wrcos¢y—rsm9then(ar) [9’.'.] is:
dx dy
(ar (b} -r c) 1 ) =1
. 2 - g
ho. Ifu = tan ) y/x then?%+a—uis : p
ax? .gy? o .
(a) O (b) 1 (c)} sim2u (d) cos2u
ANSWERS
% Fill in the Blanks
1. 0 2.tan¢ 3.0 4. same degree 5. homogeneous
6. 0 7. 22 8. 4x+ 4yz T 9. (n-1)4x 10. immaterial
i True/False
LT 22F 3 F 4T 5 F 6. T 7. F
8 F 9, T 10. T ’
e 'Multiple Choice Questions
1. (d) 2. () 3. (o 4, (b) 5. (0 6. (d) 7. ()
8. (a) 9. (¢} 10. {a) .
0000
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d Introduction

@ Polar co-ordinates’ LI

. =Angle between radius vector and tangent o
‘Angle of intersection of two curves # ¥

' d

. Length of subtangent and stbnormal
-@ {Length of the perpendicular from pole to the tangent
® | The pedal equation .

o | Differential coefficient of arc length (Carte51an form)
® plfferentlal coefficient of arc length (Polar form)

| ® Summary ...

! @ Objective Evaluation

LEARNING OBJECTWES

After reading thls chapter, you should be able to learn:

@ 'Some fundamental concepts of tangents 5
® :The euqation of tangent and normal

® The angle between radius vector and tangents

® *The concepts of subtangent and subnormal

[

m INTRODUCTION

| Let P be a given point and Q be any other point on it.
Let Q travel towards P along the curve.

Let @ wavel towards P along the curve. Then, the
limiting position PT of the secant PQ is known as the ~-
tangent to the curve.

. The line PS through P which is perpendicular to the
tangent PT is cailed the norma! of the curve.

m SOME FUNDAMENTAL CONCEPTS
(i) Slope of a line, m = tan 0, where 8 is the angle Fig. 1
which the line makes with the positive direction of x-axis.

(i} Slope of the line ax + by + ¢ = 0 is given by m = _%

(iii) Slope of the line joining the points {x1,¥1) and (x5, y5) is = Y2~ i 1
Xz-xn

(iv) Slope of x-axis = 0, Slope of y-axis = «

{v) Two lines-are parallel iff mq = ms.

(vi) Two lines are perpendicular iff mymy = -1,

(vil) Angle between two lines having slopes my and m5 is given by 6 =tan [—nh—-

{viii} Equation of the line {one point form)

X y-yr=mx-x))
passing through the point (xy, ¥1).
jaxy + 8y, +¢]

Va? + b2

{(ix) Perpendicular distance formula =

my
myimy

)
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1§23 EQUATION OF THE TANGENT

Let y = f(x) be the equation of the curve, and P(x;, y1) be any given point on this curve.
Let Q@ = Q(x + &, y + 8Y) be any neighbouring point of P. Let PT be the tangent at the
point (x1, ¥1).

Y J\‘ R o .
The slope of the tangent at (xq, y;) = %i—l— . i o PR fx)
1 S
Now, tangentd iysla line through the point P(xy, y4) " € P(xy, yp)
d tS l =r—.
and its stope m 0,
Hence, by Co-ordinate Geometry, the equation of
d
the tangentis y -y, = —y-l-(x— x1).
dx; .
or T >
£
REMARKS »

e It should be clearly understood that by g—‘ we mean the value of % at (x1, ¥;) and not as
1

" derivative of y; with respect to x;.
¢ The equarion of the tangent at a point t; to the curve x = f(t), y = g(t) is given by

gt
f’{ll)[x Fll

PEJE] GEOMETRICAL MEANING OF zxy

Let y = f(x) be the given function and let it be
represented by the curve AB. Take two neighbouring B
points P(x, y) and Q{x+8&x, y+38y) on the curve AB.
Join PQ and let PQ be produced to meet OX at the
point R.

y-gly)=

Qx+8x, y+8y)

Slope of the secant PQ
Yty -y ¥ (D)
x+8&c-x &

Now, let the point Q move along the curve and
approach the point P in the limiting position. &x —

0, 8y — 0 and the secant PQ becomes the tangent PT Fig. 3.
atP.
Therefore, from (1) sy dy
1 f the ta tPTat (x,y)= lim —=—>—
Slope of the tangent PT at {(x, y) &xlgloﬁx Ir

8y—0
ie., the value of the derivative at a point P of the curve is equal to the slope of tangent at
that point to the curve.

REMARKS TR ETEE

o If the tangent at a point on the curve ¥ = f(x) is parallel to x-axis, its slope is zero i.e., % at
the peint = 0.

s If the tangent at a point on the curve is perpendicular to x-axis, i.e., paralle] to y-axis. Its slope
is e, Le., Lid at the point = .




Tangent and Normal

FEIE} EQUATION OF THE NORMAL

The normal to a curve at a given point is a line perpendicular to the tangent at that point
and passes through the point. The slope of the normal at point P{xy, y,) will be negative

reciprocal of the slope of the tangerit.

1
Hence, the slope of the normal at (xy, y,) = ————
ope ( 1 yl) dyl /dxl )
L . The equation of the normal at P(x;, y;) is y y1 = -m—(x ~x7)
1 1

5.1 Solved Examples.

Example 1. Find the point on the curve y = ¥ -x-8at which the tangent is parallel to x-axis.
Solution.  Let the required point be (x;, ¥1), then
y=xi-x-8 ()
Givencurvey = x2 —x - 8

Edl=2.):—1
dx

- The slope of the tangent at point

d
(Xl,.)’1)=(—‘tl =2u'('1 -1
X1 Jyl) (ll)
Since the tangent is parallel to x-axis, therefore
} m= Ei_Ji =0
- From eqn. (ii),
1

2x1—1=0=>x1 =§

‘ Putting x, =% in eqn. (i), we get

e

o 38
! o ] 4

1 33
! Hence, required point is | —,—— |.
2" 4
Example 2. Prove that the straight line = + % =1 touches the curve y = be ™ at the point where
| the curve cut y-axis.
Solution. Equation of the tangent
x_ Yy

E+g=1 (l)

Equation of the curve

y = be™/® ..(ii)
Since, curve cut y-axis. So, at the point where curve cut y-axis, x = 0. Putting in
eqn. (i), we gety = b
. Required point = {0, b)
We have to prove that the tangent at point (0, b) on the curve is eqn. (i). From eqn.
(i1);

! dy _ Ee—x/a

dx a
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.[Efll __b
’ dﬂf o) a

Equation of the tangent att) point (0, b) is
y-b=—(-0)
a

., y-b_ x
b a
X ¥
= = .
a b

Example 3. Find the equation of the normal to the parahola yz = Jax at (x3, ¥1).
Solution. ' The given curve yz = 4ax
Differentiating w.r.t. x, we get

dy
2y XL =4
J’.dx a
- dy _2a
de y
dy xp,¥y) X1 1 b
~. The slope of the normal of the parabola -t A
dx X‘L)yl}

. The equation of the normal of the parabola at the point (x, y1) is
oy = (ko
y-yn=—, x1)

Y-y _&-x)
Example 4. Find the point on the curve o +4y2=36 at which the equation of the normal is (i)
parallel to x-axis (it} parallel to y-axis.

=

Solution. The given curve 9 + 4y* = 36 (@

Let {x, y1) be the required point on the curve, therefore
9x? +4y% =36 i)

Differentiating eqn. (i) w.r.t. x, we get.

dy
18x+8y—=0
X ydx
dyy_ -9
dx 4y

[Eb_’l _.5n
dx x1,)1) 4_)’1
-1 _ m .

.. Slope of the normal = =
(&),
dx (x1,01)
(i) Since normal is parallel to x-axis, therefore

i)-:-l-zo = y1=0
93(1

From eqgn. (ii) 9x2 =36 = x =12
. Required point is (2, 0)



al
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(i) Since normal is parallel to y-axis

| From eqn. (i)

| 4yl=36 = ¥yi=9
i Y1 = 3
- Required point is (0, +£3).

K¥2 POLAR CO-ORDINATES

Let OX be a fixed straight line through fixed point O. The
fixed point O is called the pole, or the origin and the fixed straight
line OX is called initial line or the polar axis.

Let P be any point in the plane through the line OX. Join OP,
then

(i) The length OP is called the radius vector of the point P

and is denoted by r.
(ii) The angle XOP is called the vectorial angle of the point Fig. 4.
P and denoted by 0. N
(iii} The number r and 8 taken together in this order and called P, the polar-co-ordinates

' of the point P and we write it as P(r, ).

(iv) If (x, y) are the co-ordinates of P referred to cartesian system, then it can be easily
found thatx = r cos 8, y = r sin .

K] ANGLE BETWEEN RADIUS VECTOR AND TANGERT

I%]et (r, 8) be the co-ordinate of any point P” on the curve r = f(8). Let the tangent at P
makes an angle y with OX.

Let ¢ be the angle between the radius vector and the tangent at P, i.e,, ZMPN = ¢ is the
angle between the radius vector OP and the tangent at P to the curve r = fle).

To show that for any point (r, ) of the curve r = £(8), the angle ¢ between the radius

0 Vector angle X

R de
vector and tangent is given by tan¢ = r?.
r

Let P(r, 8) be any point on the given curve
| r = f(8) or f(r, 6) = 0.

Let us suppose Q(r + 6r, 8 + 56) be the point in the neighbourhood of P on the curve.,

Join OP, 0Q, PQ, then Q(r+3r, 8+56))
il OP=r,0Q=r+8r

£1XOP=9,AXOQ=9+SGand4POQ=59.

D;!'aw PR 10Q and ZPQR = «.

NPW, let the angle between the radius vector OP and

the tangent PTis ¢ i.e.,

ZOPT=¢
Also, we have
I PR _—
L —=5ind@ = PR =rsin &b
: or

RQ=0Q-0R=(r+8r)-0OPcos 80
=r-+ & -rcos 88

=8r+r(1-—c0589)=8r+2rsinz%.
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tana—ﬂi— rsin 60
QR §r+2rsin®86/2
Dividing the numerator and denominator by 36, we get
sin 86
. 56
e E‘—+r Sinaﬁ/g:;ina—e
6  80/2 2
when Q > P along the curve o —> ¢ (- PQ becomes the tangent PT and OQ coincides with OF).
sin 80
. . 50° r.l r
= = 1 = =
ton¢ clglElPtana aégloﬁ_f‘ ; S—in—ae—/zsin@ dr/de+r.1.0 dr/de
50  88/2 2

r.

r.

Hence, tanp=r @-
dr

REMARKS 3

e ¢ is the angle between the radius vector and tangent and taken to be positive when measured
in the anticlockwise direction.

s Relation between d, pand yisy =8 + ¢.

X1 ANGLE OF INTERSECTION OF TWO CURVES

If the tangent to the two curves make angle ¢; and ¢, with the common radius vector to

their point of intersection, then angle between the curves.

= angle between tangents = [y — $|.

REMARKS T AR

e The two curves intersect orthogonally if tan ¢; tan ¢; = -1. o )
If tand, —tEands 4 positive, we shall get acute angle of intersection at P and if

tand; —tang,
1+ tandy.tang, 1+ tang,.tand,

is negative, we get the obtuse angle of intersection at P.

NNormai
XA LENGTH OF SUBTANGENT AND SUBNORMAL \

Let P be any point (r, 0) on a curve f(r, 8) = 0. Let the
tangent and normal at P meet the straight line through the

pole O perpendicular to the radius vector OP in T and N L»x
respectively. Then OT and ON are called polar subtangent )
and polar subnormal at P. 5
Hence, : "n,z
Polar subtangent = 2 a \ l
I N s

Fig. 6

dr
Polar subnormal= —
subnorma i

X2 LENGTH OF THE PERPENDICULAR FROM POLE TO THE TANGENT

Let p be the length of the perpendicular from the pole to the tangent at any point (r, 6)
of a curve r = f(8), then

i) p=rsind
1 1 1 (dr}

i) —=—+—=.[=—

()pz r.2 r4 dzg]

(iii) —1§=u2+(d—“] where y =¥
p 9 r
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Proof. (i) Let PT be the tangent at any point P(r, 8)

on the curve r = f(6) making an angle

with the initial line OX.
From the pole O, draw OR L to the tangent
]f PT.
; OR =p.
Joint OF also, LOPT = ¢.
Now from figure, we have
OR _ . P_. p
—= = < =sin
i oP sing - ¢ R
! = p=rsind
{ii) From (i), we have Fig. 7.
1 1 1 2
=55 = —5cosect ¢ (D)
p° r°sin“d r
Also, tand = r@.
dr
2 2 1{dr 2
. cosec“p=1+cot” ¢ =1+—{—)
r2\de

Substitute it in (1), we get
11 1{dr)? 1 1 1{ar)?
<=2 2, = 2 3' 7l
pe T re\do p? ot rf\de

(iii) Putr = = in (i},

i
rf 1 2 [du)2
. = —=u"+|—

N3 THE PEDAL EQUATION

" Let r be the distance of any point on the curve from the origin (or pole), and p, is the
length prependicular from the origin to the tangent at that point, then
The relation between p and 1, where r is the distance of any point on the curve from the origin
(orpole) and p is perpendicular from origin (or pole) to the tangent at that point is called the
Pedal equation of the curve.

FER PEDAL EQUATION OF A CURVE WHOSE CARTESIAN EQUATION IS GIVEN

| Let the equation of the curve is
: fx,y) =0 (D)
| Then, the equation of the tangent at any point (x, y) is

. Y‘)’=%(X—x)=y]()(—x) Wherey1:%
= X -Y+y-x01=0
If p be the length prependicular from the origin to this tangent, then

_| At s U (2)
ME
Also, = +y (3}

Eliminating x, y from the equation (1), (2) and (3), we get the required pedal equation
of the curve (1).

i
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| Ly PEDAL EQUATION OF A CURVE WHOSE POLAR EQUATION IS GIVEN

".u‘?‘:’\

B R

Let  r=f(8) ...(1} be the polar curve. Find ¢ in terms of 8.

Eliminating 8 and ¢ from both the above equations and p = r sin ¢, we get the required
pedal equation of curve (1},

e e T
* The pedal equation is sometimes more conveniently obtained by el:mlnatmg 8 between (1)
1 1 1f{dry
and the equation 3 = r_2+7(55] .

KX3 DIFFERENTIAL COEFFICIENT OF ARé LENGTH (CARTESIAN FORM)
Let y = f{x} be the given curve and s denote the length of the arc, then

REMARKS et Twy, LEed

2
¢ if the equation of the curve is x = f(y), then g§=1 l+(£] ]

{5:X DIFFERENTIAL COEFFICIENT OF ARC LENGTH (POLAR FORM)

A 0 (r+6r,b 8+ 80

To prove that % = Jr +(dr] where r = f(8) is
de d6
the polar form of curve :

Let r = f(0) be the equation of the curve and s
denote the length of arc AP, Obviously s is a function of
0. Let Q be the neighbouring point of P such that

AQ=s + s =PQ = 8. °
AsQ—P, 80 5 08andér— 0 Fig. 8
From AOPQ, we have

(chord PQ)* = OP? + 0Q? - 20P.0Q cos(/QOP)
=%+ (r+ 1% - 2 + &) cos 50

= (8r)% + 2r5r(1 - cos 88) + 2r2(1 — cos 56)
Dividing by (86)%, we get

P, 8)

sin 89" sin i :

cherd PQ or 2 9 9
(———-59 ] (59] +r -—-——§§ Or+r 3
2 2

_36)? 50 ) g

chord PQ 2_. or\? Sm'_f 2 sm?

and [T] -(83] +r -§9— Br+r 5
2 2
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|

Taking limit as @ — P, we have

dsY 5 (dr ds 2 [dr]2
- [dBJ d +[de) = ® ‘{r "\

REMARKS

¢ Here + or - sign is to be taken according as s increases
or decreases as 9 increases, we have

dsY2 [ dr)? ) [1 chordPQ=1 d 1 & _dr
‘ (E] =(d_e']- L0l e ™ e a0
|

ds dr ¥ d
{ e 2.]ar 5
‘ %t {r +{d9] }
e 1f8 = flr) is the given equation of the curve, then
&_ My 2( ) ¢
&t {1” (dr] } dr
¢ Theresultcos$ = % andsin¢ = r% can be remember Fig. 9.

with the help of adjoining figure(9).

pleg

rde

Examﬁle 1. Find the equation on the tangent at the point t to the oycloid x = a(t + sin f),

y=a(l-cost).

Solution . We have x=a(t+sint) = %3:— = a(l +cost)

and y=a(1-—cost)=>%=usint
dy dy/de asint 2sint / 2-cost / 2 t
Therefore, =— = = = = tan—
S & T @ /dr T allteos | 2ca5%t /2 2

: . t ,

Now, the equation of the tangent at ‘¢ 1s y —a(l-cost)=tan E[x—a(usm t}]
—Zasinzi—{xmat)tani—asinr tan~

=Y 5 2 S

- L .
=>y—2asm2—=(x—at)tan-—2a sin® —
=«

= Y=(x-at)tant /2.
;i a b
: =  andr=—23>2__; :
Exarmlale 2. Show that the parabolas r (17 c0s0) andr 1=coe0) intersect orthogonally.
Solution . Here we have r=—._ 2 ___ (1)
BT {1+ cos@)
b
and =— {2
‘ r (1~cos8) @

h Taking log of both sides of (1), we get
I logr=1loga-log (1 + cos0)
Differentiating with respect to 6, we get
2si 6 o
~(-sing) _2sin3c0s; g
= = =tan—
{1+ cos@) 20 2

1dr
r de 2¢cos

= cot¢—tan2~cot z.8
2 2 2

e
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n 0
= ==
“=5"3
Now, from (2), we get
log r = log b—log (1 -cos 8)

Differentiating with respect to 8, we get

. B ¢
2sin-.cos--
2

1 dr -siné 0
_= = - 8 = '—COtE
r d8 1-cosB 2sin 2
2
Socotg = —cotlﬁ = cot(n - 18]
2 2
1 1
= =nt-—0 = =n——8
b=m 29 b2 2

Now, the angle of intersection = §; ~ ¢5

—(n_Lo _[ln_lg)=£
2 ) \2"72°)7 2

Both curves intersect orthogonally.

: ox2 oy 1 101
Example 3. Show that the pedal equation of the ellipse —-+ b_2 T2t
- o p° a

Solution. Here, the equation of the curve is

2 2
% + y—z =1
a b
Letx=acost,y = bsint.
gx_ =-q sint,d—y = bcost
dr dr
d_y . bcost
dx asint
Therefore, the equation of the tangent at ‘t’ is
beost

Y — bsint = —

(X ~acost)

= ab-bcost.X —-asint.Y =0
Since p denote the length prependicular from (0, 0) to (1), therefore

p= ab
J;I'? sin? t + b cos* t
1 _a?sin®c+ b2 cos?t
pz - aZp?

2 2

Now,r2=x2 + y? =a® cos? t +bZ sin®t

=a2+b2—a25in2t-b2c052t

From (3} azsin2t+b2coszt= (a2+ bz)—r2 .

Therefore, from (3), we ge/t /-)
1 (az+b2)—r2 1 1

a

a2b2

Example 4. Find the pedal equation of M= asinng.

Solution . Here, the given curve is
' = a" sin n®

=lis——w=—+5—

a’b®

..(1)

.{2)

..(3)

...(1)

-
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Taking logarithm of both the sides of (1), we get
n log r = n log a+ log sin ne. ...(2)
Differentiating w.r.t. 8, we get

; n dr _ncosnB

{ —_—=n— = ncotng
r do sinng
1 dr
, otd =—.— = cotnd
| = cotd "0 cotn
! qJ:ne "
Also,p =rsin¢=>p =rsinnb ..(3)

Now from (1) and (3), we have
| sinnB = B
v

' Putting the value in {1}, we get
p an - rn+ 1.
Exampte 5. Find the angle at which the radius vector cuts the curves ! =1+ecosB.

Tl r
Solution. Here, the given equation of the curve is

“ -I—=1+ec058
- r
= logl-logr =1log (1 + ecosB).
Diff. w.r.t. 8, we get
1dr__ 1
r'dg (l+ecos®)
cotq:*l dr _ esind
r'dée 1+ecosd
1+ecosO
esin@

(-esin®)

= tan¢g =

| A [1+ecose]
: = p=tan | ——|.
i esin@

|
Example 6. For the cardiod r = a(1 - cos 8), prove that

1 .
® ¢l = EB (i) 2{1p2 = rB
Solution. Here the given curve is

! =ga(l-cos8) ...(1)

“ = % =qsind
(i) Since, we have

. 28
48 a(l—cos) 2253
tan¢=r—= - =

dr asin®

0
=tfan—
2

2asin-f-}u::u:u-;g
2 2

L2
2
(ii) Since, we have p = rsin$ = rsin 8/2

= ¢=

z
= r=2.asin22=2a~p?
2 r

 2qp? =

TP

cr iNotes
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Solution . Here, the given curve is
3 4 2 L 23
letx=a cosar,y = g sin’t
- _@y_=dy/dt= 3asin®t cost . sint‘
dx dx/dt —3acos’tsint cost
Hence, the equation of tangent of (1) is

. sint
y—asin’t= ——E(x —acos>t)
0

asintcost

———————= ¢ §int cost.
Vsin? ¢ + cos? t

Now,

2 2

ré=x*+y?=q?

cos® ¢ +a? sin®

=a’[1- ?y(p2 /a®)1)=a? - 3p2.

a9 ds?

Selution. We have % = C0S0

2
- S22

: 2
Example 8. Show that for any curve sin® ¢(d¢] + r(ﬂ] =0.

Example 7. Find the pedal equation of the curve X + y2/ 3= a

= xsintRycost asintcost(cos®t sin?t) = asint cost
p = the length of the prependicular from (0, 0) to (2)

t = a®[(cos?t)® + (sin? 0)%]
= a®[(cos®t +sin¢)® - 3cos? ¢ sin? t(cos® ¢ + sin? 0]

CALCULUS

..{1)

~(2)

(+742ane)

d°2

d?r _
1. For the curve " = a" cos nd, show that a®® —— +nr2e-t — g,

2. For the cyceloid x = a(1 - cos t), ¥ = a{t + sin t), show that

ds ¢
(i} —gs-r- =2q cos% (ii) e cosec-z— (iii)
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3. Show that for the curve /™ = g™ cosm(},-d% =3

mel "
| ® o -

[

|

4. Show that the pedal equation of the parabola Y° = dalx + a) is p* = ar.

1. Find the angle of intersection of the curve r% = 16 sin 20 and +* sin 20 = 4,

2. Sll'ilow that in the curve r = a8, the polar subnormal is constant and in the curve
r8 = a, the polar subtangent is constant.

3, Sh’ow that the curves r = a(1 + cos@) and r = b(1 - cosB) intersect at right angles.
4

. Show that the spiral r" = a" cos n0 and r* = b” sin n@ intersect orthogonally.

5. Find the angle ¢ for the curve af = (r2 a2 _ geos™! a/r.
6. Spow that the curvesr = (1 + sin®) and r = a(l = sin 8) cut orthogonally.
7. Sillow that the curves r = 2sind and r = 2co0s0 intersect at right angles.
8. Find the angle of intersection between the pair of curves r = 6ecost and = 2(1 + cos0).
9. Sh;ow that the pedal equation of the
. 1 4
(i) conic1 =1+ecosd is~3 = 12(21-- 1 +ez] (iil) curver=afis p2 LA
“ r P “ur i +a?
LN . .3 2 \ . 1 A
(iii) cardiodr =a(1 + cosB} is r* = 2ap”. (iv) spiralr = asech nd s— =4 B.
I b
(vl)_ hyperbola r2cos20 = a?is pr= a2, (vi) lemniscate r* = a®cos20 is 15 = uzp.

l
10. Show that the normal at any point (r, 8) to the curve r' = " cos n® makes an angle

(nr 1"+ 1)6 with the initial line.

{ . : . N
11. Sl}pw that in the equianguiar spiral r = ae“mr“, the tangent is inclined at a constant angle «
to the radius vector.

ANSWERS

1. EE 5. cosT — - 8.
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= Slope of a line, m = tan 8, where @ is the angle which the line makes with the positive direction
of x-axis.

w» Slope of the line ax + by + ¢ = O isgiven by m = _%

« Slope of the line joining the points (x1, y1) and {x3, y2) is = 1 2 —i 1
: 2%
» Slope of x“axis = 0, Slope of y-axis =
= Two lines are parallel iff my = m,.
- ng lines are perpendicular iff mymy = -1, o

= Angle berween two lines having slopes my and my is given by @ =tan~! [m—l_ﬁ-]
: ' o 1+ mymy

e+

» Equation of the line (one point form) y —y; = m(x — x,} passing through the point (x1, ¥1)-
» Perpendicutar distance formula =

a? +b*

d
= The equation of the tangentis ¥ — ¥ = f(x —-Xxy).
1

» The equation of the normal at P(xy, y1) is y - y; = {(x—x3).

_ 1
dy; / dx
w If the tangent to the two curves make angle ¢; and $, with the common radius vector to their
point of intersection, then angle between the curves = angle between tangents = |¢; - ¢z/.
= Let p be the length of the perpendicular from the pole to the tangent at any point (r, 8) of a
curve r = f{0), then

(i) p=rsin¢
wiol.l (ﬁf
2 2 4 \de
2
(iif) —15 =u?+ [—‘E] where g = 1
p’ 8. r 4

= The relation between p and r, where r is the distance of any point'en the curve from the origin
(or pole) and p is perpendicular from origin {or pole) to the tangent at that point is called the
Pedal equation of the curve. =

w If the equation of the curve is x = f(y), then gs; =% 1+[%] ]

) 2 2
w If the given equation is in parametric form Le., x = f, (1), y= fa(®), then 35?2 t [dr) +(d—y] ]

p

[Pt

FILL IN THE BLANKS
: The pedal equation of the curve yz =4alx +a) is
. If § is the angle between the radius vector and the tangent of a curve, then tan ¢ =

. Polar subtangent for the curve r = a@ is
ds —
B
5. Polar subnormal for the curve r.= a8,

i W N e

. For the curve r = f(8), the value of

6. For the cycloidx = a (1 -cos ),y = a(l -+ sint), we havei‘;‘_:
de

7. In the equiangular spiral r = ae® 2 the tangent is inclined to the radius vector with angle
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i
8” For the curve r* = a° cos 20, ?

TRUQ[ FALS
Write ‘T’ for True and ‘F’ for False statement.
1!‘, The relation between p and r is called pedal equation. (T/F)
2[1 The relation between p and r is called polar equation. (Y/F)
3;‘. The pedal equation of the curve r = a/0 is—lz— = i+i2- - (T/F)
p a '
4 The pedal equation of the curve r™ = a™ cos mB is M = ™ p, (T/F)
5. For the curve r = f6), we have(dr] (,- d_e] =1.. " (T/F)
(N - ‘ as) \'ds
] ll _ ds rz
6.' For any curve'r = f(8}, the value of—— 1s — (T/F)
4
? If p be the leng[h of perpendlcular dra the pole O to the'tangent at any point P(r, 8)
r} on thé curve r = f(G) then Wf (T/F)
8 The pedal equation of the cardlod r = a(l - cos ) is * = 2ap. (T/F)
Ml._tLTlPLE CHOICE QUESTIONS

Choose the most appropriate one.
¢ 1. Two curves cut orthogonally if tan ¢y.tangs is equal to:

k C @1 (b) -1 © 0 (d) none of these
2. For the curve r = f(8), the value of cos ¢ is :
It do ds ds dr
3 The pedal equation of the curve y =4alx +a)is:
'h @ p=d*’ ) p*=ar © pP=r @ 2qp°=r
The angle at which the radius vector cuts the curve r = a(1 —cosd) is:
‘l (a) 6 (b) 6/2 () 6/3 ) o4
. In the equiangular spiral r = ae® ©°'? the tangent isinclined to which angle to the radius
vector:
2 @) a2 ®) a3 © a @ 20
_' 6. Polar subtangent for the curve r = af is :
(@ ra ) r* (@ rra @ (va)?
7. Polar subtangent for the curve 22 = 1 - cos@ is -
- r
_;_::, (a) 2asin@ (b) —2acosB (¢) 2atanB (d) -2acosecH
3. The angleé of intersection of the curve r = acos8,2r = a is :
1 @ w2 ®) w4 © w3 @ =
'8, Polar subnormal for the curve r = af is :
1 ;’:’ (a) r’a ) a © r¥a (d) r
?!: For the cardiod r = a(1 — cosb), the value of $ is
| @ ® 2 © -2 () rnone of these
i 2 2 .
: ‘ ANSWERS
|
ILL IN THE BLANKS
o a8 2. 2 (drY 5 6. 2acos—
El.p =ar 2. rdr 3. ” 4. ,,-.'.E . a . c:os2
i 2
'i 7. a 8 4
l F
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1. T 2. F 3.7 4T 5 T 6. T 7. T
8 F ’ . :

IMULTIPLE CHOICE QUESTIONS . .
1. () 2. 3. 40 5 © 6. (0 7. (d)
8 © 9. ()  10. (b) - :
mam
}
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Introduction _ -
Curvature U
Formula for radius of curvature (cartesian forny) *
Radius of curvature at the origin '
Radius of curvature for pedal equations o
Radius of curvature for tangential polar equations p = f(y)
- Radius of curvature'in polar form .. L . ’
Centre of curvature o T aEee L TR .
Co-ordinates of the centre of ctirvature.
Chord of curvature * - =~ . = )
Length of the chord of curvature
® Summary _
® Objective Evaluation

.o

S50 LEARNING OBJZCTIVES

After reading this chapter, you should be able to earn:

® Concepts of curvature and related formulae TR .A-.‘;f A
® The formulas of radius of curvature in different form R EF R s
@ The concept of centre of curvature X N

KRN INTRODUCTION

The measure of the sharpness of the bending of a curve at a particular point °
is called curvature of the curve at the point. In figure (1), curve PQ bends more
sharply than the curve AB. In this chapter, we shall find mathermatical expressions p
for the curvature of a curve at a given point, s

K¥2 CURVATURE

Let P, Q be two neighbouring points on a curve AB. Y : T T
Also, let AP = 5, arc AQ = 5 + &8s and arc PQ = 8s. ’ 535"/
Let the tangent to the curve at points P and Q makes angle A ?

v and v + by respectively with a fixed line say X-axis, then
(i) The angle Sy through which the tangent turns as its
- points of contact travels along the arc PQ is called the

' total bending or total curvature of arc PQ. 1 LAY Lvrdy ;
(i) The ratio-si is called the mean or average curvature o“ '
! ofarc PQ.85 !
(i) The limiting value of the mean curvarure when Qtends »  FHg2
| toPiscalled the curvature of the curve at the point P. Therefore, the curvature K at
J\ point P is

im O¥ =y J¥ _d¥ ‘
i L
(iv) The reciprocal of the curvature of the given curve at P. (provided this curvature is
not equal to zero), is called the radius of curvature of the curve at P. This is denoted

by p. .
p— =

2le

K
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CALCULUS

Lety = f(x) be the equation of curve. Then the slope of the tangent at any point = tany =%
Differentiating both sides, w.rt. 5, we get
2 0w _d{dy) = 2 1_dfdyidc
secty [ ] sec w.p [ )

ds  ds\dx deldx Jds
. 7 1 dzy (__ dx N ]
= sec’ yo—-=—2. 005 342 " — = COSY
Therefore sy _secly Qranlyl” p=
dZ 'y d? ¥ dl ¥ d! ¥
csy—% =% — -7
d_‘,E dxz dx! d'.\'2
REMARKS T F
o The positive root is taken in numerator of above formula, therefore, radius of curvature r, will
" d%y . - . . . .
be positive when ?{ is positive (i.e., when the curve is concave upward} and negative when
d%y | . . .
E“;i is negative (i.e., when the curve is concave downward}.
. . . . . . . d?
e Atapointofinflexion, thecurvatureofacurveis notdefined. [ at the point of mﬂmon;{ = 0]

s When the equation of the curve is given in the form x = fy) then by interchanging x and y
(It is justify because curvature is a length, and its value is independent of the choice of axis),

we get
L1372
1+ (dx /dy)
= dy?
e When the equation of curve is given in parametric form, i.e., x = f() and y = g(¢), then radius
2 24372
of curvature is given by p= (i—y-}_-!y)? , where dash ('} denote the derivative w.rt., ‘¢

2 2
1 (&), (dy
() (2
X1 RADIUS OF CURVATURE AT THE ORIGIN

Let the curve y = f(x) passes through the origin. Then, we may use the following methods,
to find the radius of curvature.

(i) Method of direct substitution. Since y = f(x) be given. Calculate the values of

2
EIZancl d—%
dx

at origin and then use the following formula

2 3/2
3
14| ==
(%]
dy /7 dx?
(ii) Method of Expansion. Let y = f(x) be the equation of curve. Since, it passes
through the origin, therefore f(0) = 0.
Therefore, by Maclaurin’s series expansion, we have

p:

X2 x3
¥ = f(0)+ xf’(0) +-2—,f”(0)+-3;f”’(0)+...
¥2 ) 3 '
= y= xf’(0)+?f”(0)+?f’”(0)+ [ 0} = 0]

1 2. 1 .3
= Y= P PXC Pk e (1

where p; = f'(0) = y1(0),p, = f(0) = y,(0) , etc.
Now, differentiating (1} with respect to x, we get

2pyx N 3p3x2
2! 3!

y1=p1+ +...




' Again differentiating w.rt. x. we get
2py 6pyx
| il o Sl o
| TR TR
i At the origin (i.e., x = 0), we have
l | _ 2p2 =
| Now putting these values of y; and y, in the formulap = —)—’—1—, We get
! 24372 ¥z
1+p7)
p=—"—
i)
REMARK e R ]

. ﬁ*\(e can find the values of p and g irﬁ the following manner:

lE’ut the value of y = p;x + 3-32%— * Eﬂé-:- +... in the given equation of the curve and equating the
Icoefﬁcients of the powers of x.
|

(iiji) Newton’s Method. If a curve passes through the origin, and axis of x is the

2

- . X
tangent at the origin, then radius of curvature p at origin = lu‘r:) ;;
x—
y—0

ISince the axis of x is the tangent at the origin, therefore, we have
|

dy
N () -
! dx Ji0,0)

. 2
x 0
;Here, we observed that 5 is of the indeterminate form [a} as x =0,y 0.
Using E Hospital rule, we have
2
.1 1
L lim <= = lim 2% = lim % = lim — = D)
l' x=02Y x=02y; x50y, x=0Yy  ¥p(0)
y—0 y=20 y—o0 ¥—0
- / . 3/2
Now, patorigin gt Y (@1°  C+ ) (@
, « (") () ()
IFrorn (1) and (2), we have
2
P(atarigin) = ;1_}“;5
y'_>0 P . - PR [P
REMARK e . a?"_;? SR
e If a curve passes-through the origin and axis of y is the tangent, then radius of curvarure at
2
C e .y
the origin is given by ll_"..l; Fl
Y=l

= Solved Examples

t
Examplel. For x = a(t + sint), y = a(1 - cos t), prove that p =4a COS'Z*.

Solution. We have x = a(t +sint) = % = a(l + cost}

and y=a(1—cost)=>%=asint
dy _dy/dt _ asint _ 2sing/2c¢ost/2 _ tant

dx  dx/dt a(l+cost)  pcosit/2 2

2t dt

2
Also %9‘{%(%) %[tan?) Lsec

103

1SelfzInstriictional/ Materiall., ™




CALCULUS

5 1 1 gt

sec” —, =—3ec¢
2 2 a(l+cost) da 2

2
Now, putting the values of Qandd—y np="—7b—"—
b dx? dy
a2
2 3/2 3
We getp = [1+rtan” t/2] = 4ase: t/2 =4acost/2
—-gect t/2 sec t/2
da

Example 2. Find the curvature of the curve X 55 y e 3axy at the point (3a/2, 3a/2).
Solution . The equation of the curve is
x* + y3 = 3axy (1}

Differentiating w.L.t. x, we get
dy dy
3x? +3y? = =3ay + 3ax -
Y a T T

- eyl L eagyrax

2 dy dy
dx dx

dy _ x? —ay
oode ax—y?
(B
dx Gt(g‘ﬂ,gﬂ]
22
From (2), we have

dyr 2%y _ dy dy dPy
2 2 -~ + —re = (] g = —_—
X+ y[ Yy 2 a a +ax 5

-(2)

4 dy Y
= (ax-yhdx—{:zxny(ai—’) -2a-= (3)

. a
Hence, the radius of curvature p at (*2—,?] , We get

P 2 372
1+(—Jf-] ]
dx: _(1+1)3"2* 3a

d’y B 321 N

&2 u{2.30) 3a

2 2
82

1
Therefore, the curvature E =+ = {By ignoring the negative sign}
a

a+x

LS elfnStructionaliMaterial BT

Example 3. Show that the radii of curvature of the curve y? = x? [ ] at the origin are a2,

a—-x




Curvature

|

Solution .

'ﬁ

Example 4.

Solution .
|

i
b
i

The equation of the curve is
a+x
a-x
_ix(a+x)”2 +
T a2 T 5
a—x)
( aw[l_{)

x
= y= ix(l + EXE+ ...](1-+ ot J {Expanding by Binomial Expansions)
2
X x x
=dx 14—
ory ( 20 2a 442 ]

2 3
b'e X
= y=% x+—+—-—+ J

a 442
Therefore,
dy 2x  3x?
=+p1+2 4 —5t.
dx yl [ a 4a ]

2
A0,0) ¥y =#1 and y, = i';

(1+y12)3/2 (1+1)32 -

LpE T — s 4o R 2
= p=1/2.0=42 a. (Numerically)

Apply Netwon's fonnufa find the radius of curvature at the origin for the curve

x3 —2x y+3:¢y —4y +5x? ~6xy+7y -8y=0.

Smce the curve passes through the origin. Equating to zero, the lowest degree
terms, we may find y = 0

= x axis is the tangent at the origin.
Therefore, by Newton’s fombula pat(0,0)

= lim X
x=02y
y—0
Dividing the equation of the curve by 2y, we get
xz , 2

3 7
-x" 4+ 2 +5———~3x+ 4=0
2y ’U y 2y 2}'
Takmg lunx—->Oand Y =0, we get
¥2
hrn———4 0=5p-— 4=0=>p=i.
x=02y 5
¥y—0

ax
Example 5 For the curve ¥ = P » if p is the radius of curvature at any point (x, y), show that

+
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-
Soltion, let  ¥=— e
—_— a+x
Therefore, d_y= arx-x —az(a+x)
dc  (a+x)?
Cd%y d (dy] 2 ; —2a’
Now, again—5 =—=| 5= 1+ —2a“(a+x)" =
de?2  dxldx [ET
Y
d? y -2y3
o ad

,3/2
(&)
14| =~
[ dx ] oty P

. p=
d2y 7 dx* (-2y° 7 ax*)
=_a(x4+y4)3/2 =_a(x4+y4)3/2
2x6(y3 /x3) 2 x3y3
2 2/3 x4 +y4 JL.2 Jf2
Hence, | = == =—§+-,—2
a x°y Yy st

2/3 2 2
- (3"
a y x
Example 6. Find the radius of curvature at origin for the curve ¥y - 2x2 +6y =0.

The curve passes through origin. Equating to zero the lowest degree terms we get

y=0i.e., xaxis astangentto the curve at origin.
2
- . X
.. By Newtons method, p (at origin) = tm —

Solution .

x—02Y
Dividing by 2y, the equation of the curve can be written as
2 2
Jc.-x—+—_y2 2£—+3=0
2y 2 2y

2
Taking limitas x — 0,y — 0 and lim 2— = p, we get
x—02x

0.p+0-2p+3=0 ie, p=3/2,

Example 7. If py and py be the radit of curvature of the extremities of two conjugate diameters of
an ellipse prove that (p3° +p3/®) (ab)?’? = a® + b2

Solution. Let the equation of an ellipse be

2 2
Lad=1
a? b
Let Placosd,bsin®) and Q(~a sin8,bcos6)
be the extremities of two conjugate diameters of (1).

Differentiating both sides of (1} w.r.t x we get

2x 2y dy _
a? p? dx

...(1)

0
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|
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1 dy__bzx

or- E = E ..(2)
Again differentiating, we get

2
dx? "az- 2 -‘_'a_z - y2 ‘_a_z E
] =Y [Using (1)]
| = sSin
:: 0213 g
' We know that
i « ¥
{ 2T 2
o] [
% dx a“y
&y 5 ity
dx2
4.2 | 14,2372
p= (_a' 4 +E 4x )
—-a'b ,
At P(acos®,bsing), p=p,
v _ {a* b?sin? 6 + b*a? cos? §)°/2
M _a4b4
r (a? sin” 8+ b2 cos? 8)%/2
or P =

—-ab

or py(-ab) = (a® sin® 8 + b cos? §)*/2

or p§’3(ab)2’3 =a’sin’0+b?cos’@ )]
At Q(-asin®,bcos8),p =p,

p2/3(aby*’? = a% cos? 8+ b2 sin2 @ D)
Adding (3) and {4), we get

i (p2/3 + p2/3)(ab)2/3 = u + b2

2,2

Example 8. Prove that for the ellipse —+ ';—2 =1,p ='“-% ; p being the perpendicular from
i a p

' centre upon the tangent at (x, y).

' 2 .2 2
d b
Solution. We have __x2 +~—y 1= & __2x
'1' a b dx a y

d
d2y— b2 y—xay b4

and —5=-—% ==
dx2 (12 y2 02y3

Let (a cos 6, b sin 8) be any point on the ellipse. The equation of the tangent at this
point is :
bcosB

y-bsing = {x —acos®) .

or bxcos@+aysin8-ab=0 ~{2)
We are given that
p = Perpendicular from (0, 0) to the tangent (2) = {Qelfinstructionall Materiall ¥

w
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R TR EATLE ULUST

~ab

Vb2 cos? R a2 sin?
Now the radius of curvature p is

J . 3/2 3/2 '
1+ & i 2y3 l+h4x2
dx ey e (a4y2+b4 233/2 :

p= a2y = _p? —ap?
dx2
The p at (a cos 6, b sin 8) is given by
(a*b?sin? 0 + b*a? cos? §)%/2 _ (@?sin? 8+ b2 cos® 8)>/2

a*p? ab

or P=

w{3)

3
. _f-ab/p) g p) {Using (3)]
a
_a’b?
p - p3 .

Example 9. If py and p, be the radii of curvature at the ends of a focal chord of the parabola
y* = 4ax, then show that pm"’3 +p, 73 =« a 23

Solution .  We have y = 4ax ...(1

Parametric form of (1) is given by
x= atz, y = 2at
x' =2aty =2a

and x"=2q,y"=0
Therefore, radius of curvature p at (arz, 2at) is given by

(x:z :2)3/2 (402f2 +_4ﬂ2)3/2

p= Xy -2y PR =2a(1+t*)*2  (ignore —ve sign)
. ~=44a
If P(t;) and Q(t) be the extremities of the focal chord of the parabola, then
1

tity =-1 =ty —‘-"'t—
1

So, pyatP(ty) = 2a(t+t2)3?
p2 at QUtz) = 2a(1 +¢3)%/2

7310347 =2y 2R [+ ey v+

2
- 1 t
=Qa) 3| —+ —Lo | = (203,
1”1 1+1t]

P1

50 STUDENT ACTIVITY

a2y
1. Show that the curvature at a point of the curve y = f(x) is given by—cos y, where y is the
inclination of the tangent at the point to the axis of x. dx?

xfa

1/2
)/

2. Show that for the curve s = ae™' ", ap = s(s -



3. Show that if p be the radms of curvature at any pomt P on the parabola y = 4ax and S be its
focus then p varies as (SP) ’

4. Show that for any curve L = __(iy_)
: p dx

- TEST YOURSELF

1. F‘ll;nd the radius of curvature of the following curves:
D xM4+y2=0"2" () @?y=x*-a® (i) x¥34+y23 =23
: 1
(iv) x™+y™=1 &) Vx+y= lat(zzJ

(vi) s=4dasinyat (s,¥)  (vii) qy? =3
(vili) y =e" at the point where it cuts the y-axis.

(%) x*3+y?3 =a%3 at (acos®8,asin® 6)

(x) y=4sinx-sin2xat x;E (xi) y= x3(x —-a) at {a,0)
2. Find the radius of curvature at the origin of the following curves :

@ x° +5° = 3y (i) y=x"+ 5¢ + 6x
@i 5x3+7y' +axy+x v 2 + axy sy +4x=0
(w)a(y - =x V) y-x= x2+21;y+y2

(vf) 24’ +xy2+6y ~3x%— —2xy-+y*—4x=0

(i) Vx+Jy =a at(Z’Z]

ANSWERS
. iQ(X+yJ3/2 - (.:14+9Jr4)3"2 1/3.1/3.1/3 -2 2m-2]3f2 1
MO @R @y @ i o
i) 40(:05-4: (vii) —~—(4£1+‘3"x)3"2 /2 (viii) fg () 3asinBeosd (x) == 5"_
(xi) (_l+a3)3b/6a2
2.¢) 32 (i) 37]‘?7 (iii) _,2 (iv}2g2 V) -21—\5 (i) 2% (viD) %

elfflpgtructionaliMaterial




CALCULUS
£ IR RADIUS OF CURVATURE FOR PEDAL EQUATIONS

To prove that p = Jr-ﬁ

Proof. Letthe pe‘cji%l equation of the curve ! p(r, 8)
be
p=fn).
Form the adjoining figure, we have 0 o »X
dy e’ a8 do dp
= Lty T _=—3—F
ds ds ds p ds ds P
(1)
Since, we know thatp = rsin ¢ N
Fig. 3
- d—p=sin¢+rcos¢§9- ig: 3
dr ‘ dr
=r.~§-+ r%j—? [ sinq::r.(;s—eand cos¢=-§—:~]
de dq:] 1
=r{w—t—I1=r—
ds ds o
d
0r£€=?‘*1‘* Lp= ! :,-_f‘!f. = p=rd_r‘
drp dp/dr dp p
X3 RADIUS OF CURVATURE FOR TANGENTIAL POLAR EQUATIONS p = #{y/)
d2p

To prove thatp = p + m—=
dy?

Proof. Let p be the length of the perpendicular drawn from the origin on the tangent to

curve at the point P(x, ¥). Also, let y be the angle which the tangent makes with

X-axis.
Here we observe that OL makes an angle y — %with the positive direction of X-axis.
F 3
- Equation of the tangent PT is {
« = cos(w—£J+ sin[w—i) P(x
2 2 (x¥)
[Normal form: xcoso +ysina = pl '
= p=Xsiny-Ycosy L
where X and Y are cartesian co-ordinates of any x
point on the tangent PT. - ko 2 "
Since, P(x, ¥) lies on PT, therefore 5 2 T > X
pzxsimp-ycosmp (1) \
:>—(—i‘9~=xcosw+sinw£+ysinw—cosw.~gl Fig. 4.
dy dy dy
= xcosy + ysiny +sin wg'—x—ﬁ - cosw.-ql.ﬁ
ds dy ds dy
= xcosy + ysinwy + sin y.p.cosy — cosy.p.siny
[ % = cosy and % = sinw]

= Xxcosy + ysiny
Differentiating again w.r.t. y, we get
ﬁ— ~Xsiny +coswy ﬁ-i»ycosq; +siny &
dy? “dy “dy



Curvature #

=-—Xxsiny + ycosy +cosw.—q’£.—£is—'+sin q:filﬁ
ds dy ds dy
= {—xsiny + y cosy) + cosy.cos y.p + siny.siny.p

=—p+ p{c052 W+ sin? vl {(Using (1))

d2
E = p=p+——‘3—_
dy

'WORKING':RROCEDURE? T
To transform polar equation to pedal equation, proceed as follows :.

Sterl.  Find 4, using formulatan¢ =

r
dr/de’
Ster 2. Substittute the value of ¢ in p = rsin ¢
Smee 3.  Eliminate 8.

[ERdl RADIUS OF CURVATURE IN POLAR FORM

@]

To prove thatp = 5
2 (dr ) d%r
re+2| —| ~-r—
de de? )
Proof. We know that -%:l+ »-}—(KJ ) ...(1)

Differentiating (1) wi.r.t. r, we get

_iidzz_i_i[ﬁ]2+L :‘_[ﬁ]z
p3 dr r3 rs do r4 dr\ do

___2__1(3)23_ i[gz_f dB_-i_i(ﬁ]z 2 d
rs rs de r4 do\ de dr r3 rs do ;4 d84
2 2
T RS

p° dr s o de
rL
dr 'p3

Now p=r—-—=

Hence, p = = p=

£ Colved Examp

Example Y. Find the radius of curvature for the curve 1" = a”* cos né.
Solution . We have " = d” cos i
= nlogr =nloga + log cos nd.

l + =
l %
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|Example 2.

Solution .

Example 3.

Solution .

CALCULUS'

Now differentiating w.r.t. 8, we get

E.d—rzo—t- ! (-nsinn@) = —ntannd (1D
r de cosng

= 1 =-rtannd
Again diiferentiating, we get

rp= —r.n.sectnd - r.tannd =—m sec? nf + rtan? no. ...{2)
Putting all these values in
_ r+ :'12]3’r 2 _ 2 +r? tan®n9y>/2
r2e2t-rmy ot +22 tan? nB+r2.nsec® nd-r? tan” ng
_ r’sec®n®  rsecn® _ 1 1 r . a"
(n+Drisec?nd (+1) n+1 cosnb M (n+ 1t
(n+1)—
a
Show that in the rectangular hyperbola r* cos 20 = az,' the radius of curvature
i"3
P=—
ia
The given curve is
* cos 20 =d* .1
= 2logr+logcos28 =2loga
Differentiating w.r.t. 8, we get
24r 1
—_—t -2sin28) =0
rdg cos 29( )
= %j—;=cot¢=tan29=cot(%—29] = ¢.=g-2&
. 2 .2
Now p=rsin¢=rsin L 29] =rcos20=r2 =L
2 rz r
d__a
= dr rz
dr P L
Hence, p=r—=-—5=—. (By neglecting the negative sign)
dp a? a? -

Show that at any point on the equiangular spiral r = ae® ©'%, p = r cosec o and that

it subtends a right angle at the pole.
The given equation is r = ae® ¢ (D)
Differentiating (1) w.rt. 8, we have

ﬁ e&cotu

dae

1/ r):—g = cot

Lot =rcoro.

or cotd =cota = o= .
Now, p = r sin ¢, thus the pedal equation of (1) is p = r sin c..
dp

Therefore, o = sino. P(r, 6)
dr r FA.
Now p=r-—= = rcoseco.
P dp sing «‘9

Second part. Let P(r, 6) be Q;
any point on the given curve.

PQ is the tangent and PR is the ] '
normal to the curve at P. Let R be 0 Q
center of curvatrure of the point




L g _— e —

i " .
Curvature- * . °

A

P of the curve. Then PR = the radius of curvature of the curve at[R

P = r cosec a. :

Interséct OP and OR, where Q is the pole.

Let ZPOR = . Then to show that § = 90°.

We have ZOPQ = ¢ = «

ZOPR = 90° - q, (since PR is normal at P)

Le., perpendicular to the tangent PQ.

Now in AOPR, we have ZORP = 180°-{90° -o. +[) = 90° +ot — 8.
Therefore, applying the sine theorem for AOPR, we get

op _ PR or r __p or r _ rcoseco
sinZORP sinB  sin(90+o-f} sinf = cos(a—-P) sinf

(- p =rcosec o}
sin o sin p = cos{a - )
or sinasinf =cosacosP +sinasin or cosacosP=0orcosB =0,
Hence, p=90°. ’

1. Show that for the hypercycloid P = A sin By, p varies as P.

2. Fi:ﬁd the radius of curvature at the point {(p, r) on the spiral p* = r*/(? +a%).

3. Prove that for any cuwe%=sin¢(1+%],where p is the radius of curvature and
de
t =Fr—.
W=

= TEST YOURSELF

1. Find the radius of curvature in polar form on each of the following curves
(i) r = a(1 - cos 8) (i) (1 +cos8) = 2a (i) r* = a? cos 20
2. Find the radius of curvature at any point (p,r) on the following curves :

e
a’b®
2

(i}tn2 = ar () r2=a2-b2+
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3 3

(iif) 2ap” = (v) pa®=r
8. Show that the radius of curvature of the cardoid r = a(1 + cos 8) at the origin ts 0.

4. Show that the radius of curvature at any point on the curve r = a(l + cos 9) varies as square
root of the radius vector.

5. If pj, pp be the radii ‘of curvature at the extnmmes of any chord of the cardoid
r = a(1 + cos 8), which passes through the pole, then p1 + pz = 16a%/9.
1 2 a®?

— - is—.
b2 a’ph? 3

1
6. Show that the radius of curvature at the point (p, r) of the ellipse —12 ==+
a P

P
22

: . @
cos® y + b? sin? y is—5-.
p

7. Show that the radius of curvature for the hyperbola p2 =q
8. Show that the curvature of the curves r = a6 and rf = a at their common point are in the ratio
3:1.

9. By Newton’s method, show that the radius of curvature of the curve r = a sin n@ at the origin

na
is —.
2

. . t .
10. Show that the radius of turvature at each point of the curve x Ra [cost logtan 5] ,y asint

is inversely proportional to the length of the normal intercepted between the point on the
curve and the x-axis.

ANSWERS

3/2 232

... @b en. & a?
(H)F {iii) EJE (iv) 3;

L2 o= T e @ 2T
1.4} 3 2ar (i) 2\/(1' /a) (i) . 2. (i Ta

IEK:3 CENTRE OF CURVATURE ‘ a

For any point P of a curve, the centre of curvature is Y4 (B
the point on the positive direction of the normal at P, at A
. . P(x, ¥)
a distance p from it.
Let PD be the normal curve at P and C be a point
on it such that PC = p, then C is said to be the center of
curvature at P.

K] EVOLUTE OF A CURVE 5

The locus of the center of curvature of the given Fig. 6.
curve is called the evolute of the curve.

) CIRCLE OF CURVATURE

The circle with its center at the center of curvature C and radius equal to p is called the
circle of curvature.

REMARK

« The circle of curvature touches the curve at P and both the curve and the circle of curvature
have the same curvature at this point.

EX1CO-ORDINATES OF THE CENTRE OF CURVATURE

Let y = f(x) be the given curve and P{x, y) be any given
point. %
Let C(x, B) be the center of curvature corresponding to Y,
any point P(x, y) on the given curve, then from above fig.
{7), we have PC = p.

Suppose, the tangent TP makes an angle y with positive ¥
direction of x-axis. Draw PM and CN perpendicular to x-axis

Fig. 7.
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and draw perpendicular to CN. Then. ' )
; ZPCN = 90° ~ ZCPR = 90° — (90" — ZRPT) = ZRPT = LPTX =y
a=ON=0M-NM=0OM-RP=x-CPsiny =x-psiny (1)
' :Also, B=NC=NR+RC=MP+RC=y+CPcosy=y+pcosy ...(2)
‘ Since, we know thaty; = tan y

= sinq;:—y‘—mand cosw=——]—-.
| ,/l+y12 \/1+y12

(1 +y 2)3/2
Y2
Puttmg all these values in (1) and (2), we get

i ag=x- M dB: (l;yl_)

! Ya Y2

e

REMARKS "~

Also,

. Frorn (1) and (2) we have o = x - psin wand B =y + p cos y. Smce X ¥ P, W depends

upon s, therefore the above equations may be treated as parametric equations of the evolute.
» The equation of the circle of curvature at the given point is (x - ? + (v- ]3)2 = pz.

K0 CHORD OF CURVATURE }f',fa?“’f"’; o
;_“f:..

The length intercepted by the circle of curvature of ¥

the curve at P, on a straight line drawn through P in any 'ii. - ;
given direction is called chord of curvature through P in ;‘ s
that direction. v$
Let the chord of curvature PQ makes an angle o, with i"‘"'.:"’? -
the normal PD, then its length PQ is given by P

PQ=PDcosa
(" £DQP, being a semicircle is a right angle.)
=2 p cos o, which is the chord of curvature

perpendicular to radius vector _
REMARK e

» The chord of curvature through poie is given by 2p sin o.

Fri

FNTILENGTH OF THE CHORD OF CURVATURE .

(1) Cartesian form. Since, the tangent at P makes
an angle y with the x-axis therefore, ‘5
the chord of curvature PA is parallel to x-axis, ;.
which makes an angle 90 — y with the normal =
PCD and chord of curvature PB parallel to y-axis .-
makes angle v with the normal PCD. i

= length of the chord of curvature PA, -
parallel to x-axis.
= PD cos(90 - y) = 2p sin y

Y2 ‘f1 + 3,2 Y2
2,372
Similarly, C,, = 2043777

‘ Y2

SelfilnctructionaliMaterial




lf2ihatructionaliMater

_k ks, a igﬂ CALCUI..US

(2) Polar form. Let the chord of curvature PL - \
makes an angle 90 - ¢ with PCD, the normal of * <~ . ) -’ ) DV I
the curve at P, and PM, the chord of curvature ” (;’9) K
perpendicular to the radius vector OP, makes an’*

angle ¢ with the normal PCD. . g 2
. "Gy = Length of the chord of curvatare PL o B
through origin (or pole)
= PD{cus 90 - ¢) .
24372 ». X
=2psing = Zgr *a7) d o e e
r+ 2I'-l - IT2 24 ?'12 hE oty e A P

2r(r? + r12)
%+ 2r12 -ty
and  C, = length of the chord of curvature PM perpendicular to radius vector.
,2)%/2 r 2r(r2 +1,2)

2re +
=PDcosd =2pcos¢ = gr d = 5
r-+2r‘1 — Iy Jr2+r12 r +2r1 =Ty

(3) Pedal form. Let p = f(r) be the given equation of the curve.

Let C, = length of the chord of curvature through pole along radius vector
=PDcos (90-¢) = 2psind (1)
Now using p = rﬁand sin ¢ =L (1), we get C,=2r— dr p E_ 2p.£ ...(2)
dp r dp'r dp
Now = f(r) => @ _ f'(r)and smq: = £ f(r)

-
1 f(r) _ 2f(r)
oy r o ()

Also Cp = length of the chord perpendicular to the radius vector

- From (1), ¢, =2psing= 2.r.j—.sin¢' =2r
p

=DPcos¢=2pcosd

’ 2 2 :
2_,-_3_& T p _ri_—p_2

- sing.==and cos¢ =
i

-&5sd -Solved Examples:
Exampte 1. Find the chord of curvature through the pole of the cardioid r = a(1 + cos 6).
Sclution. Wehave r=a(l + cos0)

ﬁ: —asing
de
. tang = rE{El = a(l+_@8) = —cotle = tan[£+EJ
dr -asind 2 2 2
t 9
N = =rsin| —+—=|=rcos—
owp =rsing (2 2) 5
3
2p =r £2cos g}—r (1+cos®)=r 2 LI
2 a a
t = 2p a = r’ is the pedal equation of the curve. On differentiating w.rt. r we get
4ap@= 3r2
dr
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Therefore, the chord of curvature through the pole I
=2psint}::2.4ﬁ.£ [ p=rsing]
r r
1] 2 3

| 8ap 8 r° 4r ) 2
; e e — = — " [2Qp =r3]
E 3 32 2 3 o

Example 2. Show that the chord of curvature through the pole of the curve /" = a" cos n@ is

I . n n+1l
Solution.  The given curve is " = a” cos ng

[ = nlogr=nloga + log cos n®
! Differentiating w.rt. 8, we have

| EE =- sinnd
| rdo  cosn@’
!
‘ = cot ¢ = —tan nd =cot(%+n9]
! ¢l = %+ né
Now p=rsing = rsin[£+ ne) = rcosnd
2 n+l
. Pedal equation of the curve is p Sl ‘
a .
j i dp _ (n+1p"
1 e —_———
! dr an
: n
: Also, p= rd_r = d

dp  (n+1"?
Therefore, the chord of curvature through pole is
= 2psing = 2psin(%+n9) =2pcosnd
[ a® r" 2r

Examﬁle 3. Find the co-ordinate of the centre of curvature at any point of the parabola y2 = 4ax.
Hence, show that its evolute is 270}12 = 4{x— 2a)3.
Solution, We have _y2 = d4ax

: 2a 2q 4a®
= 2yy; = 4aie,y) =— and y, = V1=
_ Y y y
If (x, y) be the centre of curvature, then
Za[ 4q?
—1+—-
- .)’1(1"'.“'12) o Y
=X =X 7, .3
‘ Y2 42?7y
2 2 2
=x+% ;:a =x+4ax;-a4a =3x+2a (1)
- 2 2,2
and y=y+1+y1 =y+1+4c; /J;
Y2 -4a°/y
O S A~ s (2
4a° 4q® Ja
Therefore, the required centre of curvature is {(3x+ 2a),—2x\g } To find the

required evolute, eliminate x from (1) and (2), we have

(;)2 _axd =i[3_r—2a]3
a a 3

g
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. 27a(7)* = 4(% - 2a)° .(3)
Now, locus of (x, ¥) is 27ay? = 4(x - 2a)° which is the required equation of evolute.

Example 4. Show that the evolute of the cyclmd x =a(0 - sin 8), y = a1l -cos 8) is another
equal cycloid. '
Solution. We have x = q(#—sin 9) andy = a(l - cos 8)
dy do __ asinb
= N= de de a(l - cos0) B COtE
Now yq =——(y1)=i(cotg].d—9 =—cosec2g.l‘ 1 = 1
dx de 2) dx 22 a(l-cos8}  4asint0/2

If (;,;) be the center of curvature, then

_ 2
x=x- M =a(8-sin0)+ cotg[éta sin* fi)[l + cotzg]
Y2 2 2 2

=q{8—sinB)+ MAG sin® E cosec? L
sin8 /2 2 2

=a(0-sin6)+4a sin%.cos—g— = a(@ —sinB)+ 2asind
=a(0 + sin 0)

= a(1- cos)—4a sin*6/2.cosec?8/2 = a(1 - cos®) — 4asin® %
=a(l ~cos®) - 2a(l - cos0) = —a{l — cos8)

Hence, the required evolute is given by x = a(8 + 5in8), y = —a(l - cos®) which is
another equal cycloid.

i TEST YOURSELF

and =a(l-cos8)+ [1 +cot® %]{—4& sin? -g]

1. In the curve y=a log sec (i], show that the chord of curvature paralle} to the axis of y is of
constant length. a

2. Prove that the centre of curvature (o, B) for the curve x = 3t,y =t ~6is ot = —3—53,[3 = 3¢2 —%.
3. If Cy and C, be the chords of curvature parallel to the axis at any point of the curve y = ae*’,

1 1 1

show that — — = .
Cx C 2aC,

4. Show that the centre of curvature (a, P} at the point determined by t on the ellipse
2
- 3
sin”r.

-b
cos’t,p=-~
a

x =acost,y = bsint, is given by a=2

5. Show that in any curve the chord of curvature perpendicuiar to the radius vector is

2p3(r2 —p?) /1.

6. Show that the chord of curvature through the pole of the equiangular spiral r = ae™ is 2r.

a*

0. Hence, show that the equation of its evolute is (cvc)"‘)"'3 + (by)?‘la = (a2 - bz)

2 2
7. Find the coordinates of the centre of curvature of ellipse-{-w% =lorx=acos8, y=bsin
b
2/3

8. Find the chord of curvature through the pole of the curve ab = 2 — g2 — gcos™! (@a/r)-

9. If C, and. C; be the chords of curvature of the curve r— a(1+c059) through the pole and
perpendicutar to the radius vector, then prove that 3(C + CB ) = 8rC.
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Euryature-—

- ?‘he measure of the sharpness of the bending of a curve at a particular pomt is called
curvature of the curve at the point. ~
,{z

= At a point of inflexion, the curvature of a curve is:not defined. T
» When the equation of the curve is given ifi the, form x = ()’) then by 1nterchanglng X
and ¥ (It is justify because curvature s

|
epord
p dp
1 d?.p
=p=pr—5.
1 dwz

[r2+«dr de 2]“
r +2(dr/de)2 r(dzr/dez

FILL iN THE BLANKS

,{ . E=)

. p= d—ls intrinisic formula for fL hit of curvarure ' P

- The relation between is called the intrinsic equation of a curve,
'I'he relation between s and y for any curve is called equation. +

The curvature of the curve at any point P is defined as the of the radius of curvature
at P, —

> 5-0“9 p

- Fora curve y = f(x), the radius of curvature p =
. If the curve is in pedal form i.e., p = f(r), then p =
. Locus of centre of curvature is known as of that curve,

. (ihord of curvature through prigin is

W ;o

. When curve is in tangential polar form p =
10. The curvature of the curve at any point P is equal to

TRUE/FALSE

Write"'l" for True and ‘F’ for False statement.

1. The curvature of the curve at any point P is defined as the reciprocal of the radius of curvature
of P. (T/F)
2. If the given curve is in parametric form x = flt) and y = $(e)then

e (dy d d®y dy d%
pi—[(-&?) +[dt):| /{dt a2 dt 42 /e

[r2 +(dr/de')2]3f2

3. If::the curve'is r = f(0), thenp = . T/F)
: & Pt +2(dr /d8)* — r(d’r / d6? «

4. The chord of curvature parallel to x-axis is 2p cos y. (T/F)

5. The chord of curvature parallel to y-axis is 2p cos y. (T/F)

SelfiinstructionaliMatarialf
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) eQudl to hn}] I—Q N e ﬁi.r,- S '(T /F)

7: The curvature of the circle and circle of Curvature; both are the samie: * fl‘/F)
¥ . dz - -

. The tangemlal polar formula for 1 radlus of curvature is p p+ d—p- . . (T/F)

.l" P T ; g PP T

9. The chord of curvature through the ongm is 2p sin ¢ v tT (1/F)

10. The chord of curvature at the origin of the clirve 3x° + 4x - 12y = 0 is zero. (T/F)

:‘:_ _‘. . EE) 'f_

MULTIPLE CHOICE Qi_IESTIONS

Choose the mat appropriate one.
1. The radlus of curvature of the curve y & at the point where it crosses the y-axis is
. (a) 2 . _‘._ e E =~ {bY. J_ ) e (C) 2-\/_ (d 1

2: For the curve xy = a2 the raditis of cuwature at @2 is:

(a} 4 & (b) 16 = * () 10 {d) none of .these
3. Radiusoft curvature at any point (s, w) of the, curve s =clog sec \p is-:

(a) ¢ sec ur_ ,u ,ﬁi 'v e (b) c cot Y. W (c) ¢ “cosec \p (cl) ¢ tan y-

L A

4, Radms of urvature at any p' mt (s ‘\p) of the curve S=a log cot{n / 2 v/ 2} t+a- srn;p is:
] " o . ; DS L)

(@) 2a'c 5Ty ¥ a tan T © 2asec o (d} a cot?y o
‘5. Rachus of curvature at {x, y) of the curve _y 1 Vi 2c[.g"f‘ +e—"/°] = ccoshx T .

2 p E ’ ¥

@ et ®) /e @ we W e |
6. Radius of curvature at pomt ®; r) on’ curve p =ar. 15 3
+a) 297/ /a e (b) 2p /a 2. (c) $¥at

-.«»—% )i’

'fw

Pt 2 P
. ;(a}-‘gy’_ _ar_

8. Radius of cu

€1
(a) square of thc curvature B
(c)fcqual to curvature o (d) none of thise

. The radii of curvature at the origin for the curve x° + y = 3a.xyareeach equal oL
(a_) 2a/3 ) a/3 ©) 3as2 (@) none of these
: ANSWERS '
FILL iN THE BLANKS
243/2
1. Radits 2. sandy 3. intrinsic 4. reciprocal g 5. "(1+J; )
dr . d%p dy 2
6. r— 2. Evolute * B, 2psind 9. +-—— 10, ——
o 8. 2p 9. ps ay? I
LtlE/FALSE x ‘ _ Y
1.T 2. T 3.T 4 F 5. T 6. T 7. F.
8. T '\9_- T ;.o. ‘E'-.ﬂsﬁ . *ow
MULTIPLE CHOICE GUESTIONS < @ .
1. () 2. %W 4 @© 5@ 6. (a) 7. (b)
8. (a} 9. (b) 10. (c}
0300
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-'fntrqduction '
. Asymptotes of general equation

Existerice of asymptotes

Number of asymptotes of a curve

If\['symptotes parallel to co-ordinates dxes

Intersection of a curve with its asymptotes

{\I'symptotes of non-algebr_aic curves
-Asymptotes of polar curves

Point.of inflexion

Multiple and singular points

Types of double point

Nature of a cusp & * ]

<@ Summary .. .7

, ® 'Objective evaluation

®:0 0 0o 000 OO0 OGS

>

LEARNING OBJECTIVES:

After. reading this chapter, you should be able to learn: -
® '"{t‘he concepts of asymptotes

# How to find the asymptotes of different curves

@ The concepts of singular points

XY INTRODUCTION

In caleulus, there are some curves whose branches seem to go to infinity. It is not necessary

that there always exists a definite straight line for all such curves which seems to touch the
branch of the curves at infinite but more or less there are some certain curves for which this
type of definite straight line exists, this straight line is therefore known as asymptote.
. Definition. A definite straight line whose distance from branch of the curve continuously
decreases as we move away from the origin along the branch of the curve and seems to touch the
branch at infinity, provided the distance of this line from origin should be finite initially, is called
an asymptote of the curve.

Suppose in the equalion of a curve, two or more than two values of ¥ exists for every
value of x, then we obtain different branches of the curve corresponding to these distinct
values of y. If each branch have its own separate asymptote, then we can say that a curve may
haveé more than one asymptote.

I¥A DETERMINATION OF ASYMPTOTES

Consider a curve fLey)=0 (1)
and also consider that there are no asymptotes parallel to y-axis. Thus we shall take the

equation which is not parallel to y-axis. in the form of
y=mx+c¢ {2}
Let us take a point P(x, y) on the curve (1), therefore this point as tends to infinity along

the straight line {2), x must tend to infinity. Now find the tangent to the curve f(x, y) = 0 at

the point P(x, y}.

elf2
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~. The equation of tangent at P(x, y} is

dy dy dy
Y-y= —(X x) or Y—-d—x—X+[y—xEx—) o -(3)

The equation (3) is of the form y= mx +¢,s0in order to exist the asymptote of the curve

e

dy
there must both tz and ( y-x EX_J tend to, ﬁmte limits as x tends to infinity. Therefore if the

equation (3) tends to the stral};;ht lme gwen in’ (2} as x tends to infinity, then the hne (2) will
be an asymptote of the curve fx, y) = () and also we have

= lim =— and = lim (y —'x%]
’ bt X—pou
Since ¢ is finite, then we haved = B
LY
fim | ———9X 1= im <=0 or lim (‘y dy) =0
X—yo0 X x—yoe X X—poay X dx
or lim [)’] im 2 or lim £ =m.
x—yeof X x—es (X x—roo X .
. dy . .
Also c=hm{|y-x— or c= lim (y-mx). gt
X o0 xx X =0 o

Hence, if y = nix + ¢ is an asymptote to the curve f(x, ¥) = 0, then we obtain
m= lim d_ lim £ and  ¢=lim(y~ mx)“‘"?

XxoeadX  x—oee X X—yeo S
[E3 ASYMPTOTES OF GENERAL EQUATION
Let the general rational algebraic equation of a curve be %
{apy" +ayy" Tx+apy™ 2x bt ay 36"+ X"} s
- +{byy" by 2x+...+bn,3_}or"'2+ﬁ,%jg’-,‘71}
T R N < X420 (D)

n n-1 n-2 d
f 2] (2] el
0 x {ao[x] +a1(x +ap| o +ot @y P +ay,
n-1 n-2
+x“'l{b1[1] +b2(l) +...+bn}
X x

or xﬂ¢n (%) + xﬂ—1¢n_l [%) + xn'2¢n_2 (%) 4t x¢1 (i:] + ¢0 [%) =0 - (2)

where ¢, (y } is a polynomial of degree k in i]
X
Divide (2) by x", we get
y 1
¢'n[i}+ ¢‘n-—1( ] 2¢'n Z[y] ]¢1( ) ;;4’0(%):0
Now taking limit as x ~» %, and assuming there i 1s no asymptote parallel to y-axis then

m= lim [3’ we get ¢.(m) = 0. ' : .3

X-yoa
This equation (3) is of degree n in m so it has at most n roots, real as well as imaginary.

Out of these n roots some roots may be identical. Thus we get n values of m corresponding
to the n branches of the curve (1). Since, we will have only reat values of m so ignore all
imaginary roots of (3) if they exists. Further ify = mx+ c is an asymptote of (1), then we have

c= J}fl {y - mx), for each specified value of m.




|
b

symptotes and Singular Points

R - 3

Determination of ¢, For the determination of ¢ corresponding to each distinct value of
m, we put y = mx + p in the equation of curve (2), where pocasx— o,

Now puttingy = mx +pie, L _ . B inthe (2), we get
x x

X

x"¢n(m+£J+x”-"l¢n_1(m+ PJ-f—i”“zqnn_z[m-r£J+...+x¢1[m+£—)+¢0[m +£J=O.
[ X X X X

;.' Expand each term by Taylor's expansion, we get

P p*
x" ¢, (m)+—¢;(m)+————2 ¢;(m)+...]+rn_l [¢ﬂ_1(mJ+£¢;,_1(m)+...]
X 2lx X
+x"2 [¢n_2(m)_+ %4’;:-2 (m)+ ]+ =0

2 .
or x”¢nfm)+x"‘1tp¢;(m)+¢,._1(mHH“‘z[2—1¢:(m)+%¢;,-1(m>+¢n-z(m’}*“'=°
Since we know that ¢,(m) = 0, then

2
X" (pf,(m) -+ Gy ()] + X2 [‘;—,q:;;(m) + %ds;_l (m)+ ¢n-2(mJJ t..=0

{ Dividing by " ~ ! and taking limit as x —» ¢, we get

lim [po;, (m)+¢,_;(m)]=0 or (Iim p)q:;, (m)+¢,_;(m)=0
i X~r0s X—3oo _
| o ctpm)+ g (m) = 0 - Jim p=c)
Hence, from above relation we can determine the value of ¢ for each distinct value of m,
REMARK ff: o S

¢ To find the polynomial ¢,(m). We should put y= m"and x = 1in the ™ degree terms of the curve.
. Similarly to get ¢, _ 1 (m) we puty = mandx = 1 in the (n- ])ﬂ‘degreetermsofmecum. Therefore
in general, to get ¢y (m) we should put y = m and x = 1 in the kK™ degree terms of the curves,

XX EXISTENCE OF ASYMPTOTES

From the equation ¢n{m) = 0, if we obtain one or more than one values of m such that
¢p(m}=0 and ¢, _,(m) = 0, then from the equation for the determining of ¢. we obtain
Gc+¢,_;(m) =0,

Thus we get ¢ is either, + o or — oo, Hence, we can say that corresponding to such values
of m no asymptotes will exists,

X2 DETERMINATION OF c CORRESPONDING TO SOME IDENTICAL VALUES OF m

Let us suppose some of the roots of the equation $,{m) = 0O are identical and
let :these identical values be r in number which will make ¢;,(m),¢;,'(m),...¢;,'l(m)
equal to zero. Now for the existence of the asymptotes $, _ ;(m) must be
zero corresponding to the identical values of m. Also , if it will make
Op-1(m), 0, (m),.--¢;__:§(m);¢n-z(m),¢;_2(m),..-¢,r;§(m);¢;_3(m),¢;_3(m),---¢,’;§(m)---;
¢n_5,.+2(m_J,¢;_r+2(m} and ¢,.,,1(m) equal to zero, then the equation 1o determine ¢
will become

1

0 +0 24 +0c+0=0
and thus we cannot find the value of ¢ in this way.

So to determine ¢ let us put¢n(m),qJ'(m),...,¢,’1‘1(m);¢n_1(m),¢,’1_1(m),.-.¢;ﬁ(m);
Prcr 41,02 (M), 220305 30m), (873 (m), . O340 ... @y 2(m), 8 p(m)  and

¢n-r+1(m) equal to zero in the following equation

{QE It ingteuc tional Materia
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2
x", (m)+ x?1 [po;, (M) + ¢ ()] + X2 %T¢;(m) + %q;;,_l (m)+ q;,,_z(m)} +...

I
4 xmTH [____p 4 o m)+

pr—2 . p
P 010+t 1002 () G ()

r-2

n-r p .- Prdl r-1 L
X [;¢"(m)+r—1!¢n_l(m}+r—2!

Op B m)+..t %q::lﬂﬂ.l(m) + ¢n-r(m)]
Now dividing above equation by X" ™" and taking the limit as x — ®, we get

Cr-l

r-1!
Therefore this equation gives r values of ¢ corresponding to the identical values of m.
Hence, we obtain r parallel asymptotes.

X3 NUMBER OF ASYMPTOTES OF A CURVE

Suppose the degree of an algebraic ciirve is n, then we find a polynomial ¢, (m) by putting
y=mandx=1inthen" degree terms of the curve. Thus the equation ¢, (m) = 0 is of degree
n in m and which gives atmost n values of m real as well as imaginary. These n values of m are
nothing but the slopes of the asymptotes, which are not parallel to ¥ axis. If there are some
asymptotes, parallel to y-axis, then the degree of ¢,(m) will be smaller than n by the same
number of parallel asymptotes. Suppose all the roots of ¢,(m) = 0 are distinct and real, then
to each value of m we obtain one value of ¢. Hence, we obtain n asymptotes. In case, there
some roots say r (out of n) of ¢, (m) = 0 are same, then we can find the values of ¢ for these
same roots the following equation
r r-1

¢y c
r!¢n(m)+r—1!

This equation in ¢ is of degree r so we get r distinct values of ¢ for the same roots, hence,
again we obtain n asymptotes. Therefore we can say that the total number of asymptotes of a
curve are equal to the degree of the curve. These asymptotes are real as well as imaginary but
we have required only real asymptotes so we ignore all the imaginary asymptotes.

X8 ASYMPTOTES PARALLEL TO CO-ORDINATES AXES

(a) Asymptotes parallel to x-axis. Let the general equation of an algebraic curve
in decreasing powers of x be

Xy + X1 () + X2y (Y )+ = 0 (D)
where &(¥),$;(¥),02(¥),... are the function of y only.

Now divide (1) by X", we get

1 1 '
¢(}’)+;¢1(}’)+—2¢2(y)+...=0. ...(2)
If y = k is an asymptote parallel to x-axis, then we can say that x alone tends to

¢ _ c ., .
g m)+ T L) ot = )+ 9y (m) = O where € = lim p
r! 1! X—yeo

T i + .+ 4, (M) =0

infinity as a point P(x, y) on the curve tends to infinity along the line y = k and also
we have k= lim y.

Now taking the timit of both sides of (2} as x— o and y — k, we get §(k) = 0.
Thus k is a root of the equation ¢{y) = 0. I ki, ks, etc. are the roots of $(y) = 0, then
the asymptotes parallel to x-axis are given by y = ky, y = ky, etc. Since k is a root of
the equation ¢(y) = O, then (y - k) is a factor of the equation $(y) = 0. Also $(y) is
the coefficient of the highest power of x Le., X" in the equation of the curve. Hence, we
obtain the asymptotes parallel to x-axis by taking the coefficient of highest power of x in
the equation of the curve equal to zero.
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(b) Asymptotes parallel to y-axis. Similarly, we may obtain the asymptotes|[§
parallel to y-axis by taking the coefficient of highest power of y in the equation of
the curve equal to zero.

REthiARK S

e e

1 . . - E——
. If| the coefficient of highest power of x or Y or both are constant, then no asymptotes parallel
tc'; either x or y or both axes exists respectively.

L Golved Examplég

]

Examl:llie 1. Find the asymptotes of the curve x° +y3— 3axy = 0.

Selution . Obviously, the degree of the.curve is 3, so it will have 3 asymptotes real as well
~ as imaginary. Here the coefficient of highest degree in x and y are constant so no

( “ asymptote parallel to co-ordinate axis exist. Let

y=mx+c¢ (1)

Il be the asymptote of the curve.

So putting y = m and x = 1 in the highest degree terms of the curve, we get
ds0m) = 1 + m°.

i Solving the equation

d3(in) = 0
Le, 1+m°=0
: or (l+m)(m2-—m+1):0 or m=-1

is only real root and other two roots are imaginary so ignore them.
Next, putting y = m and x = 1 is second degree terms in the equation of the curve

(1), we get
dy(m) = - 3am.

Now we find value of ¢ by the following equation
¢, (m)+0,_(m)=0 Or  cda(m)+do(m)=0
f or e(3m?) + (- 3am) = 0 [ d3(m) = 1+ m® = ¢4(m) = 3m?]
I Ifm=-1, then
* c3C-1*+[-3a(- 1)] = 0

3+3a=0 or ¢ =1
Hence, the asymptoteis y=-x-a
or X+y+a=0.

Example 2. Find all the asymptotes of the curve x° + xzy - xy2 - y3 -3x-y-1=0.
Solution . ThedegreeofthecurveisBsoithassasymptoceswhicharerealaswellasimaginaxySince

~ thecoefficients of highest degree i.e., 3rd degree of xand yareconstant so there are no
' asymptotesparallel toco-ordinate axes. Thusthereare oblique asymptotes of the form
y=mx+c
Now putting y = m and x = 1 in the third degree terms of the curve, we get

Pa(m) = 1 + m-m? - m®.
Solving the equation
d3(m) =0ie, 1 + m-m?—m® = 0,

weget (1+m)(l- m2} =0 or m=-1,~1,1.
Determination of c. For m = 1, we use the following equation

() + ¢, 1 (m) =0
or cd3(m)+ ¢a(m) =0 .1
Putting y = m and x = 1 in the second degree terms of the equation we get
do(m} = 0.
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From (1), we get
¢(1-2m-3m?)+0=0

atm=1

c(1-2-3)+0=0
or —-4c=10
or c=0

Thus one of the asymptote isy = x
Determination of ¢ for m = -1, -1. Since two out of three roots of the equationt
$3(m) = O are same, then we use the following formula to determine ¢

2 . .
52—1¢§(m) o+ ":-Ilb'z(m) +y(m) _='0. (@
putting y = m and x = 1 in the first degree terms of the equation we obtain
¢(m) =-3-m.

From (2), we have
ﬁ(-z—s )+~ 0+ (-3-m)=0
2! ATy e

atm=-1 .

2
?(—2+ 6)-3+1=0

or : 22-2=0 or c=%1
Thus other two asymptotesarey = -x + 1, y = -x-1.
Hence, all the asymptotes of the given curve arey =x,x +y-1=0,x+y+1=0.
Find all the asymptotes of the curve (x = 2y)2 Oc-y) —dy(x-2y) (8 + 7y) = 0.
Simplifying the equation of curve
O +4y%— 4xy) (X —y)- oy +8y>-Bx =Ty = 0

or X+8xy°— 5xPy — 4y"— dxy+8y° -8 -7y = 0. D)
The degree of the curve (1) is 3 so it has 3 asymptotes which are real as well as
imaginary. Obviously there are no asymptotes parallel to co-ordinate axis. Thus
there are only oblique asymptotes of the form y = mx +¢.
Putting y = m and x = 1 in the highest degree i.e., third degree terms of the curve
(1), we obtain

d3(m) = 1 -5m + 8m® - 4m®.
Solving the equation ¢3{n) = 0
ie, 1-5m+8m>-4m’ =0
or (1-m)(1-2m)*=0
or m= -1-,1,1. )
272
Determination of cform =1: ~
Putting y = m and x = 1 in the second degree terms of the curve (1}, we obtain

¢2(m) =-4m + 8m2.
Applying the formula

c.d3(m)+¢;(m}=0

or ¢(= 5+ 16m —12m%) —4m + 8m*> = 0.

Substitute m = 1, we get

(-5 +16-12)-4+8=0
or -c+4=0
or c=4 .
Thus the asymptote isy =x + 4
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Example 4.

Solutianl

Example 5.

Solution.

- formula to determine c,

or X-y+4=0.

Determination of ¢ for m= + 1 :

2°2
Putting vy = m and x = 1 in the first degree terms of the curve (1) we obtain

¢p1(m) = —8‘-7m-

. 11
Since m= 50 afe wo repeated roots of ¢4(m).= 0, then apply the following

C2 C
E [93(m)I1+ F% (M) +¢;(m)=10

2
or %(]6—24m)+c(—4+16m)—8—7m=0

Atm =l
2
c? 7
?(16—*12)+C(—4+8)—8—§=0

or 2c2+4c-32§=0

or 4¢2 +8¢—23=0 :»c:ﬂ.

Thus the other asymptotes are
1 -2:3/3
y= x4
2 2

or 2y =x-2133,
Hence, ali the three asymptotes of the curve are
Xx-y+4=0,2y=x-2+3J3.
Find asymptotes of the cmr'vexzy2 —xzy—.»ty2 +x+y+1=0
Degree of the given curve is 4, so it has at most 4 asymptotes (Real and imaginary),
Asymptota parallel to x-axis :
Equating the coefficient of highest degree term of x (i. e., %) to zero, we get
yi-y=0 = yy-=0 o y=0andy=1
Thus,y = ¢ and y = 1 are two asymptotes parallel to x-axis.
Asymptote parallel to y-axis :

Equating the coefficient of highest degree term of y(ie, y2) to zero, we get
-x=0 = xix-1)=0

= x=0 and x=1
Thus, y= 0 and x = 1 are two asymptotes parallel to x-axis.
Hence, x=0,y =0, x=1and y = 1 are the required asymptotes. .

Find asymptotes parallel to axes for the curve y2(x2 ~aH=x
The given curve is a degrée 4, s0 it cannot have more than four asymgtotes.
Now, equating to zero the coefficient of the highest power of y (ie., of y°), *he
asymptotes parallel to y-axis are given by

—a*=0 = x=+a
Again equating o zero the coefficient of the highest power of x (i.e., of x°), the
asymptotes paralle] to x-axis are given by

¥=0 = y=0,y=o0.

Hence, all the four asymptotes are given byx=1a,y=0,y=0.
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- QTUDENT ACTIVITY

1, Find alt the asymptotes of the curve yz(x2 —d®) = - 4a%).

2. Find all the asymptotes of the curve y3 - xyz —xzy +x° + X2 -yz -1=0.

3. Find all the asymptotes of the curve X+ 2@ —xyz -2+ 4y2 +2xy ty-1=0.

4. Find all the asymptotes of the curve (x + y)z(x +2r+ 2 =x+ 9 + 2

5. Find all the asymptotes of the curve x —y)2 + az(xz.—yz) - azxy = 0.

A TECT YOURSELF

Find ail the asymptotes of the following curves:

1. a5t by =1 2. &+ =1

3. y*(a® -x) =x* 8. Xyt =% +y?)

5. A -y-xt-y+1=0 6. 3+ 2y -T2 + 2 +ldy +7¥F + 4x + 5y =0
7. 2x3_x2y_2>.y2+y3—4x2+81y—4x+1=0

8. + 2xzy + xy2 ~x* -xy+2=0 9 y3—5)gy2+8x2y—4x3—3y2+9)gf—6x2 +2y-2x+1=10

{Self lictra tionalMatériatiad
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1.5 x2y 2P+ 20 -y + P 2P F 42y +1=0

13-‘)’ = x% +ax 18. A2+ =+
150 (-0 -20% +(y + 300 -20 + 2 + 2y -1 = 0
- i& ﬂNﬂU’ERS

Lx= fa 2 %= ta,y=1bh 3x=tad4x=ta,y=2aSy= Oyr-lx—Ox—l
6 X+ =1, 22-2y=-7.6x=-2y=15Tx+y-2=0;x-y+ 2=0;2x-y-4=0"

B X=0;x+y=0;x+y- 1=0 Gx-y=022-y+2=0;2x-y+1=0
10.x -y=-1=0x+y+2=02¢x-y= 0 Ilx+y=0;x-y=0;x-y+1=0
12 X-y= O2x-y=0x+y+1=0;2x+y+1=0183x-3y +a=0

14 y=1lx= il ix4+y=0 16, 2x-y-2=0;2x-y~ B—O;x y+4=0

m OTHER METHODS FOR FINDING THE ASYMPTOTE OF AN ALGEBRAIC CURVE

THEOREM 1. The asymptotes of an algebraic curve are parallel to the lines which obtained by
equating to zero the linegr factors of the highest degree terms of the equation of
curve,

Proof, Let us suppose the equation of the curve is of degree n and let y — mx be a
linear factor of the n™ degree term in the equation of the curve. Since ¢,(m) is a
polynomial of degree n in m and obtained by putting y = m and x = 1 in the 1
degree terms of the curve, then (m - m}) is a factor of ¢nt (m). Thus m1 is a root
of the equation ¢n (m) = 0 which gives the slope of the asymptote. Hence, there
is an asymptote parallel to the liney = mlx = 0.

Conversely, let my be a root of the equation ¢n(m) = 0 so that there is an
asymptote which is parallel to the line y — myx = 0, then (m; — m) must be a
factor of ¢,(m) and therefore, (y7x — m;) will be a linear factor of ¢, (y/x). Hence

{y - myx) is a linear factor of x"¢,,(y/x) which is the hlghest degree terms in the
equation of the curve.
Hence the theorem is proved.
Since we know that if y = mx + ¢ is an asymptote of the curve f(x, y) = 0, then
we have
m=lim < and ¢ = lim(y-mx)= lim (y-—mx) (1)
X—yeo X X—yeo

x—00,L oo
X

With the help of (1) and above theorem we may find the asymptotes of an
algebraic curves.

WORKING PROCEDURE

Sterl.  First we collect all the hlghest degree terms in the equation of the curve and
then resolve into linear factors.
Ster 2.  Afier getting linear factors there may arise following cases,
Casel.  If the linear factor (y — mx) of the highest degree i.e., nth degree terms in the
| equation of the curve is simple (non-repeated). Then the given equation of the
curve can be written as
O-mx)F,  +P =0 ...(2)
where F,_; contains only terms of degree n — 1 and P,_; contains the terms of]
various degree not exceeding n — 1. Therefore y — n;x = ¢ is an asymptote of the
curve where c is to be determined. Let us take a point (x, y) on the curve (1), then

we have

Pn—l
Fn—i

Now taking the limit as x — e, y/x — m, then we have

y-mx=-

115 ¥ .xy ~xy +2° 4 - P o120 120 (YD) - 4D 6P+ 5P+ 322 P+ By = O -

»

P
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. P._
lim (¥ —mlx) = lim [.. h} or c= lim (_ n-1 }

Y By
x—)m,-{_}ml x_)“’x—’ml. Fn—l X—PM,;—)TH] n-1
X X

Now substitute this value of ¢ in the equationy = myx + ¢

We obtained the asymptote which is parallel to the line y - myx = 0
corresponding to the linear factor (¥ — myx). Similarly we may obtain other
asymptotes.

Case Il If (v — nmyx) is a linear factor of the n degree terms of order two but (y — mlx) is
fiot a factor of the (n — 1) degree terms of the curve, then we have n(ml) =

and ¢,_3(rmy) 0. Therefore, no asymptotes corresponding to (y — mlx) will exdst.
On the other hand if there are no terms of (7 - 1)‘h degree in the equation of the
curve, then make them by adding with zero coefficient and thus we can say that {
y —myx) is now a factor of (n -~ 1)rh degree terms, then we have the case IIL.

Caselll. If (y - mlx)2 is a linear factor of n degree terms and (y — myx) is a factor of
n-1DW degree terms, then the equation of the curve can be written as
(y- mlx) ey (¥ —-mx)}G, 2+ B =0 ...(3)
where F,_, and G,,_, contain only the terms of degree n—2, and P, _; contains
various degree terms not exceeding n — 2. Now divide (2) by F,, _, and taking
the limit as x — o and y/x — m;, we get

lim (y—mlx)2+ lim (y—mlx)[i"'2]+ hm [ﬁ) L8

X—po0, X—poo, Y X—poo, F_
(y/x)-my (¥/x)=m . (y/x)=my n-2
Since we know that ¢ = lim (y -myx)
x—yeo( v/ x )=
G, J 24
and A= lim —nz2 | and B= lim =n=2
x=ea(y/xt-m\ F_o x—=es(y/x)my \ F o

then (4) becomes  ¢% + Ac + B = 0.
This is a quadratic equation in ¢ so it has two roaots let ¢; and ¢, be these
two roots. Then we obtain two asymptotes y — myx = ¢y and y — mx = ¢y
corresponding to m..
REMARK T ;,_]
e As a consequence we can say that the two asymptotes correspondmg to the factor (v- mlx)
may obtain by solving the quadratic equation {(y - mlx) +Aly-mx) + B=0.

Similarly, we can also find the asymptotes corresponding to the factor (v - mlx) , etc. of the
' degree terms in the equation of the curve,

Case IV.  Suppose the equation of the curve is of the forrn
(ax+by+P 1 + Q1 = (5
where P _1 and @Q,_; contain various degree term not exceeding the degree
(n —1) , and P,_; contains atleast one term of degree (i1 — 1) such that (5)
becomes of degree n. Therefore, we can say that (ax+ by) is a linear factor of
nLh degree terms in the equation (5). Thus (5} can also be written as

{(ax+ b)) P, + Py + Q=0
Divide this equation by P,,_; and taking the limit as x - and y/x — —a/b, we
obtain
(ax + by +c) + lim Q1 /B )=0

x—e0, v/ x—{~a/b)
This the required equation of the asymptote.
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Case V.  Let the equation of the curve of n degree be of the form

F,+P=0 (D

where F,, is of degree n and P is of degree n — 2 or lower and ifF,, = O can be
expressed as the product of n linear factors which give n straight lines such
that no two of them are parallel or coincident, then all the asymptotes of the
curve (1) are obtained by equating to zero the linear factors of F,,

Solved Examples

1
Example 1. Find the asymptotes of (x —_\,')2 (x2 + yz) - 10(3:—)/):.:2 + 12y2 +2c+y=0.
Solution. We have 2 2

(c-y?-10(x-y) lim —* =412+ lim
x—o0 ¥/ x—1 x +y X y/x—21 x

or (x-yY -5(x-y)+6=0
which gives parallel asymptotesx—y = 2and x -y = 3.
The other two asymptotes are imaginary. Since the remaining linear factors of the
four degree terms in the equation to the curve are imaginary.
Example 2. Find the asymptotes of (x= —1)2(x2+y2+2)+ 6x-y-Dly +7) - 8% - 2x - 1=0,
Solution . Dividing by the coefficient of (x—y—1)2 and taking limits, we see that the asymptotes
© paralleltox—y—-1=0are

=0

2+}’2

2 p—
(x~y-12+6(x-y-1) lim %7—4 lim 8+2§—1= 0
x5 XTH Y2, _i:_,l x“+y“+2
X
= (x-y-1D*+3x-y-1)-4=0
= x_y_lzngi—...._.._ '29-'-16= 1,_4
Hence, the two asymptotes are x—y -2 = Oandx -y + 3 = 0 the remaining two
asymptotes are imaginary.
[XR ASYMPTOTES BY EXPANSION
A A A
THEOREM.  Let the equation of the curve be of the form y=mx+c+—)-:-+—§+——§+... ...{1)
then y = mx + ¢ is the asymptote of (1). X
Proof. Since the equation of the curve is
y=mx+c+i+-A—2+ﬁ+... ;Whereél+A—§+§-%+...isconvergent
x2 ¥ X x° x
for sufficienty large values of x.
. . s ‘ dy Al 2A2 3A3
Differentiating (1) wirt. %, weget L =m-L_222 273 _
g (1) get — 2 3
Now the equation of the tangent to (1) at the point P(x, y) is
A 2A, 34, }
Y—y:(m—————~—— (X -x)
x2 X X
or Y=[m—ﬁ—g’%%-ﬁ-...]x+c+ﬁ+?’%+... [Using(1}]
x?  x x4 X b e
Now taking the limit as x - o, we get
Y=mX+c

. Al Ay
Hencey = mx + cisan asymptote of thecurve y = mx+c+—+2 4+ 3 4

. X x2 X
Solved Examples

2 2
Example 1. Find the asymptotes of the hyperbola x_2 - -?;’—z—w =1,
-" a

w1
!

131
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%7]Solution . The equation of the curve can be written as

2
2 _ 12 X
ye=b't-1+—
x2 b a?
or y=+b L4+;3 =tox -
b 1a®> 1

4
a N DA
y:izx[1___§_.§x_4+_,] [Using binomial expansipn]
Since we know that y = mx + ¢ is an asymptote of the curve
A Ay
y= mx+c+—+—~i-+...
X x
. b i .
Hence,y =% Ex are the asymptotes of the given curve,
Example 2, Find all the asymptotes of the curve (yz— x2) O—2)-7y+ 3_)/2 +24 +2x+ 2y+1=0.
Solution . The given equation can be written as .
G- +00-20-7+3° + 2%+ 2+ 2y +1=0. (D)
The slope of the asymptote corresponding to the factor y -x is 1. Thus the asymptote

corresponding to this factor is
2
7 _31)_3(1 _2_.2__21(1)__1_
7xy -3y -2x2-2x-2y-1. x x x “xlx) 12

~x= i = li
yox=m (v +x)(y -2x) xll.’i, Y Y.,
;‘_:_;1 il-.n x x
S7=3-2_2 __
21-2) -2
~y-x+1=0

Similarly the second asymptote corresponding to the factor (¥ + x) is

¥y y¥ .2 ¥ 1] 1
. Txp—3y2-2x2-2x-2y-1_ .. 7(';]_3(-_’;) _2-}-—2(;][;}_}7
x+y= lim == lim
X—yoo, (y-x)(y-2x) X—ea, !__1 :)1’__2
AN | BN x Nx
X X
_7CD-3DR -2 7-3-2
-1-1){-1-23 (-2)(-3)
. x+y+2=0
and the third asymptote corresponding to the factor y — 2x is
y-2x= lim Txy-3y°-2x°—-2x-2y-1
Yo 22 (.= x)(y +x)
X

)
S

_72)-32)° -2 _14-12-2
2-D2+1) 3
= y-2x=0
Hence, all the asymptotesarey -x+ 1 =0, x+y +2=0andy—-2x=0.
Example 3. Find all the asymptotes of the curve (y-x) (y—2x)2+(y+ 3Oy -2)+2x+2y-1=0.

Solution . The equation of the cutve is
(v =0 - 202+ (r+3)(y 20 +2x+2y -1 = 0
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l The asymptotes corresponding to the factor (y — 2x)2 are : BT Nofee T
(y-2xP+(y-20) lim 3%, jm 2ol
X, ¥—X X300, ¥/ x—2 (y_x)
¥/x—2
* o3 2+2y/x)-1/x
or (y—2x)*+(y-2x} lim |X-——|+ lim -0
X=yoa, .Z_]_ X, (v /x-1)
yix=2{ y/x—2
i ~5+.f(25-24) -5+
or (y -2x)? +5(y —2x)+6=0 or (y-2x)= _(2 ) 5271
or J’—zxz—-2, and y—2x=_3 R
ory-2x+2=0 and y-2x+3=0

And the asymptote corresponding to the factor (y —x) is
(y43x)(y~2)

(y-x}+ lim 3 lim _2”23’;1:0

Xeyoo, (y —2x) x—00,y/¥—1 (y—2x)

y/x-l
or (y-x+ lim QLLADO/XD oy, 2eAy/0)-1/x

ey 0/x=2F 0 xde x(y/x-2)
or (y——x)+_(..]'_t.‘?.’l£.:.l_2:.2_)+0=0

(1-2)

or y~x-4=0
Hence, all the asymptotes of the given curve arey —-2x + 2 =0,y -2x + 3 = O and
y-x-4=0.

= STUDENT ACTIVITY
1. Find the asymptotes of the curveOe—y+1){x-y - 2){x + y) = 8x - 1.

2. Find the asymptotes of the curve (¢ - 3x + 2)(x + y-2) + 1 = 0.

3.: Find the asymptotes of the curve X*(x +_)r)(x—y)2 + ax?’(x—y) —a7}'3 =0,

4. Find the asymptotes of the curve {y — a)z{:c2 - az) =xt+a*
i

HSelfzthstructionaliMaterial #48



vy —. s & e £ 7 oo B eI

4 u__t;;ALCULUé*

-, [QeltMnstructional|Matariall =

¥

| &9 TesT YourgeLF|
Find all the asymptotes of the following curves:

-+ 2y D x+y+1=0 _

L5y =dhy 3. (A )6 +5%y + 30225 %2 43~ 1 = 0
A=) + 28—y -4 =0

- - oy (P -y + P+ -7 =0

. =207 -y) ~dy(x - 2) - (Bx + 7y) =

=2 YD - 100c-y? + 12% + 2x +y =0

-y -120C + Y+ 2) + 6x-y - 1Dy + D) -8 - 2x-1=0

- o+ By Fydox + By +y) 13 =0

L (x~y +2)(2x-3y + 4)(dx-5Sy+6) + Sx-6y +7=0
- ANSWERS -
Cx-y= {J"';’+y 0x+2y+1—0 2. y-—x--O

L x-y= 02x -y = O,x+y+1= 0?.x+y+1—0

"X y+2 0, Xx-y~-1=0,x+y+l= 0,x+2=0
cx=0y= 0, x=y=0,x+y=.0x- 2y 0andx+2y 0

L X-y+4=0,x- 2y—213\/— 7.x-y-2=0,x-y-3=0
- x-y -2=0,x-y+3=0 9. a1x+|31x+71=0,,q2x_'+‘62y+72=0
10, x-y+2=0,2r-3y +4=0,4x-Sy + 6 =0 TRy

[X{) INTERSECTION OF A CURVE WITH ITS ASYMPTOTES

Let the equation y=mx+¢ 6L
be an asymptote of the curve

x ¢,,{ J+x“ 14, l(y)+x"-2¢,,_2(lJ+...=o. e
X X

Solving (1) and (2) to find the intersection points so eliminating y between (1) and (2},

we get
€ -1 ¢ -2 ¢
"o, [m+;}+x" Onoi [m+;}+x" ¢n”2(m+;]+...=0.

Now expand each term of above equation by Taylor’s theorem, we have
2

[q;,, (m)+ ¢n (m)+ —¢;{(m}+ l n-1 [¢n_1 (m)+-:;¢;,‘_1 (m)+ ]

[T I T - IR R

™
[—]

oomm-h:p,.._.

. +x"2 [q:,,_z(m) + %q;,;__z(m) + } =0

2 . '
or X", (m)+[cd), (M) + b,y (m)]x"! +[% ¢I{(m)+%¢;_1(m)+¢n_2(m)}x“'z+...=0.
(3

Since y = mx + ¢ is an asymptotes of the curve (2), then we have ¢,(m) = 0 and
ct, (m)+ ¢, (M) = 0.
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2
Thus (3) becomes |i-%'— on (m)+ %¢;_1(m) + ¢n_2(m)]xn—2 +..=0. )

|I This is a equation of degree n — 2 in x so it will have atmost n — 2 values of x provided
there is no asymptote parallel toy = mx + ¢ of the given curve.
* Hence, in-general we can say that any asymptote of a curve of the n™ degree cuts the
curve in (n - 2) points.
REMARKS e e e

. —

¢ Since one asymptote of the curve of n degree cuts the curve in (n 2) pomts son asymptotes of
that curve will cut in n(n - 2) points.
o If the equaticn of the curve of degree n can be written as F, + P = 0, where F, contains n

non-repeated linear factors and P contains the terms almost of degree n — 2, then n(n -2)
l pomts of intersection of the curve will lie on the curve P = 0.

Example 1. Show that the four asymptotes of the curve
6 -yH67 - 4D + 6 - 5y - 392 + 2 —x2+3xy 1=0.

Cut the curve in eight points which lie on the circle 2+ y =1,
Solution . The given equation of the curve can be written as

G =30+ Y - 200 + 20 + 6 -5y -207 + 2 - + Iy—1=0 ...(1)
The asymptote corresponding to the factor x - y is

! x—y+ lim 6x3—5x2y—3xy2+2y3—x2+3xy—]

} X—som, {x+y¥y-2x)(y+2x)
¥ix—=l

or x-y+ lim 6‘5[‘1‘]‘3@]2+2(§]3-}+3[{___]E]_ 2
| N

6-5-3+2
(1+1)(1-2)(1+2)

=0

0

or x-y+ lim
x—)w,-j—’—ﬂ.
X
or x-y=0.
The asymptote corresponding to the factor i + y is

6x° —5x2y~3xy? +2y° ~ 2 +3xy -1

x+y+ i o
’ 'i?g‘:-l (x=y){(y-2x)(y+2x)
2 3 )

or x+y+ lim O=S0/X)=3y/x)+2y /) -/ 043y /)1 / )~/ %) _

| ;;:::’»-1 (-y/xXy/x-2)(y/x+2) ]

BT A — 2 _ a
orx+y+6 SC1)-3C-1"+2(-1)° _ i .,
| (1+1D{-1-2)(-1+2) Y _

or X+y-1=0.
Now the asymptote corresponding to the factor y - 2x is

{6x> - 5x2y - Sxyz+ 2y° —x%+3xy-1}

“2x+ K =0
y~2x+ Hm (x-y) x+y)(y+2x)
yix—=2
o A6=50y /x)=3(y /XY + 2y / xP - (1/2)+3(y / )L/ x0)=(1/ x>}
-9y = =0
or y +Xl‘,?3_ (1-y/x¥1+y/x)(y/x+2)
¥/ x-2

. Cagoy2 3

or y-2x4 XD S@ATHAY y-=0

A-2){1+2)(2+2)

[SelfiIngtrictionallMateriali” -
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The asymptote corresponding to the factory + 2x is

3_e,2,_ qml 3_.2 .
y+2e+ lim {6x” —5x“y —-3xy"+2y" - x"+3xy -1} _

X—res, (o= y)x + y)(y-2x)
y/x—=2

0

or

ye2es fim {650y /x)=30p0/ X2+ 2y /xP -1/ )+ 3y /A / 0~/ X}

X, A-y/x)0+y/ Ny /x-2)
yix—3-2

6-5(-2)-3(-2°+ A-2)°
(1+2)(1-2)(-2-2)

or y+2x-1=0.

Hence, all the four asymptotes are x —y = 0, x +y-1=0,y-2¢ = 0 and

y+2x-1=0.

Since one asymptote cuts the curve in (4 — 2) = 2 points so all the four asymptotes

cut the curve in 4 x 2 = 8 points. Now combine all the asymptotes, we get

- +y-Dy-20( +2-1} =0

or [ -y - G-I - 48 - (y-20] = 0

or (6 - Y207 = 45 - 0 -yHy - 20 ~ (k- -4 + (x-)y-29 =0

or (2 -y (y? —4x?) ~(x2y —2x3 - y3 + 292 - (g% —4x® ~y8

+4\.7r23.')+x_y—2x2 —y2 -2xy=0

0

0.

ory+2x+

or (x% - y2)(y? - 4x®)+6x% - 5x?y-3xy? +2y° -2t -y +3xy = 0. 2.
Now subtract (2} from (1), we getx2 + _y2 =1.
Hence, all the eight points of intersection lie on the circle x* + y2 =1,

oaen STUDENT ACTIVITY
1. Find the equation of the cubic which has the same asymptotes as the curve

2 -ty + 12 -6° +x+y+1=0
and which passes through the points (8, 6}, (1, O)and (0,1).

2. Show that the asymptotes of the curve yz(J(2 - a%) = X - 4a) form two right angle triangles
with the x-axis. (y > 0.

1. Show that the asymptotes of the curve 40+ ¥ - 1737 - ax(ay? - )+ 202 -2)=0
cut the curve in eight points which lie on the e]lipue;ex2 + 4y2 =4,

2. Find theasymptcmesol’ther:urv«'tezxzyu.xy2 + Xy +y2 + x -y = 0 and show that they cut the curve again
in three points which lie on the straight line x -+ y = 0.




-:{\sy#’ibtotes and Singular Points

3 Slltxowthat the eight points of intersection of the mnvex4—5x2y2 + 4% +x2—-y2 +x+y+1=0and
it[r; asymptotes lie on a rectangular hyperbola,

4 S'lfow that the asymptotes of the cubic x° - 2y3 + xy(2e-y) + y{x-¥) + 1 = 0 cut the curve in
th]ree points which lie on the straight linex-y+1=0.

ANSWERS

2 y=0x=1,,x-y+2=0 5. x3—6x2y+llxy2—_6y3—x+6y=0.

I XEN ASYMPTOTES OF NON-ALGEBRAIC CURVES

Definition. A curve in which there are some terms involving cosine, sine, etc. is called non-
algebraic curve.

The method for finding the asymptotes of non-algebraic curves can be explained by
following example,

Example. Let the equation of the curve be y = sec x, then differentiating this w.rt, x’,
_we get

% =secxtanx.

Therefore, the tangent at P(x, y) on the curve is
dy
Y-secx=—(X-x
; ( }

or Y- secx = secx tan x(X — x)

or Y cos®x - cos x = (X - x)sin x. (1)

Now taking the distance of P(x, y) from (0, 0) infinity as x— n/2 and y — e, we get
Y0-0=X-n/2).1 or X ==n/2.

This is one asymptote and the other asymptotes are X = — n/2, + 3/2m, ...

At ASYMPTOTES OF POLAR CURVES

(1) Equation of aline in polar form. Let O be the pole and OX the initial line and let

P(r, 9) be any point on the line whose equation is to be required as shown in Fig. 1.
P(z, 8)

Draw a perpendicular OM frem O to the line
‘ such that OM = p and ZMOX = a (say).

In AOPM
ZPOM=0-a
then, oM = ¢0s £LPOM
oP » Y
P _
‘ or ?—cos(e—a)
or p =rcos (6-a).

This is the equation of line in polar form, where p is the perpendicular length from
~ pole to this line and « is an angle which the perpendicular makes with initial line.
- (ii) Asymptotes of polar curves.
THEOREM 1. If 8 = a is a root of the equation f{0) = 0, then r sin (0 —~ a}= 1/ '{o) is an
“ asymptote of the curve 1/r = f(0).

Proof. Since the equation of a curve in polar form is % = f(8). (1)

Let P(r, 8) be any point on this curve and draw a line through O perpendicular
to OP, then radius vector which meets the tangent at P in T as show in Fig. 2.

Then OT is a polar subtangent of the curve at P.

SelfflnstrictionaliMateriall
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OT =2 g—g {From calculus)

.q.

Now differentiating (1) wirt. 0, we get

1 dr
- = fre.
7 JCY
or=r29._ 1

dr — f1®)

Since o is a root of f(8) = 0 as O
— a, then r — o from (1) and the O
tangent P7 tends to the asymptote and

1
OT - |———— o f 0.
_)[ f’(ﬂ)]a:a Jio=

And OP, PT will become parallel to lines Fig. 2.
shown dotted in the figure 2, Thus £LOTP — n/2 and OT — OM, where OM i5 a
perpendicular distance from O to the asymptote,

_ 1
Flo)
when 0 = ai.e., OP - OP’,. Then £XOP =«
LMOX = — {g - a} {In the clockwise direction)
Therefore the equation of the asymptote is
rcos le {—[g - OLJH = —f—,{l-a—) ' [using p = r eos(1 - )]
R T 1
or reos| —+0-o = ——— or ~rsin(@-—g)y=———
(2 J 7 O-=
1
or rsin{@ —a) =
fla)

EWORKING'PROCEDURE XL

To find the asymptotes of polar curves, we use the follows steps :

Sterl.  Convert the equation of the given curve in the form 1_ £(8) -
r

Ster 2. Find the roots of the equation f(8) = 0 ie., values of 0. Suppose o, B, etc. are
the roots of f(8) = 0.
Ster 3.  Now the asyraptote corresponding to 6 = « is

1
i (0~ o) =
rsin {6 —a) [0
where f (o) = value of f'(8) at @ = a.

“ Qolved Examples

Example 1. Find the asymptotes of the curve rsinnf = a.
Solution . Step L. Convert the given curve into the form

1
—= f(8).
1 si re
sin -
=20 _ £p). (D)
r a
Step IL Solve the equation f(6) = 0.
ie., sinnB =0

Selflinctructional|Matzrial a
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Sy[ptotes anc Singqular Fomnts o ™o . . . - : 1
or sinn®=sinre, r=0,1, 2, ...,

or n0=mor9=?,r=0,l,-2,3,....

, Let a="",
[ ! n
' Now differentiating (1) w.rt. ‘0", we get £(8) =+

ncosnd

S )= neosno _n. oo E(—l)f. |
a d |
. 1
[ Step IIL. Therefore, the asymptotes of the curve are rsin(9—a)= o)
or rsin[e - ﬂ] -1 , where r is any integer.
f n n(-1)
Example 2. Find the asymptotes of the curve r sin ® = a cos 26.
ool 1
Solution . First put the equation in the form of o= f(0).
! . 1 sin®
] ie, —= .
% r acos2f
: : sin®
| - foy=-—Snd_ .
' E @ acos20 : )
: Now solve the equation f(8) = 0. Then
: sin@
acos29
or sin® =sinnnord = nn.

Let a = nr be the root of the equation f(8) = 0.
Now differentiating (1) w.rt. ‘9, we get

g , 1] cos26.cosB + 25in 205in 0 |
| o mmsma: s
; a cos” 268
|
) f,(a)_l[cosZa.cosa+25in2asincn]_L[cosZnn‘cosnn+2sin2nnsinnnj| ¢ o= nm)
' a cos® 20t ‘2a cos? 2nn )
1
= = Cosn.
a

i

‘ The asymptote corresponding to o = nn is rsin(6 - nn) = L a

(o) " cosnn

§ 0or r(sin@cosnn —cosfsinnm) =
cosnx

(- sinnr = Q)

or rsin@cosnm =
COSRT

or rsinfcos’nx=a

or rsiné=a (~cosnm=1)

Example 3. Find the asymptotes of the curve rf = a.
Solution . First putting the equation of curve in the form L £(0) so we have L 2 .
— r r a
o f(B):%. (D)
! Putting f(8) = 0, we get 8 = 0.
' Then o = O is the root of f(8) = 0.

Now differentiating (1) w.ct. ‘6’, we get

, 1 , 1
f®=== f=—.

; Thus the asymptote corresponding to 0 = a. is

slfsinstructionaliMateria
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Example 4. Find the circular asymptotes of the curver = a.

1
flo)
1
A/a)

rsin(@-o) =

rsin(8-0) = rsing =a.

;]
6-1
g

Salution.  The circular asymptote is given by.r =a lim — =a .

B30 G-1
Thus r = a is the circular asymptote.

STUDENT ACTIVITY

CALCULUS

1. Find the asymptotes of the curve r cos 8 = a sin 6.

2. Find the asympuotes of the curve r(1 + 2sin 0) = 2,

-3. Find the asymptotes of the curve r sin § = 20,

¥ TEST YOURSELF

Find the asymptotes of the following curves:
. y=tanux. 2. r=acosecB+ Db
. rsin20=gq 4. rsin € = 2 cos 26
. rsin® = 2cos @ 6. rfOcosO =acos20
. (1 -2cos8) = 2a 8. r=4(secd + tan ®)
. rcos 9 = 4 sin%0 10. r (ee— 1) = a(ee + 1)

ANSWERS

- r5in® =28, rsin®=226.rsin6=a,rcosB = {—uil—,k is any integer
k+—}n,

. rsin(ﬁ—%]:%,rsin(ﬁ+%)=—% 8, rcosf=28

. rsin8 =2a

. 1 1.
. X =En/2, 3072, 2. rsing =g 3. r‘smﬂ:iaa,rcost’i:iaa

9 rcosb=4
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Asymptotes and Singular Points

[IE] CONCAVE AND CONVEX CURVES

l'IIf P is any point on a curve and CD is any given line which does not passes through this
pomt P. Then the curve is said to be concave at P with respect to the line CD if the small arc
‘of tllle curve containing P lies entirely within the acute angle between the tangent at P to the
curve and the line CD and the curve is said to be convex at P if the arc of the curve containing
P lies wholly outside the acute angle between that tangent at P and the line CD which are
shown in figures below :

!,.: YA - Ya

i P

' P

D D
! C Cc
0 » X 0 » X

1 f COHCI.a.’ve Convex

| Fig. 3.
mﬂ POINT OF IRFLEXION 4

‘A point P on the curve is said to be the point of inflexion, p

if the curve in one side of P is concave and other side of P
is convex with respect to the line CD which does not passes
through the point P as shown in fig. 5.

Inflexion tangent. The tangent at the point of inflexion | ¢ 6
of a curve is said to be inflexion tangent. In the fig. 4 the line
PQ is the inflexion tangent. 0 - * X

Fig. 4
XEH DETERMINATION OF THE PGINTS OF INFLEXION

'Let ¥ = f{x) be the equation of a curve and let P(x, ¥) be any point on the curve and

assummg that the tangent at P is not parallel to y-axis as shown in fig. 5.
Ya

Since the tangent is taken not to be parallel to y-axis,
then % = f’(x)must be finite. Let Q(x + h,y + k) be any

point on the curve in the neighbourhood of P. We may

take this point Q either side of P. Suppose the ordinate OM
of Q I1'1'11t.*arsects the tangent line at Q.

Y-y=f0)X-x) (1)

:S'inceatpointQ(x+h,x+k)wehaveX=x+hso04 : "X
putting X = x + h in (1), we get Fig. 5
QM-y= f(x}(x+h-12} [ Y=QM]
or QM =y +hf'(x)
or QM = f{x)+hf"(x). [y =f)]
H h2 h?
But we knowthat QM = f{x+h}= f(x)+hf'(x)+ Ef”(x) + af”’(x) +o
(Using Taylor’s theorem)
y =P ey B R g here 0<8<1 2
. QM—QML—Z—!f (x)+§f (x)+...+_n_!f< (x +8h) where 0<9<1. (@)
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Let us suppose f(x) # 0 and taking k sufficiently small, then (QM - QM) will have the
2 2

same sign as -}-12-1- f"(x). But % f£7(x)will have invariable sign because h? will always be

positive, This means that on both sides of P the curve will be either concave or convex, Hence,

we can say that the necessary condition for the existence of a point of inflexion at P is given by

, d’y
f (x)=00r?‘-;20.
Thus (2) now becomes
h? ht K"
QM- QM = = () + —‘—ﬁfw(x) +ot Ff{")(x +6h) (3

Further, if £7(x) # 0 and taking h to be very small, then (QM -Q ‘M) will have the same

K : . o
sign as m £ (x} and this changes sign when h changes sign. Thus we can say that the curve

with respect to the x-axis is concave on one side of P and convex on other side of P. Hence,

there will exist a point of inflexion at P.

d%y d3y

Consequently, we can have a point of inflexion at P, if —=- = 0but—=5-# 0.
dxz dx3

REMARKS TR

SRS

e The position of a point of inflexion is independent of the choice of co-ordinate axes so we can

o of i . o dPy ﬁ 20

say that a point of inflexion at P exists if 2z =0but FRChehe

s @) =0=fx)=..= _f("‘n(x)'and f("](x) # 0, then there will be a point of inflexion
if n is odd and if n is even and greater than d%, then the point is called point of undulation,

e If the tangent at P is parallel to y-axis, then ay will be infinite at P so change the curve to the

form x = f(y) and then find the point of inflexion.

Exampte 1. Find the points of inflexion of the curve x = (log y)3.

Solution . The equation of the curve is 3
x = (log ). (1)
Differentiating (1) with respect to %', we get

dx a1
= —3(log y)°.=
g8y y

dy
Again differentiating w.rt. y
2 [ 1. 2
Lx 5| 2ogy Gogyy” | e
dy | ¥ Y

Again differentiating w.rt %’, we get

d3x [ 2 4logy 2logy 2(10gy)2

_3=3_3_ e > ) ..(3)

dy LY Y Y y

For the point of inflexion, we have
2
d—)2€_=0.
dy
2
3[2103y—(108y) ]:0
y2
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or 3logy)(2-logy) = 0
or logy=0,logy =2 or y=1,y=e2
From (3) it is obvious that at y=1,y= ez,
g
o g;; 0.

Hence, the points of inflexion are(0, 1)(8, ¢2).
Example 2. Find the points of inflexion of the curve

¥ =x(x + 1)2
Solution . The equation of the curve can be written as

y=(x+ 1)\'[; .
! Differentiating (1) w.rt. %, we get
| dy 3 1
Yy 1/2
— =X —,
| dc 2 2Jx
Again differentiating w.rt %
| dy 3 1
‘ “ dc? avx  4x%2
I and again differentiating wr.t. %, we get
d3y 3 3

B3 axd2  gh
[ For the point of inflexion, we have

2
Yy ..
dxz
: B 1
4Jx  axdx
t or (3—lJ=0 or x=1/3.
x 3

L d’y
From (3) it is obvious that at x = 1/3, —3* 0.

Thus, the point of inflexion are given by (1 / 3,44 / 34/3).

..-(1)

-{(2)

(3}

1. Show that the points of inflexion on the curve y = pe~(x/2 age givenbyx =14, /2.

2. Find the points of inflexion on the curve r(8° - 1) = ad?.

3. Show that the points of inflexion of the curve r = 6" are given by r = b{-n(n + D}/ 2,

g
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L TEST YOURSELF

Find the points of inflexion of the curve x = log(y/x).

. Find the points of inflexion of the curve y(a® +x%) = x*.

. Find the points of inflexion of the curve y = (x - D -2)°

. Find the points of inflexion of the curve xy = a®logly / a).
Show that the points of inflexion of the curve y? = (x —a)*(x -b) lie on the line 3x + a = 4b.

Show that the origin is a point of inflexion of the curve a™ .y = X", if m is odd and greater

than 2.

. Show that the points of inflexion of the curve :‘zy=a2(x—y Jare given by x = 0, x = +a./3.

, Prove that the curvey = (1 —x)/{1 + x%) has three points of inflexion which lie on a straight
line. '

9. Show that the abscissae of the points of inflexion on the curve y2 = f(x) satisfy the equation

LF P = 2F G0 f7(x).

B owmoa W NP

o ~

ANSWERS
1. (<2, -2/¢%) 2. (0,0),[@,3_4[3_(1] ,{_\Ea; — f a] 3.Point of inflection atx = 2, (11 +J2)/7

3 _
4. (_2_“ 3/2’“3/2}

A MULTIPLE AND SINGULAR POINTS

Definition 1. A point on the curve is said to be multiple points if through this point more
than one branches of a curve passes.

Definition 2. A point on the curve is called a double point if through it two branches of
the curve passes.

Definition 3. If three branches of the curve passes through a point, then this point is called
triple point.

Definition 4. If n branches passes thraugh a point on the curve, then this point is called a
multiple point of n* order.

Definition 5. The point of inflexion and multiple points are also
called the singular points. Or An unusual point on the curve is basically 1
called a singular point.

*(i) Node. A double point on a curve is said to be a node, if
through this double point two branches of the curve passes

which are real and having two different tangents at that Fig. 6 »X
point (Fig. 6).
Y A
(if) Cusp. A double point on a curve is called a cusp if through
this double point two real branches of the curve passes and
have real coincident tangents at that point (Fig. 7).
O —> X

Fig. 7
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(iif) Conjugate point. A point P on the curve is said to be 4

conjugate point if there are no real points on the curve

I 1 in the neighbourhood of that point and having no real
{ ! tangentat that point (Fig 8).

O’ = *»X
KHVA SPECIES OF CUSP .. Fig. 8

Definition. A cusp is said to be single if the curve lies entirely on'one side of the common
tangent (Fig. 9(ii)).

Definition. A cusp is said to be doubie if the curve lies on both sides of the common tangent
(Fig. 0(1).

Definition. A cusp is said to be of first species if the two branches of the curve lie on opposite
sides of common tangent (Fig, 9(ii)),

Deﬂninon.A cusp is said to be of second species if the two branches of the curve lie on same
side of the common tangent (Fig. 9(i)).

There are five different types of cusp

(i) Single cusp of first species (i) Single cusp of second species

(ii;i) Double cusp of first species (iv) Double cusp of second species
(v) Double cusp with change of species.
These all five types of cusp are shown below respectively :

Yd‘r i Ya | : Y4
i -
£
I
5 . »X O ——— > X ) > X
0 (i) {iD (i)
i By
Y4 Y4 i
!’ " 0 — X 0 »X
i | (iv) W)
Fig. 9
POSITION AND NATURE OF DOUBLE POINTS
Let P(x, y} be any point on the curve f(x, y) = 0, we have
dy  df /ox df of dy
: 52 __ — 4+ 22 g (1
: A o/ w ydx © W

'I'll1erefore, the slope of the tangent at P(x, y) is equal to dy/dx which is given above.
Since by the definition of a multiple point we know that the curve has atleast two tangents

50 % has atleast two values at a multiple point. But the equation (1) is of first degree in dy/

dx. Therefore dy/dx will have two values or more than one value, if and only if

}
j
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ax oy
Thus the necessary and sufficient condition for any point of the curve f(x,y) = Otobea
multiple point are that

S ¥
ax dy
Hence, to find the multiple point of the curve f(x, y) = 0 we shall simultaneously solve
the following equations
e following equatio af o

(x, 0, = =0,—
flx,y}= 2y

Next, differentiating (1) wirt. ', we get
HF)aF3)
dx dx\ dy ax
RS
axlax) aylox)dx  dc\dy Jde 3y ax®

% (o \ [ ] {af] dy|dy ¥ d%y
TR )e [ b |ty e
f

2 2
Smceatmemuluplepomt% = 0 .Therefore, er i - + Bx ;y ji g;y jzf [ J _o
> +2§x§yi g er[ ) =0 - . (2)
¥ L _Pf
d axay ayax
Thisis a quadrauc equation in — ™ Y and the multiple point will be double point if the equation
azf %f ¥

(2) will remain quadratic m% and for the quadratic mg;u is assumed that—=; axay ay2
are not all zero. From the equation (2) it is obvious that the two values of dy/dx will be real and

distinet, coincident, or imaginary according as
B y o
IANEIE]
oxady

axZ ay2
Therefore, the two tangents will be real and distinct, coincident or imaginary according as

r 2
2f1
b oes <8 o > a . axay

>=0r<0.

1
2 2

uu >,=or(0:
iyl |

Hence we obtained that the double point will be node, cusp or conjugate point according as
! 2 2 f 3'2
aa; >or=or < ") 8y2 .

REMARK
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-m]_ATUH_E OF A GUSP AT THE ORIGIN

[ Let (0, 0) be a cusp of the curve. Then there will be two coincident tangents at (0, 0}.
[ Theirefore the curve will be of the form

(ax + by) + terms of degree greater then two = 0 (1)
\ Thus the commeon tangent to the curve (1} at the origin is
! ax + by = 0. -{(2)
" Let us suppose p is perpendicular from any point P(x, y) to the equation (2), then
| o x+by )

Va2 +b* .
. where P(x, y) is any point in the neighbourhood ef (0,0. .
Ii From the equation (3) it is obvious that p is p}oportiona.l to ax + by so let us take
| p = ax + by. (4
* Now eliminating either x or ¥ between (1) and (4), we get the equation involving p
and x. Since p is'small and there are two branches of the curve passes through the origin,
therefore neglecting all those terms having the degree of p greater than two. Thus we obtain

a quadranc in p of the form
| AP +Bp+C=0 ..(5)
where A, B, C are the functions of x only.
2 -
Now solving (5), we get p= _BEy(B” -44C) ‘J(BZAM also pypy = C/A

- where p; and p, are the roots of (5).
Now there arises following cases :

Case 1. If for all numerically small values of x either negative or positive, the values
of p obtained from (5) are imaginary, then the origin will be a conjugate
point.

Case 1. If the values of p are real for all numerically small values of x, then the
origin will be a double cusp.
. Case INIL. If the reality of p depends on the sign of x, then origin will be a single cusp.
' Case IV. Ifp is real for numerically small vatues of x.and if p;p, > 0, then p; and p,
will have same sign. Therefore the origin will be a cusp of second species
because the two perpendiculars p; and p, lie on the same side of the
common tangent. On the other hand if pyp, < 0O,then p; and p, are of
opposite signs. Then the origin will be a cusp of the first species because the
two perpendicular line on the opposite sides of the common tangent.

1] NATURE OF A CUSP AT ANY POINT

In order to find the nature of the cusp at any point (h, k}. We first shift the origin at
(h, k) and then apply above process discussed in § 6.19.

Solved Examp

Example 1. Show that the origin is a node on the curve X+ y3 -3y =0.
Solution . The tangent at the origin are obtained by equating to zero the lowest degree terms
i.e., second degree term in the given equation of the curve.
3wy =00rx=0,y=0.
Thus at the origin there are two real and distinct tangents. Hence (0,0} is a node.
Example 2. Find the double point of the curve (x — 2_). =y(y - 12
Solution. Let fOr,y)=x-22-yy-1°=0 (D

SelfiingtructionallMaterial
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Differentiating (1) partially w.rt. x and y, we get

g_£=2(x~2) -.-(2)

and %:—(y—l)z—zy(y—l). {3
Since the necessafry andasufﬂcient condition for a double points are

320,§=0,=>2(x—2)=0 (4}

~(y-1?-2y(y-1=0. w(5)

Now solving f(x,¥v) = 0, g_f =0 and F = (simultaneously.
X

From (4), we getx = 2 and from (5), we get
(y-D(-y-1+2y)=0
or (y-1)(2y-1)=0ory=landy = 1/3.
.. Possible double points are (2, 1) and (2, 1/3)
But (2, 1/3)} does not satisfy f(x, ¥) = 0. Hence only double point is (2, 1).

Example 3. Examnine the nature of the origin on the following curve yz = > +b° + cxyz.
Selution .

The given curve is f(x, y) =y ~ a®¢* = bxc® — oy’ = 0. (1)

Equating to zero the lowest degree terms in the equtaion of curve (1), we get
yz—azxz =0ory=+tax

Tl;éls we have obtained two real and distinct tangents at (0, 0). Hence (0, 0) is a

node.

Example 4. Find the position and nature of the double points on the cwr'vex.z_)/2 =(a+ y)z(b2 - yz) if

@ b>a (iDb=e (iDb<a

Let  fio,3) =x52 - (a+ Y% -y = 0. 1)
Differentiating (1), partially wirt. %’ and %’ respectively, we get

of 2

= =2 .2

- Xy 2

3
and %szzy—Z(a+y)(b2—y2)+2y(a+y)2. .3)
Again differentiating, we get

2 2
ox? oxdy
2

and L

P 2x2 - 2062 - y2) + 4(a+ y)y + 2a + ¥)* + 4y(a + y)
For double point, we have

d a9
ézo,?é:o, L 2x2 =0 D
2x%y —2(a + y) (% - y2) + 2y(a+ y)* = 0 .05

From 4)wegetx =0,y =0
From (5) and x = 0, we get

, 20a + -G -y +yl@a+y1=0
or 2(a +y)(2yl2 +ay —bz) =0

—a+ J(a2 +8b%)

4

or y=-aandy=




J-'“‘"*z"-*-'w e e s ¥ .
Asymptqges and- Smgular Pmnts N o 3 149
—a++/(a® + 8b2
Thus we obtain (0, )} and {0, a (": * )] and from (5) and y=0, we get
two points.
f : _ f 2 2
1 Hence, {0, —a) and [0, at (i + 8b )] are possible double points. But only
(0, —a) satisfies the equation f(x, y) = 0. Hence, (0, ~a) is only the double point.
aZ
[-—{] = 2Y%)(0,-q) = 2a°
ox 0-a)
2 f J
1‘ [— =40,y =0
. axay (0,-a)
2
[a——sz =[2x% - 206* - y3) + 4y(a+y)
% (0,—a) +2ala + y)2 + 4}/(& + Yo,
= 2(02 _ bZ)
32 V@ 82 32 A .
Then oS ——-é—% =0-2a?[2(a® -b%)) = 4a%(b% ~a?).
oxdy ax’ ay
(2, a2
(i) Ifb > q, then 9°f >afafandthus(0 —a)lsanode
2 2
() 1fb = a, then| 2F | _ 3 2F 2nd thus (0, ) is a cusp.
\axay a2 ay
2 2 82
i (iii) Ifb< a,then ii a f f and thus (0, —a) is a conjugate point.
dxdy 2 gy
Example 5. Find the nature of origin on the curve x* + y3 +22 + 3)/2 = (.
Solution. Let foo,y) = <t +y3 + 22+ 3y2 =0
‘ Then %=4x3+4x,%=3y2+6y
2
0 'g 12x2 ~—f =6y+6
| ox ay
! .22
‘ [ and If =0,
. oxdy
’ 2 2 2
| Lo Lo, f g
| i ox? 8y2 " axdy
! 2
A I
dxdy ax2 ayz ’
Hence, the origin is a conjugate point.
1. Examine the nature of the double points of the curve 206> + y3} -3 + yz) + 12x = 4.

iSelfzInstruc tionaliMater
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2. Find the position and nature of the double points of the curve a“y2 = x*(2x® - 3a%).

3. Find the position and nature of the double points of the curve x* - 2y3 - 3y2 —2+1=0,

TEST YOURSELF
1. Find the equation of the tangents at the origin to the following curves :
(@) & +yH(2a-x) = b by o¥y? =P -
() X+ 3%y + 2 -y* =0 (d)x-+-y = 3axy

2. Examine the nature of the origin on the curve {2x + y) - Gy (2x + y) - 7 = 0
3. Show that the origin is a conjugate point on the curve > +b yz =0+ ¥ 32,
4. Show that the origin is a conjugate point on the curve yz = szy +x4y -

5

. Find the position and nature of double points of the curve y3 =x> + o,

ANSWERS
1. (a)x=0 (b)) ¥y=0,y=0 €} y=0,2x-y=0 () x=0,y=0

A

2. Origin is a single cusp of first species 5. Acuspat (0, 0)

- A definite straight line whose distance from branch of the curve continuously decreases
as we move away from the origin along the branch of the curve and seems to touch the
branch at infinity, provided the distance of this line from origin should: be finite 1nmally,
is called an asymptote of the curve.

= We obtain the asymptotes parallel to x-axis by taking the coefficient of highest power of
x in the equation of the curve equal to zero. o

« We may obtain the asymptotes parallel to y-axis by taking the coefficient of highest
power of y in the equation of the curve equal to zero.

= If the coefficient of highest power of x or y or both, are constant, then no asymptotes
parallel to either x or y or beth axes exists respectively.”

= The asymptotes of an algebraic curve are parallel to the lines which obtained by equating
to zero the linear factors of the highest degree terms of the equation of curve.

= A curve in which there are some terms involving cosine, sine, etc. is called non-algebraic
curve.

= A point P on the curve is said to be the point of inflexion, if the curve in one side of P i is
concave and other side of P is convex with respect to the line CD which does not passes
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through the point P

- A point on the curve is said to be multiple points if through this point more than onel

branches of a curve passes.

- A pomt on the curve is called a double point if through it two branches of the curve
passes

%-v If:three branches of the curve passes through a point, then this point is called triple
pomt

- Iﬁn branches passes through a point on the curve, then this pomt is called a multiple]
pomt of n™ order.

= The point of inflexion and muitiple points are also calied the singular points. Or An|
unusual point on the curve is basically called a singular point.

= A cusp is said to be single if the curve lies entirely on one side of the common tangent.

= A'cusp is said to be double if the curve lies on both sides of the common tangent.,

- Al ‘cusp is said to be of first spec:es if the two branches of the curve- Ile on 0pp051te sides]
of common tangent, .

- A’ cusp is said to be of second species if the two branches of the'¢urve lie on same 51de

- : "

&% Dbjective Evaluation

EILL IN THE BLANKS .
1, Ifsy = mx + ¢ is an asymptote of the curve flx,¥) = 0, then m = and ¢ =

2. The equation ¢,(m) = 0 gives the of the asymptotes.

3. If one or more values of m obtaired from ¢, (m) = 0 are such that ¢ n(m) = 0 and ¢,, ; (), then
the asymptotes ;

4. If the coefficients of highest degree terms of y are constant, then there are no asymptotes

5. 1f the coefficients of highest degree terms of x are not constant, then there will exist the
asymptotes parailel to

. The number of asymptotes of nh degree curve cannot exceed

. The asymptotes parallel to y-axis of the curve yz(x2 -a%) = x are

. The curve yz = 4ax has asymptotes.,

. The n asymptotes of a curve of the_nth degree cut if in points,

w e M,

10. If a is a root of the equation f{8) = 0, then r sin (8 - o) = is an asymptote of }ﬁe
curve 1 F{()}
r

of the common tangent. , . |

TRUE/FALSE
Write ‘T’ for True and ‘F’ for False statement.
1. The line y= mx + c is an asymptote of the curve y = mx +¢ + : + -%+ %+ (T/F)
+2. The polynomial ¢,(m) is obtained by putting y = mand x =min Jtche nxT degree terms of the
curve. (T/F)
3. If_}f = mx + ¢ is an asymptote of the curve f(x, ¥) = O then m = l;_l;n (%] . (T/F)
4. The curve x° - y = a?‘.xy has at most five asymptotes real as well as imaginary. (T/F)
5. The numbers of asymptotes of the eurve of n' degree can exceed n. {T/F)
6. The one asymptote of a curve of the n degree cuts it in (r1 — 1) points. (T/F)
7. The curve x*/a® + yz/b2 = 1 has no real asymptotes. {T/F)
8. The curve y* = 4ax has two real asymptotes. (T/F)
9. The asymptote paraltel to x-axis of the curve xy = ¢ is y= 0. (T/F)

",
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SETEIK|10. If « is a root of the equation f(6) = 0, then r sin(® - a) = f * (&) is an asymptote of the curve

r
MULTIPLE CHOICE QUESTIONS

Choose the most appropriate one.

e ‘ a/m

1. Ify = mx + ¢ is an asymptote of the curve f(x, y) = 0, then lim (y / x) equals :

X<

)
o

{SelfiinctrictionaliMaterialt * |

b

(@ c (®) m (© -m b -
2. if y = mx + ¢ is an asymptote of the curve f(x, y} = 0, then lin} (y —mx) equals :
X,y /x—om
(@) m ® - © ¢ -
3. The n asymptotes of a curve of the n degree cut it in how many points :
{a) 2 {b) n € n-1 () nn-2)
4. For non existence of the asymptotes of the curve for some values of m obtained by ¢,(m} = 0
such that ¢,_; (m) = 0 and ¢ ;{(m} equals :
(a0 (b) 1+ (c) m (d) non-zero
5. The number of asymptotes of a curve of the‘nth degree can not exceed :
(a) n-1 (b n (¢} n~-2 (d} n+1
6. The asymptote of the curvey = mx.+ ¢ + %+ ;B"z'+ e is s
(a) y = nix ) y=mx+c ( y=m @ y=c
7. The curve y2 = 4ax has how many real asymptotes ?
. (a} 1 b) 2 () Zero (d) none of these
8. The asymptotes of the curve r (ee -1 =a (.<:B + 1) are:
(a) rsin® = 2a (b) reos®=2a {c) rsinB=a (d) rcosb=a
9, The number of real asymptotes of the curve y3"= © + 3are:
(@1 . by 0 (© 3 (d) 2
10. For the curve x° + y° = 3axy = 0, ¢3(m) is :
(a) m* +1 ) m+1 © m-1 @ m+1
ANSWERS
FILL [N THE BLANKS
1. ;Eﬂy/x,x_)ljr}‘;._’m(y—m) 2. slopes 3. will not exist
4. parallel to y-axis 5. x-axis 6. n 7. x=1ta 8. No 9. n{n-2)
10. 1/ f()
TRUE/FALSE .
1. T 2. F 3. T 4. T 5 F 6 F 7. T
8. F 9. T 1(!1 F
MULTIPLE CHOICE QUESTIONS
1. (b} 2. (0 3. @ 4. (a) 5. (b) 6. ® - 7. (@@
8. (a) 9. M 10. (d)
BN S
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Differentiability

o Ifntroduction
® Deriuvative of a function
® Continuity and differentiability
® Algebra of derivatives
@ Rolle’s theorem
'® Lagrange’s mean valie theorem
® Cauchy’s mean value theorem
® Summary
® Objective Evaluation

LEARNING OBJECTIVES

After reading this chapter, you should be able to leamn:

® The concepr of left and right hand derivatives

® The continuous and differentiability of a function

® Rolle’s, Lagrange's and Cauchy’s mean value theorems

K88 INTRODUCTION N
If a function f(x) is defined on nbd of a point a and
i fla+h)- f{a)
h—0 h
exist (finitely), then the funcdon f(x) is said to be differentiable ar g and this limit is
called derivative of the function f) ata. ]
In symbols, this derjvative, is denoted by f'(@) and in full read as the derivative of f(x)
at x=a with respect to the variable x. The process of evaluating f*(a) is called differentiation.
Graphically, f (@) means the gradient of the curve y = f(x) at the point (a, f(a)).

Quantitatively f’(a) means the rate of change of the function f(x) at a, with respect to
the variable x. " % '

&3 DERIUVATIVE OF A FUNBTIOI\]

.ZF&10 LEFT HAND DERIVATIVE

The left hand derivative (regfé’ssive derivative) of fat x = g is given by
Lf'(a) = lim _______f(a ~h)-f{a)
- h—0 —~h
and, is denoted by Lf" (q). ”
2] RIGHT HAND: DERIVATIVE 7
| The right hand derivative (progressive derivative) of fatx = ais given by

f[a-t—h)—f(a)

Rf'(a) = lim
5 h—0 h
- The derivative f* (a) exists when Lf'{a) = Rf ().

{FX] DIFFERENTIABILITY IN AN INTERVAL

(i) Afunction f: la, b[— Ris said to be differentiable in ]a, bf iff it is differentiable at
every point of Ja, b], L

Selfiingtruc tional|
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{ii) A function f: [a, b]=> R is said to be differentiable in [a, b] iff Rf (a) and Lf " (b)
exists and f is differentiable at every point of }a, b{.
(iii) Letfbe a function whose domain is an interval L. If I; be the set of all those points x
of I at which fis differentiable i.e., f(x) exists and if I # ¢, we get another function
with domain I;. It is called the first derivative of f. Similarly ond g ...n™" derivative
of f are defined and one denoted by f*, f", ..o f " respectively of course, in order
that f "(x) may be defined, it is necessary (though not sufficient) that f -1 (x) may
be defined for all x in some open interval containing a.

gy i

REMARKS SRR

lim _f_(i)__—i(_éﬂ means the same thing as lim fla+h)- f(a)
x— Xx—a h—0 h

e The derivative of a function at a point and the derivative of a function are two different but
related concepts. The derivative of fat a pointa is a number while the derivative of fis a funetion.
However, very often the term derivative of f is used to denote both number and function and it
is left to the context to distinguish what is intended.

e 1ff(x) is derivable on internal I then £(x) at end points of 7 (if exists) would mean a left or right
hand derivative of f(x) according as it is a right or a left hand end point of I. Similar meaning
holds for higher order derivatives.

%1 CONTINUITY AND DIFFERENTIABILITY

THEOREM 1.(A necessary condition for the existence of a finite derivative).
Continuity is a necessary but not a sufficient condition for the existence of a finite

derivative. (x)- (a)
Proof. Let f be differentiable at a. Then lim I—x——ff— exists and equal to f” ().
x—a (x -a
Now we may write _
f0) - flay="lim M(x -a) {Tf x=a)
x—a (x-q)

Taking limit as x—a, we get

lim [f0)-f(@))= lim {M(x - a)}

x—=a .(x - a)
= lim {M} lim (x - a)
X—=a x—-a X—d
(- limit of the product of two functions is equal to product of their limits)
= f'(a).0=0 ""
so that lim f0)=f(a) = f(x) is continuous at x = 4.
x—a :
Hénce, f is continuous at x = d. Thus continuity is a necessary condition for
differentiability.

REMARKS

e While continuity is a necessary condition for the differentiability, it is not a sufficient condition
as it is clear from the following examples :
(i} Consider the function f(x} defined on R by setting
foO=0 if x=0
F)=x if x=0
fis o_bviouslg continuous as also derivative at every point except possibly at x=0. At x=0, fis
‘continuous but not derivable. _

(i) Consider the function F() such that

lxs-inl , x#0
x

(CalfURgtric tionaliMateria 0 , x=0
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this function is continuous at x=0 but not differentiable at x=0.
(iii} The function f{x)=|x| is a continuous function, but not differentiable at x=0.

f|if (=1 (- Lf"(0)=-1 and

. Contmulty of a function even at every point of R has nothing to do with the differentiabiliry
! of the function at any point.
§

XY ALGEBRA OF DERIVATIVES

Il
THEOREM 1.Let functions f and g be defined on an interval I If fand g are differentiableat  x=
~ ael thenf+gis also differentiable and

(frgY(a)= fla)tg'(a)

Proof. Since, the functions f and g are differentiable at a, therefore
| tim 24X =AD _ A1)
| x—a X—a
{ ana fimm #00 - 8@ _ iy ey ‘

‘ x—a X—a : ) |

(f+8)x)-(f+ (a)

Now, consider lim
X—a X—-a

lim 002 8(x)1-[f(a) + g(a)]
X—a xX—-a
- lim [f(x)—f(a) N g(x)—g(a)]
X+l xXxX—-a X—a
- lim fX) =@ | (. g(x)-g(a)
i x—a X—-a X X-a
! = f(a)* g'(a)

| Hence f + g is differentiable at ¢ and
(f2gY(a)= f'la)tg'(a)

THEOREM 2.Let a function f(x) be differentiable at a point a and ceR, then the function cf is also
differentiable at a and (¢f) (@) = ¢f "(a)

Proof. By the defination of the derivative of a function at x = a, we have

lim f—(xﬂ.a_) = f’(ﬂ)
x—=a X—-a
| Now, consider

| lim (¢f) () = (ef Ya) _ fim c f(xX)-c¢ fla)

! x—a o X-a X—d X—-a o

' - fo L=t}
x—a X —a

@

Hence, ¢f is differentiable at a and (¢f ) {a) = ¢f'(a)

THEOREM 3.Let the functions f and g be defined on an interval I If f and g are differentiable at
' ! ael, then f g is also differentiable and (fg) {a) = f'(a)gla) + f(adg’(a)

. =c¢ lim
i X—aq

Praof. i  Since, fand g are differentiable at a, we have
|
lim Z02 10 _ | ()
x—a X- ' : .-
and lim 80— 8(@) _ (@) (2] '

] X1 X—-a

SelfitigtructionaliMatetia
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Consider lim YRI=UR@ _ 1) fO0g(0) - fladg(a)
x—a x—-a X1 x—-a
- lim Flx)glx) = fla)g(x) + fla)g(x) - fla)gla)

x=a xX—a

x_m[f(x; fla) 200+ f(@). g(x) - g(a)]

= lim [M] lim g(x)+ f(a) lim
X—a Xx—d

x—a X

g(x)—gla)
x-a
= f(a)g(a)+ f(a)g'(a)
Hence, fg is differentiable at a and (fg)’ (@) = f'(a)g(a) + fla)g"(a)

: 1
THEOREM 4 If a function fis differentiable at x==a and f(a) = 0, then the function 7 is differentiable

f{a)
at a and [ ) (a)=-
f [f@T
Proof. Since f is differentiable at a, therefore, it is continuous also at x=a.
Also, since fla)=0
11
: f) fla) _ _[f(x’)—f(a)] 11
Consider 4 x—a o F@ ..(1)
Since f is differentiable at x = g, therefore,
jim J)~ f(@) f (a) = f'(@) 2)
X—=2 X -
Also, fis continuous at x = a, therefore
Pm flx)= fla)=0 v (3)
—q
By applying the theorem on the limits of a product to (1), and using (2) and (3),
we find that
SRS W
it fla) fla)

exist and equal to -
x——>a x—-a [ f(a)]2

THEOREM 5.Let f and g be defined on an interval I If f and g are differentiable at ael, and if
g(@)=0, then the function f/g is also differentiable at a.

Proof. Let F = f/g. Then

F(x)-Flay=(f 7/ £)(x)-(f / g)(@)

_fG  fla) _ 1 _
5 5@ g SLfx)3(@) - fla)g(0)]

g( ) @ )[f( x)gla) - fla)g(a) + fla)g(a) - fla)g(x)]

- lim TF@ gy, 1 -Hf(x)"f(a)} (a)- f(a ){———g(") g(")H

x—a X-—a x—a g(x)g(a) x-a a

or F'(a)= o ) [f'(a)g(a) fla)g’(a)]
_ [1] (@ = L@@~ fa'@
4 [g(a)]

THEOREM 6. Let f and g be functions such that the range of f is contained in the domain of 8. If f

* 1ciSelt tnstructionalMateriall

is differentiable at a and g is differentiable at f(a), then gof is differentiable at a and

1 (g 0 f) =g (fla)).f (a) (This is known as Chain rule).
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Proof. Since, the range of f contained in the domain of g, therefore, gof has the same
g domain as that of £,
!' Now, lety = f(x} and y; = f(a)
Since, fis differentia])lg atn, we have
lim fO)-fla) _ (a)
x—a X—aQa
, or f(x)= fla)=(x-a)[f'(@)+ A(x)] . (1)

Further since g is differentiable at y,, we have

! where A{x)—=0asx - a.
j 8 -g(yg) _

. J’ILHJI’U Y—Xo &)
or g -8lyo) =y~ yp)lg'(yg)+ B(y)] (2
where B(y)—»> 0 asy — yq
Now (g0 f) () - (gof) (@) = g(fx)) - g(f(a)) = g(M)-g(¥p)
=(¥-y0)g'yo)+B(yYN [By (2)]
l =[f(x) - f(@[g"(yo)+ B(¥)]
={x-a)[f(a)+ A Ig (ye)+ B(»],  [By (1]
Thus if x # a, then
800N _ vy iy 4 BILF @)+ ACO] 3
Also f being diffgrenﬁable at a is continuous at a and hence x — a, f(x) — f(a) i.e.,
) Y Yo = B{y) > 0asx > 0and A(x) 5 0 asx > aq.

Now, taking the limit as x — a, we get from (3)
im 8200 - (g0 f}a) = (o) (%)
i X X—-a
) Hence the function is differentiable at ¢ and (go fY’ (@) =g (fla))f (a)
THEOREM 7.(Derivative of the inverse function). If f is differentiable at x = a and is
i one-onie function defined on interval I with f'(a) = 0, then the inverse of the f is

] differentiable at f(a) and its derivative at a is f’; 3" -
: : c
Proof. Let the domain of f be X and range Y.

| If g be the inverse of £, then g is a function with domain Y and range X such that

| f)=yegh) =x
‘ ! Now, let us suppose y = f(x) and y, = f(a). Since, fis differentiable at a, we have

:, lim f~flay _ fa)
‘ ! x—=a x—-a
| or f(x)= fla) = (x - a)[ (@) + A(x)] | (1)
' ( where A(x) -0 as x — a. Further, we have .

g0 -g(yp) = x~aq, [By definition of g}

' H
: ! . 8 -glyg) _ x-a  x-a 1

Y=Yo Y-Yo _.f(x)-f(_a} B Fla)+ A(x) (By (1)]
1t can be easily seen that if y — yg, thenx > a.
In fact, f being differentiable at q, it is also continuous at ¢, which implies that
g = f ! is continuous at fla) = yg and consequently, _
j g(y) s glyprasy o> ygie,x > aasy —~>yf!, so that A(x)— 0 asy — yp.
y=re Y-Yo o vy fl@+Ax)  fi@
: ) 1
or g'(f{a))=——
g f @

s

LY R N 1
or g (yo) =

> iSelfAnstric tiohal MaterialEs
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Proof.

Proof.

e Darboux's theorem shows that derivative do share an important property of continuous
functions. Since the image of an interva} under a continuous function is an interval. Darboux's
theorem essentially says that the result hold even if a function is not ,continuous, provided
of course, it is a derivative. That is, if a function g defined on an interval I is the derivative of
some function £, then g(f)is an interval,

gy g OGS L elaER A s
i : R FL . i . . N
s G T CALCULYS,

"1 THEOREM 8.(Darboux’s Theorem or Intermediate Value Theorem). If f is finitely

differentiable in a closed interval [a, b] and f ‘(a), f(b) are of opposite sign, then.
there exist at least one point ce 14, b[such that f “(c)= 0.

Proof. Let us suppose that f'{a@)> O and f'(b}< 0, then there exist intervals Ja, a + k [ and
16 - h, b, h > 0 such that
f(x) > f(a) ¥x €la,a+ k[ (1)
f(x)> f(b) vx e[b-h,b[ .. (2)
Now, since f is finitely differentiable, then it is continuous in [a, b] and hence it is
bounded on [a, b] and attains its supremurm and infimum at least once in [a, b].
[ A continuous function attains its supremum and infimum at least once in [a, b]].
Thus if M is the supremum of f in {a, b], then there exist¢ € {a, b} such that f{c) =M.
It is clear from (1) and (2) that the upper bound is not attained at the end points a
and b so that cela, b[.
Now we shall prove f ‘{c} = 0
Iff "(c) > O, then there exist an interval Jc, ¢ + hl, k > 0, such that f(x)> f(c) = M
¥ xelc, ¢ + hl, which is not possible, since M is the supremum of the function f(x)
in [a, b). h
Iff'(e}<0 then there exist an interval [c — h, ¢[, h> 0 such that f(}> flc) = M
¥ x & [c - h, c[, which is not possible.
Hence, we conclude that f "(c} =0
REMARK T

wlyipei, -

THEOREM 9 Let f be defined and differentiable on [q, b, and if c be any number between f “(a) and

£(b), then there exist a real number k between a and b such thatf "(k) = c.
Let g be the function defined on [a, b] by setting

g(x) = fx)- ex for all xe[a, b)
Now, g is differentiable on [a, b} and g (@) = f*(a) - ¢, andg'(h)y=f"(b)-¢
since ¢ lies between f “ (a) and f ' (b). Therefore, it follows that g "(a) and g"(b) are
of opposite signs.
Since g is differentiable on [a, b], and since g"(a) g"(b)< 0, therefore there exist a
number k between a and b such that g’ (k) = Oie, f'(k) =c.

THEOREM 10. If f is defined and differentiable on an interval, the range of f * is an interval.

Let the domain of f (and therefore, that of f7) be an interval X and let the range of
£’ be Y. Also let p and g be two distinct points of Y. Then there exist two distinct
points ¢ and b in X such that f*(a) = p and f'(b)'= q.

Assume that a < b.

Since X is an interval and ae X, b < X, therefore [a, b] — X.

Now f is defined and derivable on [ga, b. If r be any real number between p and g,
then by theorem 9, there exists a real number k between a and b such that f' (k) =
r, that is reY. Thus we find that if p and g are in Y, then every number between p
andgqisin¥, and this means that Y is an interval.

AN
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» If Y does not contain at least two distinct elements, then it is a singleton.

e If fis defined and differentiable on [, b] and f(x) # 0 for any xe]a, b then f"(x), retains
the same sign, positive or negative in Ja, b[ i.e., f(x).is either positive or negative for all
values of xe]a, bl.

Example 1. Prove that the function f(x) =| x |+|x ~1] is not differentiable at x = 0 and x = 1.
Solution. Here, we observe that
() jx| =-xand |x-1| = 1=2x
whenx < 0.
(i) x| =xand [x~1] =1-x
when0<x <1,
(ii) [x] =xand [x-1| =x-1 .
when x > 1.
Hence, the given function can be rewritten as

-x+1-x = 1-2x , x<0 -
' fl)={x+1-x =1 , 0sxs1
x+x-1 "= 2x-1 , x>1

Now, firstly we check the differentiability of f(x) at x = 0.
fO+0)- fO) _ . fl)~ F(O)
h

! We have Rf’(O):gim

=0 h—0 h
1-1

= 1' _— =

hoo B °
oy = 1 JO—RY - F(0) .. f(=h)- f(O)
S -
= fim 222D, 20
[ h—0 ~h h—0-h

. Thus Rf’(0) # Lf’(0) Therefore, the given function is not differentiable at x = 0.
! Now, we check the differentiability of f(x) at x =1.

" We have o iim fUrR=f) | [20+h)-1-1
h—0 h Py h
, ! = }1%&%;2 =9
and | Lf’(l}zé%ﬁ%:g_%l;_l:o

Thus Rf’(1) = Lf’(1) . Therefore, the given function is not differentiable at x =1 .

Example 2. Prove that the function f(x) = |x| is continuous at x = 0, but not differentiable at x = 0,

where |x| is the absolute value of x.

Solution.  Firstly, we check the continuity of the function fx)atx =0.

We have FO)<0[=0
= li h) = lim f(h) = lim {h]= limh =0
f(0+0) lim £(0+ k) gl_)n})f(} hl_l}})i Ihgrb
-0) = li —h)= lim f(=h) = lim [-h|= limh =
and  f(0-0=lim f(0~f)= lim f(-h) = lim [-h|= lim h =0

f(0+0) = £(0) = f(0-0)
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Hence, f(x) is continuous at x = (.
Now, we check the differentiability of the function fix)atx = 0.
fR-FO) _ . 1RO,

e o JO+R) = f(O) o
wetme, 170 =i OIS0 i PR <y 2
h—0 ~h h—0 -h
S q-hl=0 . h
= =
o RF'(0) # L (0)

Hence, the function f{x} is not differentiable atx = 0.

Example 3. Let the function f(x} satisfy the condition

(D fOc+y) = fOA fr) vx.y (i) f(x)=1+x.g(x) where iﬂ:} gx)=1

Show that the derivative f’(x) exist and equal to f(x) for all x.
Solution. From condition (i), we have

FOe+8x) = f(x).f(3x)

Then Flx+8) = f(x) = FO)F(8) - f(x)
ax Bx B
= f(x)g{dx)
o 8- f0d _
SE—TO » = al’g0 fx)g(8x) = f(x).1
Fx)= flx)

Example 4. If f(x) be an even function and f(0) exsts, then find the value of f*(0).
Solution.  Since f(x) is an even function so f(-x) = f(x)¥x
f'(0)exist = Rf'(0) = Lf (0} = f'(0)

Now £0) =R = lim TR @ 4 g
h—0 h

- lim £ER-SO [ f=) = f00)

" f( ;11) £(0)
= _lim = IF0) = —F
Am'b = f(0) =-f7(0)

2f(0)=0= f(®=0

]

xtan 1 [l] , for x#0
x
0 , Jor x=0

Example 5. Show that the function f(X) ={ is not differentiable at

x=0.
Solution. Here

RF(0) = hmﬂ_o_t’ﬂ-_f@ - lim S-S
R0

h. h—0 0
a1 -
' ‘ h.tan —-0 ) L1, 4 -
= lim ————=limtan™" == tan ~ee = —
h—0 h ho0 h .2
o fO=R)-FO) .. f=h)- f(0)
LF(o= lim oem——— = = lim —————
and Al S ThS0 -k
—htan™} [—1]
. i . af 1
= lim ———————= = limtan (——J
h—=0 -h h—0 h

AN




Rf’(0} = Lf’(0)
Hence, f(x) is not differentiable at x = 0.

=

Example 6. Test the continuity and differentiability of the following function in — oo < x <

1 if —e<x<0
flx)=41+sinx if 0£x<g.

2
2+(:'c—-:"E if TP
| 2 2

i ,
Solution.  Firstly, we check the continuity and differentiability atx = 0.
" (i) Continuity of f() at x = 0.
fO=1+sin0=1

f(o+0):}El_n}})f(mh):Alﬂjf(h):gﬂ(usmh)ﬂ

0-0)= li -h)=lim f(-h)=lim1=1
f0-0)= lim f(0-h)= lim f(-h) = lim1

= fO+0)= f(0) = f(0-0)
Hence, f(x) is continuous at x = 0.

(i) Differentiability of f(xX) at x = 0.
m f(0+h)—f(0) - lim fin - f(0)

I = l
Fo h—0 h—=0 h
(1 + sin h) {1+5sin0) - lim sinh
f N h—>0 B0 B

and 1F(0) = lim £ R fo i SR = (O

h—=0 —-h h—0 _h

k-0 —h h—0-h h-s0
= RF(0) # LF(0)

Hence, f(x} is not differentiable atx = 0. n
Now, we shall check the continuity and differentiability at x = 3

(iii) Continuity of f(x} at x =g

‘ We have f[g] - 2+(E_g]2 =92
2

= lim(2+h%)=2
h—=0

| i) il

f mfl+cosh]=1+1=2
_)

| e

l Hence, f(x) is continuous at x =

b |

=1

(3] (5 +0) - sl ollmon)-3

161
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Example 7. If f(x)= [x

Solution.

m T
Lf’(%):éi_%f(;h)_f(g] n 1+sin[12£—h}—2

—h h—0 -h
. =l+cosh ., 1-cosh , Zsinz(h/2)
= lim ————— = lim = lim ————
h—0 - o h h—0 h
— i [51nh/2.sinh/2]
k—0| A
. |sinh/2] .. ,
=1 1 h/21=1x0=0
pm| 5752  mgann 21
T ‘R
RF|=|=1f] =
Therefore, f(z) f[z}
= f(x) is differentiable at x =% .

Since, here, we checked the continuity and differentiability at = 0 and Etj .
It is obviously continuous and differentiable at all other points. i

sinl i x=0
x
0 Jif x=0
differentiable everywhere.
We have f(0+0) = lim £(0+#h) = Hm (0+ k)2 sin—
h—0 k30 0+h

then, show that f(x} is continuous and

= lim h? sinl =0
h—0 h

: 1 1
0-0) = lim f(0-h) = lim(0—h)*si = _lim h¥sin= =0
F0=00= i J0=1) = fin(0 =R sing 5 =~ iy

—0

and fly=0
= F(0+0) = f([0)=(0-0)
Hence, the function is continuous at x = 0.

fO+I-f©) _ . )= f0)

R ! 0 = l
Now F(0) hl_r}% i lim h
sinl -0
= lim = lim hsin==0
h-0 : h h—0
and Lf'(0) = lim fIO-R)—~ f(0) _ lim Fl=h) - £(0)
h—0 ~h = oo 5
{"h)z sin (— %) -0 )
= m = lim Asin—=0
h—D -k P
= KO=50

Hence, f(x) is differentiable at x = 0.
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Example 8. Let f(x) = J(x){1+ xsin(l/x)} for x >0, f(0)=0
and FO) = = J(~){1 + xsin(1 / x)} for x <0.

Show that f'(x) exists every where and is finite except at x = 0 where its value is + co.
| Saolstion. We have

h—0 h h—0 h
i (VR + Rsin(1 / B)} -0
= lim -
f hs 0 h
é (1 SN P
_ —IL%[JE'P(JE)SIH(}IJ]— +0=
vor o 1 FO=R = F0) . f(=h)= £(0)
and Lf (0)_;}% - —gl_)ﬂb T
- [-(-h)][u(-h)sinth—o
= lim ' —
h—0 -h
[ 1 1] .
_%E:)[TPI--F hsmg]-— +0=
= RFf (D) =Lf' (0} = S f0) = oo
Now, we have
f’(x)=§}/§+g xsin%—%cosi— forx>0

1 3 1 1 1
‘(X)=——+=J(-x}sin— -~ ——=cos— forx < 0
l f 2% 2 el x J=x) x
Hence, £’ (0) is finite for alla = 0.
Example 9. Show that the function f : R — R defined by

I flx) = x[1+%sinlogx2] if x=0
0 if x=0
Is continuous everywhere but not differentiable at origin.
Solution.  Firstly, we check the continuity of f(x) at x =0. We have

f(O+0)=lim f(0+h) = lim [(0 +h) {1 + 1 sinlog(0+ h)zn
h—0 h—0 3
.= lim [h + [E]sinloghz] =0+ 0x a finite quantity = 0
h—0 3

Similarly, f0O-0)=0
Hence, f is continuous atx = 0.
Now we shall check the differentiability at x = 0. Therefore,

(0+ h){1-+ %sinlog((} + h)2} -0

. . 1, .5
Rff(M=1 = lim |1+ —=sinlogh
f(0) lim - hl_’n}j[ +3sinlog ]
which does not exist, (since sin log k2 oscillate between 1 and 1 ash—0)
Similarly, Lf'(0) = does not exist.

Hence, f(x} is not differentiable at origin.

Example 10. Draw the graph of the function y =|x -1|+|x - 2] in the interval [0, 3] and|

Self:lhctructionaliMateria
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. discuss the continuity and differentiability of the function in rhr.s interval.
Solution. Here, we observe that

y=1-x+2-x=3-2xwhenx <1

=x-1+2-x=1 whenl<x<2

=x-1+x-2=2x-3whenxz2
Hence, the graph consists of the segments :
of the three straight lines y = 3 - 2x, y%
=1 and y = 2x — 3 corresponding to the &
intervals [0, 11, 1, 21, [2, 3] respectively. ?{3
The graph shows that the functon is
continuous throughout the interval and :
differentiable at all points of the interval ;
[0, 3] except possibly atx = 1 and atx = 2. &'

(i) Differentiability of f(x) at x =1.

Here, RF(1) = lim JEER Wy 172 g
o h h—0 h
and LF ()= f(l W) _ gy, 32201
-h h—0 -h
= Rf(1)# Lf ’(1)
= f(x} is not differentiable atx = 2
(ii) Differentiability of f(x)latx =2
RF(2) = f(2+h)—f(2) }ll 202+ hl)l—B—l )
1) = 1 S B- ) _ 1=l g
h h—)O h
= Rf' (2} *Lf 2.
Hence, f(x) is not differentiable atx = 2.
Example 11. Show that the function
1/x -1/x{. .
e’ —e ,
f= x[m]f x*0
0 Jfx=0
is continuous but not differentiable at x = 0.
Salution. (i) Continuity of fix)} atx = 0.
We have
RHL = f(0+0) = lim f(0+ k)= lim f(h)
k>0 h=0 |
1/ _ -1/k ~2/h |
Y e’ —e o 1-e™" |
B ;{l,r,nghLl/h +‘e—1/h]' ,&?}}h[l +e#2/h] B
=0x 1-0_ O0x1=0
1+0
and LHL = f(0-0)= lim f(0—h)= lim f(-h)
h—0 h—0
1/-k _ —1/—h -2/k
o e o e -1
= ,{‘_‘}}fh[ h g1/ h:I ;ﬂ%_h[e—zm N 1]
—ox2 oo
0+1

= AO +0) =£(0-0) = f0).
Hence, f is continuous atx = 0.
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. Differentiability

-

(i} Differentiability of f(x) at x = 0.
Here, we have

RF'0) = Jim fO+ h; =fO) _ ., fn-£(0)

h—0 h
[h el/h _ g1/ o
- lim e/h et i L e o_,
h—0 .h h—’01+‘e_2/h 1+0
and1f'(0) = lim L8~ =FO _ . S - fO)
h—0 —h h=0 —h

-1/k _ 1/h

(~h) e =0 .

: h=0 —h A0 R 11 041 T -

— Rf’(0) = Lf'(0)
Hence, the function f(x) is not differentiable at x=0.

—1/x2

.1
e sin— , when x=0
X

Example 12, Let f(x)= l
0 , when x=10
Show that at every point, f(x) is differentiable and f” is continuous at x = 0.
Solution. (i) Differentiability at x ="0.
' Here, we have

2
e Vb sin—l»-—O sin%
Rf'(0) = lim - = lim
0 h—0 h h—rﬂh-elfhz
.1
. sinl/h sing
l = jim 1 11 | AT 711
- R0
hll+ =+——+ —t——
[ YRR ] h+h+2!h3+"'
._ a finite quantity lying between—1and 1" _

0

I Stmilarly, Lf (0)=0
‘Hence, the function f(x) ig differentiable atx =0 and f(0) =0

(i) Continuity of f*
fio= (%)e‘u"-z sin% —[L]e'l/"z cos(l / x)

X x2

I GRS e

. RY) ’ = E i l— l _]'._-
Now f(0+0)—’£1_%f (0+h]—}£§_)nh(hsmh cosh).hzel/hz

1 i | 25i0QL/ B) _cos(1/ h)]
h—0) - hsevhz hzeunz
RS e s
ETE S e o2tht
_A ﬁr;ite quantity A finite quantity -0

Similarly, f'(0-0) =0
Hence f ' is continuous atx = 0.

(1)
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Example 13. Let f(x)={:i_11 ’ _gsxsgand glx)y= f(| x )+ ] fx)|.

Test the differentiability of g0} in the inteval 12, 2[
Sofution. Here, we have

[x|=-x, when -2<x50
|x|= x, when 0<xz2

l)_{x—l , —2€x50

Therefore, “Y-x-1, O<x<2
1 , 2<x<0
and ' | f(X)|=4-x+1 , O<x<1
x-1 , 1<x<2

—-X , —2<x<0

50 g0 = f({x D+ | f(x) =10 , O<x<l

2x-2 , 1=<x<2

It is obvious that g(x) is differentiable ¥ x & ]- 2, 2[ except possibly atx = 0 and 1.
g(0+h) £(0) < lim g(h)—g(0) _ = lim 0-0_ 0

Atx=0 Rg'(@)=

h-»o h h—0 h h—0 h
, o 80-0-3® . gh)-g@ _y h-0
0 S s s = lim——=-1
and ad ) 0 -h 111—>0 -h " h—0 —h
Thus Rg'(0) = Lg (0
Hence, g(x) is not differentiable atx = 0
h—0 h h—>0 h
, . gl-h)-g) _; 0-0_
Le’(D) = lim &———~—%~ = lim ——=0
g’ hl—)n'lil -h h=0 —

Thus Rg’(1) # Lg’(1) . Therefore g(x) is not differentiable at x = 1.

X

Example 14. Let f(x)=11+¢l/*
0 Jif x=0

Show that fis continuous at x= 0, but f(0) does not exist.

Solution. We have
LHL = f(0-0) = lim f(0-h)= lim f(-h),h>0
h-0 h-—-0

,if x=0

. -h 0
= _— = 0
gl—lﬂ)]_-i-e_l"h 1+0
RHL = f(0+0) = lim f(0+h) ="lim f(h),h>0
h—0 h0
= lim h h:O. 0 =0.0=0
h—01 4!/ 1+00
and  f(0) =0 (given)
Therefore f(0+0)= f(0) = f(0-0)
Hence, f(x) is continuous atx = 0.

h
0
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I k-0 -h }Ho -h
| —h
: i ~0
. . 1iel/h 1 1 1
I =1 l+e =1 = 1
. hl—r;rcl) -h hlEtl)1+e‘1/h 1+ 1+0
; |[ = ‘RF(0) # Lf'(0)
[ Hence, f'(0) does not exist.

Example 15. Show that the function f(x)

= x|x| is differentiable at the origin.

Proof. Here, we have f(O W £O) f- 50
+ _

‘ s |imi 2 A0
. | Bo= h hl—% h
:l ‘ = lim ﬂ-h—!-—_— =limh= 0

| h—0 h k-0 :

. and LF(0) = lim L0 =fO _ . - f(0)

' h—0 -h h-30 -h

} =limﬂl—_—o=limh=0

= Rf'(0) = Lf’(0)

Example 16, Let f(";y ] =L FD G andy. i £(0) exists and equal -1 and f0) = 1,

Hence, f(x) is differentiable at x = 0.

2
find f(3).
Solution. We have
f[x +y] SR+ f(x+ 0] _ f+ £0)
2 2 2 2
f[i] =100+ 1= 2peo+1)
= 2) 2 2
X
= flxy=2f (E) -
, . flx+h)Y = f(x) (2x+2hJ
N — e —————————
om0
—[f(2X)+f(2h)] Ji€3) _
= lim = lim fil-1
h—0 h k30 h
f(0+h) O _ o
h—)O =f10)=-1
[ = f(x)=-x+c

Putting x = 0 in (2), we have ¢ = f(0) =1

(1)

[Using (1)1

[Given]

-(2)

Therefore, f(3)=-3+1=-2
Example 17. Test the continuity and differentiability —= < x < e, of the following function
: ! , If —ee<x<0
f(x)={1+sinx , if O0€x<n/2
2+ (x -1/ 2P , If n/2€x<w

Solution,

We shall test f(x) for continuity and differentiability at x = 0 and /2.

(i) Continuity and differentiability of f(x) at x = 0.
Wehave f(0)=1+s5in0= f(0)=1

SelfilngtructionaliMateria




f0+0)= lim f(0+h)= lirn f(h): 1im(1+sinh)=1

and flo-0)= llm flO-h)= hm f(-h)= llm 1=1
Since f0)= f(0+ 0)= f(0- 0} F(x) is continuous at x = 0,
Now RF(0) = f(0+ - f0) _ - lim flh) - f(Q)
0 h h—0- h
- Im (1 +sinh) - (1 +sin®) - lim smh -1
ho0 h A0 h
, . flo-m-f0)y .. f=h)-f(0)
= S = AN gy
and L0y = lim =y oo —h
= liml_ﬂ”’iﬂ: 1im_°_:0
h—=0 —h h—0—-h

Hence, Rf’(0) = Lf'(0), f(x) is not differentiable at x = 0.
(ii) Continuity and differentiability of f(x} at x = n/2.
Wehave f(rR/2)=2+(n/2-n/2=2
fln/2+0)= }Eiirhf(n/zm) = ii_r)r})[2+{(n/2+h)—n/2}2]

= lim(2+h?) =2
h—0

and f(n/2-0)= lim f’(n'/z-h) = lim[1+sin(x /2~ 1)) -
—hm(1+cosh) 1+1=2

Hence, f(n/2)= f(rc /2 0) = f (n /2+0), f (x} is continuous at x = n/2
Now Rf(r/2)= f(n/2+h) fth/2)

h
o 2R/ 2+R- n/2%]-[2+(h/2-1/2)7°]
h—0 h
2_..
= limz—Lz—: limh=0
h—0 h—0
and fi(r/2) = f(ﬂ/2 Ry~ f(n/2) liml+su‘1{7t/2—h)—2
0 -h h=0 —h
. =l+cosh .. 2sinh /2
=lim —— = lim———
o =k h—0 h

h—0
Hence Rf'(0) = Lf(0), f(x) is differentiable at x = n/2.
Example 18.Let flx)= Jx{1+xsinl/x} forx=0
f(0y=0and f(x)=—(-x){1+xsin(1/x}} for x <0

Show that f* (x) exists every where and is finite at x = 0 where its value is +.
Solution. We have

= lim [SinTU;;ﬂ.sin(h / 2)] =1x0=0

Jh{1+hsinl/h}-0

f O+h)-f(0) _ ..
R0y = i h g B
= llm[l/JHJrJHsin(l/h)]:Wro: -
0 ~h h—>0 -h
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1! = lim —YCERO +(R)sin(-1/h)]-0
' h—0 _h

= gir%[u\/hﬁsinl/.h]: o 0 = oo
—
Hence, Rf(M=Lf'(0) =00 .. f(O) =00

1 1 1
We have fx)= J;-i-z\/_sm;—:/—_;cos; forx>0
i 11 1
i () = (- x)sm cos— forx >0
T SR =

Hence, f'(a) is finite for all @ = 0.
Example 19. Show that the function f:R — R defined by
fOx)=x[1+(1/3) sinlogx*],x # 0 and f(0)=0

is everywhere continuous but has no differential coefficient at the origin.
Proaf. Obviously the function f(x) is continuous at every point of R except possible at x = 0.
Therefore, we have to check the continuity at x = 0. Given f(0)= 0
Now. f(O+0) = im(0+ 1) = im[(0+R)1{1 +1/ 3sinlog(0 + R)*}

’ h—0 -0

|

= fEinrb{m(h/:J,)sinloghz]= 0+ 0 x a finite quantity = 0.
_}

Similarly, we can show that  f(0-0)=0.

I Hence, fis continuous at x = 0
2
Now RF(O)= 0((}l+h){1+(l/'3.}!5}.11:11log(i.’.)+h) }-0
= ’{in::){l +1/ 3sinlogh?} = which does not exist
—_
(- sinlog h? oscillates between ~1 and 1 as h— 0)
0-—h){1+1/ 3sinlog(0-h)*} -0
and LF'(0) = m O~ {1+1/3sinlog(0-h)7} -
0 -h
= %mb {1+1/3sinlogh?} = which does not exist as above.
_’

Hence, f has no differential coefficient atx = 0.

Example 20. Let f(x) = ¢~/ x! .sinl/ x when x # 0 and f(0)=0. Show that at every point, f(x)
has a differential coefficient and this is continuous at x = 0.

Soluiinn. Differentiability at x = 0

/e sinl/h-0 _ fig SN/ R

II RF'(0) = lim e’
' " h0

h h—0 hel/hz
L - lim sinl/h - lim- sinl/h
? T o0 11 Thso, 1. 11
—-+— e+ 4
h[1+h2+21h4+ ] n T2
i

_ afinite quantity lying between —1 and +1 _

=]

SimilarlyLf ' (0)=0 .
Since Rf (0} = Lf '(0)=0. Hence, the function f(x) is differentiable at x = 0 and ‘
f©=0.

If x is any point other than zero, then

Self:instrictionaliMaterial;
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=2/ X3 ]e—'llxz sin{1/ x)—(1 /7 x* )f_,—l/.'ar;1 cos(1 / x)
={(2/ x)sin(1 / x)—cos(1/ x)}1 / x$Q /el'/xz)

—~- Now f(0+0)=lim f(0+h) = lim (Esinl—cosl).
h—0 h—=0 «

(1)

h%e ?
. | 2sinl1/h cosl/h]
= lim| — — = —
o0l p3l/ht p2,1/k
=}li“}j Zi.lnl/lh . closl/.';
—0[ .3 2
P14+ —+—+... R 1+—=+—+...
i ( r?  21p* J [ w2 2m? )

_some finite quantity  some finite quantity _ o
Similarly  f'(0-0)=0 P
Hence, f’ (x) is continuous atx = 0.

Example 21. If f is differentiable at a point c then show that |f] is also dt_ﬂferennable at ¢ provided
fle)=0
Since f is differentiable atc = f is continuous at ¢.
If f(c) = O then either f(¢) >0 or f(c} < 0.
If f(c) >0 then there exists §; >0 such that f(x) >0 Vxelc- 5y, ¢+§[
If f(c) <0 then there exists §; >0 such that f{x) <0 Vxe]c -8, c+3;1.
Therefore, we have

fO) > 0 Vxele—8y,c48[ »

fF(x) < 0¥x €lc —8,,¢+ 6,1

flx) 5 if xek-8,c+d
= 1= { fx) 5 i x€l—Bg,c+8y
Now since fis given to be differentiable atx = c.
Hence, from above |f] is alsodifferentiable at x=c.
REMARK -

¢ The above result does not hold if f(c) = 0. »

5 OTUDENT ACTIVITY

Sotution.

-1 . —2=x20 . e
1. let f(x)= {x 1 x<2’ Test the differentiability of f(x).
x-1
——— ,wh #1
2. Find £ (1) if fx}={2x2~7x+5 when x4
-1/3 ,when x=1




[T T W e e e e e e e "‘“‘”“‘“'*’-‘:‘W'“""m’“’
{Differentiability ", = _ s - _ 1 171
TAFLESET S T e el SE m . . c " e — - o - fi

3. Investigate the following function from the point of view of its differentiability. Does the
differential coefficient of the function exist at x= 0 and x=17?

I -x , if x<0
' fly={x? , if 0<x<1
X ox41 , If x>1

TEST YOURSELF

|.'
1./Determine the set of all points where the function “f(x) = : T | is differentiable.
: +|x

2, [IShow that f(x) = |x- 1|, @ <x <2 is not differentiable at x = 1.

3.1 Show that fo=17% when x<0 is not differentiable at x=0.
' x , whenx=z0 r

2+x, if x20
2-x, tf xZ0

. Show that the function f(x)=|x-1 | +2 | x- 2 | +3| x - 3] is not differentiable at the point 1,2
and 3. e

6. Show that the function f(x)= {:2 x,0 f 1x <1 is nor differentiable at x = 1.
X , X

7. The foliowing. limits are derivatives of certain functions at a certain point. Determine these

‘functions and pémts
Ja +h) ~Ja

.

-;Show that the function f(x)= { is not differentiable at x = Q.

(1) tim logx—-logz

ii lim
x=2 x—-2 (&) =0

- Let f(x)=x?sin(x"*3) except when x =0 and f(0) = 0. Prove that f(x) has zero as a derivative
‘at x=0,

9. -Discuss the existence of f'(x) atx = 0, 1, 2, where f(x) is defined as fotlows: ,
1+x for x<0
x for 0<x<l1
i flxy= 2-x for 1£xx<2
| " 3x-x* for x>2
| — ANSWERS
| I” % leferentlable in ]— ®, 0 [ 7. () flix) = log x, point is x=2
(11)1 f(x} \/_ pomt isa=2 9. Not differentiable at x=0, 1, 2

Y ROLLE'S THEOREM
I. If a function f defined on [a,b] is such that it is
(@) continuous in [a,b], (i) differentiable in 1a,b[.  (fii) fla)y=£(b), b
then there exists at least one viaue of x, say ¢, (a<c<b) such that f*(c)=0
M‘Since, the function f(x) is continuous on {a, b]
Iil = fl(x) is hounded [ Every continuous funetion is bounded.]
- fGo) attains its bounds ~ * [~ A ﬁ-mction which is continuous on a closed
bounded interval [q, b], then 1t attains its bound on [a, b].]
!' Let M and m are the supremum and infimum of f(x) respecnvely

Now there are two possibilities
!
|
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(i) If M=m, then obviously f(x) is a constant function, and therefore its derivative is
zero, i.e., f ‘(x)=0Vxe€]la, bl.

(ii) If M # m, then at least one of the numbers M and m must be different from the
equal values f(a) and f(b).
Let us assume M=f(a}.
Now, since, every continuous function on a closed interval attains its supremum,
therefore, there exists a real number ¢ in [a,b] such that f{c)=M. Also since
fla)=M=f(b).Therefore c#2a and c#b, this implies that ce]a,bl.
Now, f(c) is the supremum of f on [a, b]
f(0) <f(©) Vxela, b] [By the definition of supremum] ...(1}
In particular, fe-h) = flc), h>0.

= fle-h-fle) ., 2

Since f’ (x) exists at each point of ]a, b[, and hence, f”(c) exists.
Therefore, from (2)

f©)=0 (3
Similarly, from (1)

fle+h) s fle)  h>0.
Then by the same arguments

Rf ()} =0. (@)
Since f(x) is differentiable in Ja, b[ = f"(c) exist
= Lf' (©)=f"(c)=Rf"(c}. .(8)

Now from (3), (4) and (5) f {c)=0.

Similarly we can consider the case M=f(a}=m.
REMARKS N e
e Converse of Rolle's theorem is not true i.e., f* (X) may vanish at a point ¢  ]a; b[ without f{x)

satisfying the three conditions of Rolle's theorem.
e There may be more than one point like ¢ at which f* (<) vanishes but Rolle’s theorem ensures

the existance of at feast one such c.
e Rolle's theorem will not hold good if
(a) f(x) is discontinuous at some point in the interval [a, b]
(b) f'(x) does not exist at some point in the interval la, b[
(o) fla) = f(b).
¢ The hypothesis of Rolle’s theorem cannot be weakened. i
For example, if f(x})=1-|x|,~1=<x=<1, then f(-1)=f(1}=0 and f is continuous on [-1,1].
Also if f'(x) exist ¥ x € ]-1, 1[ except at x=0. Then, f satisfies all the condition of Rolle’s
theorem except that f is not differentiable at x=0. For this £, there is no ¢ in ]-1,1[ for which

Fiey=0.
(XXl GEOMETRICAL INTERPRETATION OF ROLLE’'S THEOREM
Y :

N -

Geometrically, Rolle’s theorem means that if the curve
y=f(x) is continuous from x=a to x=b, has a definite ‘
tangent at each point of la,b[ and the ordinates at the PRl {
extremities are equal, then there exists at least one point o ' 1
between a and b at which the tangent is parallel to x-axis.

0 a b X

. ! Fg. 2 .
ALGEBRAIC INTERPRETATION OF ROLLE'S THEOREM

Algebraically, Rolle’s theorem means that if f{x) is a polynomial function in x and x=a
_ and x=b are two roots of the equation f(x)=0, then, there is at least one root of the equation
LRI U T NEMALELRRZ) £ (x) =0 which lies between a and b.
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llAGH_ANGE S MEAN VALUE THEOREM
} Let f be a function defined on {a, b] such that
|

(i) fiscontinuous on [a, b]. (ii) fis differentiable on la, b[.

Then, there exists a real number ce)a,b[ such that ———— f(b ) ( ) = f'(e)

Proo? Let us defifie a funcrxon F(x) such that
|I Fe)=f(x)+Ax ¥ x € [a,b] (1)

iwhere A is a constant to be sfﬁ?ﬁBly chosgn such that F(a)=F{b).
Ik | Now

{i) Since, f is contnuous on [a,b] and Ax is continuous on [a,b} therefore, F is
continuous on [a,b] [~ sum of two continuous functions is again continuous. ]
(n) Similarly F is differentiable on (a, b)

! f{b
| (i) F@)=F(b) = -A =% ()

Hence, we find that F satisfy all the conditions of Rolle’s Theorem on [a,b]
and consequently, there exists a real number ce]a,b[ such that F ‘() =0, this gives

! ' FHe)+A=0
| = -A=f"(c). ..(3} :
' Now, from {2) and (3), we have =~ ' ¢

3 1016

REMARKS

. If we take b=g+h and c can be written as a+0h, where 8 is some real mumber such that
0< 8<1. Lagrange's thecrem then read as follows :
"Tet f be defined and continuous on [a, a+h] and differentiable on la, a+h[, then for some

real number 8(0<0<1)
! - h ’
. The hypothesis of the Lagrange’s mean value theorem can not be weakened, as it is clear from _ . v
the following examples : _ *';f

“Let f be the function defined on [-1,2] by setting f(x)=|x|, ¥xe[-1,2].

Here, f is continuous on [-1,2] and differentiable at all peints of 1-1, 2[ except at x=0 (so
: that second condition is wola:ed)

-1 if x €]-1,0[ ' | t
Now fog= { 1 if x €]0,2[ i '
Also %ﬂ # f{x) for an;rx in ]-1, 2{. i:;

o The result f(b)-f(a) = f(b-a)f " {c) is also known as the formula for finite increment.

I

| e Lagrange's mean value theorem is'known as-first mean value theorem.

|

. e For fla)=f(b), the Lagrange’s mean value theorem yields Rolle’s theorem.

XX GEOMETRICAL INTERPRETATION OF LAGRANGE‘S MEAN VALUE THEOREM.

If the curve y=f(x) is continuous from x=a and x=b t
and has a tangent at each point on the curve between x=a §
. and x=b, then, geometrically, the first mean value theorem !
| means that there is at least one point between x=a and
x=b on the curve where the tangent to the curve parallel
to the chord joining the points (a, f(a)) and (b, f(b)).

Let ACB be the graph of the function y= f(x) then the 0|
co-ordinate of the points A and B are given by (g, f(a)) and’

(b, f(b)) respectively. If the chord AB makes an angle 8 with _ s
the x-axis, then { e!féln'structmnahMaerla ¢
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tand = f—@gﬂ = f(c),wherea <c < b.
-a

(¥, DEDUCTION FROM THE FIRST Mﬁﬁl/\l VALUE THEOREM
THEOREM 1. If a function f(x) satisfies the coﬁ,ditions of mean value theorem then
D f)=0vVxe 1€ B[ = fis constant on [a, b],
(i) f'(3=0 vxela,b[ = fis strictly increasing on [a,b],
and (iii} f'()<0 ¥xela,b[ = fis strictly decreasing on [a,b].
Proof. (i) Letxy,xp (where x;>x;) be any two distnict points of [a,b], then by Lagrange’s
mean value theorem,

M:f(c)qulﬁcqxz (1)
X2 —X]
= flxgd=flxy).
= function keeps the same value. Therefore f(x) is constant on [a,b].
(if) From (1), we have
f(x2) - flx)

= f'{c}for some ¢ € ]xy, X3[

Xy —Xg
But fl=0 [f(x)>0Vxelq,bl]
= SfOea)x1)>0.
= * Flcp) =fley).
Thus xzb-x1=>f(x2) >f(x1) Vxl,'fze[ﬂ,b]

Hence, f is strictly increasing on [a,b].
(iii) Same as (ii).

REMARK -

[EE———LU

e For a strictly increasing function f, the derivative f'(x) need not be strictly positive. For
example, consider f(x) =x3, x € 1-1, 1[. Here, f(x} is strictly increasing but f '(x)=3x2, which
is zero at x=0 e ]-1, 1[.

Example 1. Determine whether f(x)= l,-l <x<0 is strictly increasing , decreasing or neither of
these. ' X
Solution . Given that fO)= l, = foo=- iz
X x

For-1<x<0  f(x)=-—5 <O0.
X
So f(x) is decreasing in -1 < x < 0.

&3 CAUCHY'S MEAN VALUE THEQREM
Let f and g be two functions defined on [a,b] such that

(i) fand g are continuous on [a, b],
(ii) fand g are differentiable o 1a, b[,
and(iit) g () #0 for any point of 1a, bl. ~
Then, there exists a real number ¢ € Ja, b[ such that
f{b)- (@) _ f(e)
g(b}-gla) &'(c)

i Proof. Let us define a function
FO)=f0)+Ag(x) (D
where A is a constant, to be suitably chosen such that
F(a)=F() (2}

Now, the function F is the sum of two continuous and differentiable functions. Therefore
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i (i) F is continuous on [a,b],
(ii) F is differentiable on Ja,b[,
jand (iif) F(@)=F(®).
+ Then, by Rolle’s theorem, there must exists a real number ¢ between a and b such that

] FO=0
: Here, F'()=f"(x)+Ag’ (x)
“ F' (=0 = f'()+Ag'()=0
i
:, = g’(c] ..(3)
Now Fla) =F®}) = fa)+Ag(a)=f(b) + Ag(b)
_fb)-£(a)
[ =lf A= 2()=¢(a) b)-sla) (4)
+ From (3) and (4), we have

; f(b)-fla) _ f(e)

,' g(b)-g(a) &)
REMARKS e A e R R
o If we put b=a+h, then ¢ can be written as a+ 0h, where 8eR such that 0 < § < 1, then

Cauchy'’s mean value theorem can be restated as

"If fand g are continutous on [a, a+h] and are differentiable on la, a+h[and g"{x)=0 for any
x e:]a, a+h[ then, 3a 6cR:0 < 6 < 1 such that

fla+h)- fla) _ f{a+6h)
gla+h)-g(a) g'(a+6h)

¢ If we take g{a)=g(b), then the function g would satisfy all the conditions of Rolle's theorem
and, consequently for some x in Ja,b[, we would have g (x)=0. In view of this we take

gla)=g(d).

o Insome cases, the Lagrange's mean value theorem is a particular case of Cauchy's mean value
theorem (e.g., take g(x)=k).

¢ Cauchy's mean value theorem cannot be deduced by applying Lagrange's mean value theorem
to two functions f and g seperately and then dividing. It can be easily seen that the desired
result can not be obtained in this manner. In this way, we get

F(b)e£(a) _ #er)
| 2b)-5(e) ~ e
where a < ¢; < b, and a < ¢; < b: But, it is not necessary that ¢, and c, are equal.
Hence, Cauchy’s means value theorem is not directly deducable from the first one.

¢ The conditions in the theorem are sufficient one. The conclusion may still hold even when the
function involved de not satisfy the condition on [a,b]

(8] GEOMETRICAL INTERPRETATION OF CAUCHY’S MEAN VALUE THEOREM

(1).Under suitable conditions, Cauchy’s mean value theorem geometrically means that
there is an ordinate x=¢ between x=a and x=b, such that the tangents at the points where

x=c cut the graphs of the function f(x} and % g(x)are mutually parallel.
gle)—gla
(2) The ratio of the mean rates of increase of two functions in an interval is equal to the
ratio of the actual rates of increase of the functions at some point within the interval.

olved Examples

Example 1. Discuss the applicability of Rolle’s theorem in the internal [-1,1] to the function

fO=x|.

Solution. Here, we have fG)=|x|
= f(-1p=1 - -
and f(1)=1} ) =f-1)

Now; the function f{x} is continuous throughout the closed interval [-1, 1] but f(x)

j
!
i
1
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is not differentiable at x=0 €]-1,1{. Hence, Rolle’s theorem is not satisfied (due to
the second condition).

Example 2. Verify Rolle’s theorem the function f(x)= **4x on [-2, 2].

Solution. The functionf(x) =x"—4x is a polynomial and so it is continuous and differentiable at
all xeR. In particular it is continuous in the closed ifiterval {-2,2] and differentiable
in the open interval 1-2,2[. Also f(-2)=0=£(2).

Thus, f{x) satisfies all the three conditions of Rolle’s theorem in [-2,2]. Therefore,
there must exist at least one real number ¢ in the open interval 1-2,2[ for which

f00=0.
Also = xX—4x
N Now f (=0 gives 3?—4=0 orx= i% =#1.55.

Both these values lie in the open interval 1-2, 2[ and thus the conclusion of Rolle’s
theorem is verified.
Example 3. Discuss the applicability of Rolle’s thearem to the function

2
fOO=log| = +ab Jin the interval [a, b]
(a+b)x
Solution. Here, we have - )
a“+ab
f(ﬂ)—— 103 m = lOgl =0
) [ b2 +ab ]
and fib)=log [+ =logl=0
Also, it can be easily seen that f(_x) is continuous on [a,b] and differentiable on ]
) a,bl.
{ Thus all the three conditions of Rolle’s theorem are satisfied. Hence f* (x)}=0 for at
least one value of x in Ja, b[. 1
Now F)=0=— -—=0
+ab X
= 2x2—(x§+ab) =0 .
= *=ab orx=ab .
Obviously Jab elab| [being the geometric mean of a and b)

Hence, the Rolle’s theorem is verified.
Example 4. Verify Rolle’s theorem for-the function f(x) =2 +x°—4x-2.
Solution . Since, f(x) is a rational integral function of x, therefore it is continuous and
differentiable for all real values of x.
Hence, the first two conditions of Rolle’s theorem are satisfied in any interval.
Hence, f()=0 gives 2x +x2—4x—2 =0

ie, x=£2,-> :
1 |

= f(ﬁ)=f[‘~’5.]=f(‘5]_=°
Now take the interval [ V2,42 ] then, all the conditions of Rolle’s theorem are
sansﬁed" in this interval. Then, 3 at least one value of ¢ in ]~ ¥2; J— 2[,such that
£©=0 é

° P F =0 = 6x2+4x—4—0 ’ y

5 = =-1,2/3. :
ST F Since, both the points -1 and 2/3 hes in the open interval 1- V2,321, Hence

Rolle’s theorem is verified.
elfilnstructionaliMater
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Exainple 5. Verify Rolle’s theorem for f(x) =x(x+3)e""’ 2in (-3, 0.
Solution . Here, we have

FO) =x(e+3)e /2
FO=(2x+3)e /24 (x +3x) ~x/2 (_E)

= e'X/2[2x+3— %(xz + Bx)] = —%[xz —-x- 6]e"‘/2

= F (0 exist for every value of x-in the interval [-3, 0]. Hence, f(x} is
i differentiable and continuous in the interval [-3, 0]. Also, we have

A3 =f0)=0
i = All the three conditions of Rolle’s theorem are satisfied. Se
o Fe=0= L, gz

= Px6=0 = x=3,-2.
; Since, the values x = -2 lies in the open interval ]-3, Of, the Rolle’s theorem is
:_ " verified.
Example 6, Show that there is no real number p for which the equation x3—3x+p=0_, has two
’|' distinct roots in 10,1[.
Solution. Let, if possible, there are two distinct roots a and b of the given equation in )0, 1[,
' suchthat0 <a < b < 1.

Now, let fo) = x3—3x+p
Obviously, f(x) is continuous and differentiable for all values of x (being a
polynomial)

Also, we have fla) = f(b) =
= f satisfies all the conditions of Rolle’s theorem in [a,b] hence, 3 a point cela,b{
such that f'(¢)=0.
Now Fl)=0 = =3 =0
= x=+1
which is a contradiction (re<c<basO<a<b<l)
= our assumption is wrong. Hence, there cannot be two distinct roots of f{x) = 0
1 in ]0, 1[ for any value of p.
Example 7. Vertfy the Rolle’s theorem for the function f(x) =x? in [-1, 1).
Sofutien . Here, it can be easily seen that the function f(x) =x* is continuous as well as
differentiable on R,
=  f(x}is continuous and differentiable in [-1 1]
Also, we have f=f-1D=1.
Thu/'.s, fx) satisfies all the conditions of Rolle's theorem in [-1,1].
= 3 at least one number, say ¢, in }-1,1[ such that f ‘(c)=0.

|
| |
I
]
]

—

Now fe) =
=0 => x=10.
- Since, the root x = 0 lies in the interval ]-1, 1[. Hence, the Rolle's theorem is
; satisfied,

! Example 8. Verify Rolle’s theorem for the function f(x}= 3P-3x+2 on the interval 1,2].
i Solution . Here, it can be eastly seen that f(x) = **~3x+2 is continuous as well as differentiable

on R (being a polynomial})
=  f(x) is continuous in [1, 2] and differentiable in ]1, 2.

Also, we have )y =f2y=0. _
Thus, f(x) satisfies all the conditions of Rolle’ theorem in[1, 2]
= 3 at least one number, say ¢, in J1, 2[ such that f'(c) = 0. SelfitpstructionaliMateria
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Now, F0) = 2x-3
ff=0 =  x=23/2

Since, the root x = 3/2 lies in the interval (1, 2). Hence, Rolle’s theorem is verified.

Example 9. If a+b+c = 0, then show that the quadratic equation 3ax*+2bx+c = 0 has at least

one root in 10, 1[.

Solution . Let us define a function f(x) such that f(x} = aC+bxP+oc+d.

Here we have fly =dand f(1) = a+b+c+d =d (- atb+c=0)
Obviously, f(x) is continuous and differentiable in ]0, 1[ (being a polynomial).
Thus, fx) satisfies all the three conditions of Rolle’s theorem in [0, 1]. Hence, there
is at least one value of x in the open interval ]JO, 1[ where f'(x) = 0

ie, 3w +2bx+c = 0 has at least one root in 10, 11.

Example 10. Discuss the applicability of Rolle’s Theorem to the function f(x) =x*in (-1,1)

Solution.  We have Ffo=x3
- Fix )_2 -1/3
. hmof{xJ-hm 20+h13 = oo
- 2/3

Now, Rf’(0)=§i_r)no{w}=gi_%1h h‘l}“m

and SN 1 ) 1 ) W () el B
110)= g OO
Lf (0)=Rf"(0).

.. f(0) does not exist showing that f” (x) does not exist in the open interval (-1, 1}.
Hence, Rolle’s Theorem is not applicable although (-1} = f(1) = 1 and f(x) is
continuous in the closed interval (-=1,1).

2
Example 11. Discuss the applicability of Rolle’s theorem to the function f(x)= {x +1,when 0sx <1

3-x ,whenl<x<2

Solution . Here f(0)=02+1 and f(2)=3-2=1.
We shall show that f{x) is continuous for all x in the range (0,2)
Also f)=1%+1=2
in, 1+0=lim3-=l' 3-(1+h)|,when h—0
Again f(1+0) 1+0( x) x_l)lil‘:-h[ (1+h)], when h—
=1 2-h)=2
hi“o( )
and f(1—0)= lim (x2+1)= lim [(l—h]2+1],when h—0
-0 X— 1—h)

= lim (2 2h+h2)
h—=0

Hence, f(1-0}=f(1)=f(1+0). and so the function f(x) is continuous at x=1 and the

continuous in the whole interval (0,2).
, when 0€£x <l

Again, fx)y= —1 , whenl<x<2
foo is dlfferenuable in the interval (0,2) except atx=1,

Now RF (1) = lim femy-£1) {3-(1+n)}-2
02—h—g h—0 h
B }}E»no h ;}ina(_l) =1
) SNIPRLLE YU i
An FO= ™ A%

N
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Thus Rf"(1)=Lf’(1) and so f'(1) does not exist,
Hence, the function f(x) is not differentiable in the entire range (0, 2) and therefore
Rolle’s theorem is not applicable to the given function fx) in (0, 2).
Example’ 12 Verify Rolle’s theorem for the function f(x)= 6P +11x-6
Sclution® Here, we have foo = 3641 1x-6, if f(x)=0. Then x°~6x%+1 1x—6=0

T

I
|
i
|
|
|

= 0e-1) (x-2) (x=3)=0 x=1,23,
= A =0 =f(2) = f(3)
Also FO0 = %-12x+11

Now 87 r= iy L1

h -
[(x'+h]3—6(x+h)2+11(x+h)—6]—[x3~6x2+11x—6]
h—-TO * « h
{(x+h)3—x3}-6{(::+h)2—x2}+11{(x+h)—x}
= i _
hos0 R
3_ 3 {(x-bh)z—xz} _
R TCAL et APy Lol PPN (23
h—0 h h—0 o h=0 R
=3x%-12x+11
—h)-
Similarly  If () = lim 252125 ()
h—0 —h
i glmo (x h)}1 x —GhUIrB (x th x +11hlim0 (x hh) x
— - —3 - — -
=3x% -12x+11

Since Lf'(x}=Rf" (x), therefore f’ (x) exists for all values of x in [1,3].
Also f(x) is continuous. Hence, all conditions of Rolle’s Theorem are satisfied, and
so f'(x) =0 for at least one value of x in [1, 3].
From (1), equating f"(x)=0 where 3x2-12x+11—0, we get
x=2: 82
x=2.577,1.423.

Both these above values lie in [1, 3].
Example 13. Verify Rolle’s Theorem for the function f()= 10x-x".
Solution . Here f=0=> 10x*=0 = x(10-x)=0
| = x=0,10.
|, Now, f(0)=0, f(10)=0 = A0)=0=f(10).

Also, F =102, (1)

| rey 1 FXHR)= F{x)
| . Now Rf'60 = lim ===

0[10(x+h) (x +h}) ] (10x—x2)
= lim
h—0 h
(10x+10h—x2—2xh—h2)—{10x—x2J
= lim
h—0 h

_ _ 2
= lim M: lim (10—2x—h)= 10-2x
h—0 h h—0 u

i
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Similarly, Lf () = lim
: h—=0 -h h—=0 -h
2
= ]_im M = 10 — 2x
h—0 -h

Thus Lf (x)= Rf’ (x). Therefore f* (x) exists for all values of x in [0, 10]. Also f{x) is
continuous for all values of x in [0,10].
Now, since every differentiable function is continuous. Hence, all the conditions of
Rolle’s Theorem are satisfied.

£’ (x)=0 for at least one value of x in [0,10].

From (1), equating f (3=0 = 2¢=10=  x =5 which liesin [0, 10].
Example 14. Find ' of the mean value theorem, if f(x) =x(1)(x-2);a=0,b=1/2
Salution. Here, we have f(a)}=f(0)=0

= £(3)-

2
Now fx)= x3—-3x2+2x
' FO=3C-6x+2 =  f()=3"6c+2
Purtmg all these values in the Lagrange’s mean valﬂEt.heorem
%g(_) - (¢ la<c<b)

3 V2

we get 4:352_6”2 orc—li—ﬁ—-

Hence ¢= 1= gfz_l lies in the open interval 10, % {  whichis the required value.

)54

Example 15. Iff(x) =logx, find all numbers strictly between e?ande’ such that f ()= 5
fuln ity 8 -

Selution . Obviously f(x)=log x is continuous in [e?, ¢>] and d]fferennable in ]e el
Then by Lagrange’s mean value theorem. There exist cele, e 3, such that

)4

fFO=—Fm a2 = 52

32

O ]

c= (e — )
There exist only one value r:*(e <%} in ]e es[
Example 16. Show that any chord of the parabola y—sz +Bx+C is parallel to the tangent at the
point whose abscissa is same as that of the middle point of the chord.
Solution. Let a and b (where a<b) be the abscissae of the ends ef the chord and let
{0 =A¥*+Bx+C. Obviously, f(x) is continuous on [a,b} and differentiable in
Ja,b[ (being a polynomial).
_ By Lagrange’s mean value theorem there exists cela,b[ such that
MEE-r0
ie, Ab*+Bb+C-Aa’-Ba—C = (b-a)(2Ac+B)
which gives c= l (a+b) i.e,, abscissa of the point at which the tangent is parallel to

the chord is same as that of the middle point of the chord.

=
3

Example 17. Separate the intervals in which the polynorntal 2°-15x%+36x+1 is increasing or




decreasing.
OO =215 +36x+1
F () =6°-30x+36=6(x-2) (x-3).

Here, we have

Here f0)>0 for x<2 or for x>3.
F)<0for 2<x<3
and fG)=0forx=23

Clearly, f*(x) is positive in the intervals J~c0,2] and [3,%0[ and negative in the interval ]2,3(

Hence, the function f{x) is monotonically i increasing in the interval ]-= 2] [3,]

and monotonically decreasing in ]2, 3[.

.Example-18. Use the function ) =x* x>0 show that ¢"> 1.

| i
Solution ,

i
[N
.I

FO)=xMF x>0

1

. log f{x)=—log, x
. s s X

Differentiating w.Lt. x, we get

Here

, 1
}—(}jf (x)=}-.;—?=logex

17X
F(x)===-[1-log, x].
x
Far x>e, f (x)<0

f(x) is a decreasing function of x for x>e.
n>e=y fn)< f(e)= nl/™ < el/e

en efn
= [FI/:tJ < (elle)

= ¥ < e

['-log, x>1 for x>e]

Hence

=e" > nf,

Example 19. Show that 1_x_ <log(1+x) < x, for x>0.
- +Xx

Solution.

Let, ) =log(1+x)-—>—
1+x
Obviously, SfO) *0 1)
1.{1+x)-x.1 1 1 x
and )= - = - =
4 T+x (1+.i:)2 +x (1+x)2 (1+Jc)2

Here, we observe that f”(x) >0, for x>0.
= f(x) is monotonically increasing in the interval [0, [. Therefore

FfOI=A0), for x>0

= [log(1+x)——x—] >0, for x>0
: 1+x
= log (1+x)> ——, for x>0 ~(1}
1+x
Now let F(x) = x-log(1+x).
Obviously F(0)=0
1 X

Then F'(x)=1- Tox  Tox

Here, we observe that F* (x) >0, for x>>0. Hence F(x) is menotonically increasing in
the interval [0, [.

o FO)=F(0), for x>0
= * . [elog(1+x)3>0, for x>0
= x>log(1+x}, for x>0 w(2)

Now from (1) and (2), we get
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x
— <log(1+x}< x, for x>0
R og(l+x}<x

Example 20. Prove that (1+x)<e*<1+xe", Vv x>0.
Solution.  Let us consider the function fo)=e* in [0,x].

Obviously f(x) is continuous as well as differentiable in 10,x[.
Then, by Lagrange’s theorem 3 ¢ € )0, x{, such that

f!(c]z f(x]_f(o)

x-0
X
or £t (1)
X
O<e<x = O<ef<e® (- €' is an increasing function)
Now, from (1} and (2), we have
x—
<t ! <e*, x>0
x...-
= 1< £ 1 e«
X
= x< €-1< xe&*
= (1+x)< & < 1+ xe".

Example 2L. Let f be continuous on {a-h,a+h) and differentiable in la-h,a+h[. Prove that there

is a real number 0 between O and 1 such that

Fa+h)-2f(@) +fla-R)y=hlf (a+6h)-f (a-8k)).

Solution. Consider the function ¢ defined on {0, 1] by ¢ = fla-+ht) +fla-ht) Vi[O, 1].

Obwiously ¢ is continuous on [0, 1] and differentiable on ]0, 1[.

Then, by Lagrange’s mean value theorem, there is a number 6 lying between 0 and
1 such that ¢(1-4{0)}=1-0)0"(6)

Le, fla+h)-2f(a) +fla-h)=h[f (a+6h)-f (a-Oh}].

which is the required result.

Example 22. Show that Lagrange’s mean value theorem does not holds for the function f(x)= [x]|

in the interval [-1,1].

Solution . Since f(x)=|x| is a continuous function on [-1,1] but it is not differentiable at

x=0¢]-1,1[. Hence, Lagrange’s mean value theorem does not hold for the function
f()=|x]| in the interval [-1,1].

Example 23. Verify Lagrange’s mean value theorem for the function f(x}=sin x in [o, %] .

Solution . The function f(x) = sinx is continuous and differentiable on R. Hence it is continuous

as well as differentiable in [0, n/2]. Then, by Lagrange’s mean value theorem,
there must exists at least one ¢ in 10,n/2[ such that

flr/2}-£(0) _
== (c) (1)
Here A0)=0, f(rn/2)=1
fO)=cosx = Fic)=rcosc.
Put all these values in (l)l, we have

0 2 -1{2
—— =COSC = COSC = — = = C0S —
n/2 R n

Since, 0<2/n<1, therefore the value ofc = cos™ [n] lies in ] 2[ which is the

required value of c. Hence, Lagrange’s mean value theorem is verified.
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Example 24. If f™(x) exist for all points in [a, b] and £(6)=f(a) = f(bz‘
' c-a -
| then, there is @ number.l such that a<l<b and =0

Solution .  Since f"(x) exist for all points in [a, b],

II = f'(x)is continuous in [a, b]

; = f(x) is continuous in [a, b].

Now, applying Lagrange’s mean value theorem to f(x) in [a, c] and [c, b] respectively,

we get
L(Eé):_i’(i)#f(h),-aczlq (1)
 and f_("g_::‘_(f_) - p/(y), c<lp<h (2)
v
S Then, from (1) and (2), we get _ _
: F )= @ - L0218 11
. Now f"(x} satisfies all the conditions of Rolle’s theorem in the interval [{;, I,].
| Hence f=0wherele]l}, L[ and ! € ]a, bl.
Example 25. If Jx)=0c-1)(x-2)(x-3) and a=0, b=4, find ¢’ using Langrange’s mean value
' theorem. )
Solition. We have SO =(x-1}(x-2) (-3) =C—6F+1 1x—6
' fla)=f(0)=-6 and f(b) =f(4)=6
£(0)-F(e) _6-(6) 12_,
b-ga 4-0 3
{ Also £ )=312x+11 gives £ (¢} =3c2-12¢ +11.
Putting these values in Lagrange’s mean value theorem,
f{b}-f{a)

v =/ (c) where a<c<b
we get 3=3¢*-12¢+11 or 3c?-12c+8=0

12+ j(144 -96
C:—_._(__,_gl 2+_2_\/£

3
As the value of ¢ lies in the open interval 10,4[. Hence both of these are the
required values of c.

Example 26. Examine if mean value theorem applies to f(x) = +3-5x in the interval [1,2]. If
it does, then find the intermediate point whose existence is asserted by the theorem.
Solution. Given )= X +3x%-5x, (1)
L £ 00 =3+6x-5 and f' () = 3¢>+6¢-5. (@)
Let a=1 and b=2, then from (1), we have
f@)=f1)=13+3(1)%-5(1)=-1.
fB)=A2)y=22+3(2)%-5(2)=10.
From mean value theorem, we have

fH@D=0-a)f () = fH D =(2-1)f (©

= 1--1D=(2-D)f () =  3P+6c-5=11 [using(2)]
i = 3¢*+60-16=0,
h : ¢=-1+2.55 ie, ¢=-3.55,155.

Example 27.Verify Cauchy’s mean value theorem for the functions fix) = - 2 + 3,
80x) = X*~7x +26x-5 in the interval [-1, 1].

Solution . Since f(x) and g(x) are polynomial in x, so these are continuous in the closed _
interval [-1, 1] and also differentiable and continuous in the open interval (-1,1). |
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Also g ()= 3x2—14x+ 26
g’ (-1)=3(-1)214(-1) +26=43=+ve
g "(1)=3(1)°-14(1) +26=15=+ve.
Therefore, g (x) =0 for any value of x-in-(-1, 1. .
Hence all the conditions of Cauchy Mean Value Theorem are satisfied. =

o s)rla) )
Then, using, - (o)=¢la) ~ £10)

H 5 Putting a=-1, b=1 (given), we have
| SO _ 1
g(1)-g(-1) £'()

Since the value 0.076 lies in [-1,11. Hence, Cauchy mean value theorem is verified.
Example 28, Verify Cauchy’s mean value theorem for the function ¥? and % in the interval [1,2].

|Solution . Let us suppose f{x) =x* and g(x) =5
Then, obviously f(x) and g(x) are continuous in {1,2] and differentiable in ]1,2[.

Also g'(x)= =3x*=0 for any point in 11,2[.
“Then, by Cauchy’s mean value theorem there exist at least one real number ¢€]1,2],

such that
£)-£) _ £ D)
g(2)-¢(1) &)

After solving, we getc= l—; , which lies in the open interval 11,2[. Hence, Cauchy’s

[12—2(1)+3]-[(-1)2 —2[—1)+3] % -2
[13 _7(1 + 26(1) -5]—[(-1)3 _7(<1)2 +26(-1)- s']'_ 22 - 14c+26
26 2 [f 0)=2e-2]

or 15-(-39)  3c2-14c+26 '

or  —4(3c%-14c+26)=54%x2(c-1)

or 3c?+14c+26=-27(c-1)

or 3¢2+13¢-1=0 ‘

-13£{{181) -13+13.454 |

e c= 6 = [ : !

ie., ¢ =0.076,-4.409 |
|
|

mean value theorem is verified. 1
£os—

l
Example 29. Use Cauchy’s mean value theorem, to evaluate lm og(i/ 9|’

Solution . Let us suppose

flx)=cos [—l— nx) , g(x)=log x

a=Xx and b=1
Putting all these values in Cauchy’s mean value theorem
F)=1la)_ £ pcoan

2b)-gla) gl

1 . {me
t.'osi-cosEE —Ensm o
we get 2 2 _ ;x<e<l
logl-logx 1/¢

Now, taking the limit as x—1, which give that c—1, therefore

0—cos l1'::: ~l'nsm —l-rtc
2 . 2 2
_ = Il =lim | ——
-1
L]

x__T] tog(1/ x) (17¢)
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|
| or lim u_*ms(%ﬂ) -1
!

i

=—=x
x—1 log(l / x} 2
cos lmx]
ik . 2 _n
or lim{—>x= 2

‘ r—l log(l/x) _-E.

Example 30. If int the Cauchy’s mean value theorem, we write f(x)=¢" and g(x)=¢™* show that
i 1s the arithmetic mean between a and b.

Solution .  Since, we have
i

fix)=e*and g(x)=¢™
f(b)h f(a) e® —¢” ab a+h

= =—¢%" = —¢
s(b)-2(a) b0 |

| d f(x) - so that fle) ec = ¢
| x F) "
| After putting all these values in Cauchy’s mean value theorem, we get
; —ttho = atb=2
; a+b

= = —
l

Hence, ¢ is the arithmetic mea%n between ¢ and b.

i Example 31. If f(), g0 and h(x) are functions such that

| S I} ), glx) and h(x) are continuous on [a,b]

? @) flx), gbx) and h(x) are differentiable on Ja,bf,

| Fle) &) w(c)
| then f{b) g(b) h(b)|=0wherecela bl

| : fla) g(a) h(a)

‘ Solution. Consider the function F(x) such that

| flx) g(x) hix
I FOO=[f(b) g(b) h(b) =0 (1)
| fa) gla) ha)
i Obviously, F(x) is of the form A f(x)+B g(x)+C h(x), where A, B, C are some o

real numbers. From the condition (i) and (i), F(x) is cormnuous on. [a,b] and . |

differentiable on la,bl.

Also Fla)y=F(b)=0.

|

= F(x) satisfies all the conditions of Rolle’s theorem Hence, there exists a cela,b(
such that F'(c)=0

£(e) &) k ( )
Fb) glb) hb)|=
fla) gla) h(a)

Example 32. Verify Cauchy’s mean value for f(x)=sin x and g(x)=cos x in [— > J

| ie.,

So!utmn It can be easily seen that f(x) and g(x) both are continuous on[——:-,O] and
" differentjable on ]—-;5,0[.

Also, g"(x)=-sin x=0 for any point in the interval]- % ,.0[ )

Then, by Cauchy’s mean value theorem, 3 at least one ce ]~ g ,0[ such that

.
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s0)-s-F) ¢
Putting all the values and after simplification, we have cot c=-1=c=-n/4.
Since c=-n/4 lies in ]-n/2,0[, hence, Cauchy mean value theorem is verified.

sino —sinf
Example 33. Show that {, 5”5

Solution. Let f()=sin x and g{x)=cos x, for xe{a,p], where 0<a<p<n/ 2.

) £ (x}=cos x and g’ (x)=-sin x.

It can be easily seen that both the function f(x) and g(x) are continuous in the
closed interval [a,p] and differentiable in the open interval Jo,B[.

Hence, by cauchy’s mean value theorem there exist at least one 8<R, 8<]a,pl such

=cot9

that
S(B)-5() 1)
g“‘j):g(a] 8'(9]
R sinﬁfsina - CO_SB = -cotf
cosficosa  —sin@
Sina-sinp _ -
- corp s~ CLuere 0<a<O<p /2

M 1
Example 34. Show that. th_g:@l_p_r.;g@_‘n_'ffdnd g deﬁned on [O,E],by fo) = x(e-1)(x-2) and

g(x) = x(x—2)(x-3) satisfy the condition of Cauchy’s mean value theorem,

Solution . Here, we have
£ =xa-1) (x-2) =x>-3*+ 2x¢
and g0 =x(x-2) (x-3) = x°-5x*+6x
= F 0 =3x*—6x+2 and g '(x)=3x2—10x+

By Cauchy’s mean value theorem, we have :

)7 370 o3|
40 g[%) —¢(0) : .

3

3l gc+2 g 0 1

or = =
3ac?-10c+6 13_o 5
) 8
= 12¢%-20c+4=0
5413
= =78

The value > _fg of ¢ belongs to ]0,%[ .

Hence, the Cauchy mean-value theorem is satisfied.
Example 35. Find ¢’ of Cauchy’s mean value theorem for the functions
foa=x, 4= Tzin [ab]
-~ and show that it is the G.M. of a and b.
Solution. We have
(i) f0O and (x) are continuous in the closed interval fab].
(i) f (x)and ¢ (x} exist in the open interval (a,b).
(i) ¢ (0=-1/2x 230 for any x in'la,b[.

SelfInstructionaliMaterialis

Therefore f(x) and ${x) satisfies all the conditions of Cauchy’s mean value theorem.




Differentiability

Hence there exist a point cela,b[ such that
| f(b)-fla) _ £(c)
l ¢(b}-¢{a) ¢'{c}

A1)

|
i- Also here £(x)= 35724/ (x) = —%x_-m
|' From (1), we get
Fva e
| (1/46)-(1/4a) " —1/2:73/2

of (JE—JE)JE.JE__Cs/z

Ja-vb 0 172
¢=vab .
1. (Verify the Rolle's theorem for the following functions:

(a) flxy=x*-1 on the interval [-1,1) () fix)=€"(sin x—€0s x) in (%’%)

i
2, Find the value of ¢, of mean value theorem, when

(a) £ = [x2 _ 4 in the interval [2,4] () f)=2x"+3x+4 in the interval [1,2]

||(c) f¥)=x(x-1) in the interval [1,2]
I

| .
3. i(a) If fx)= J/x and g(x)=1/fx , then show by Cauchy’s mean value theorem that ¢ is thd
' geometric mean between a and b.

1
{(B) )= Lz and g(x)= < then show that ¢ is the harmonic mean between a and b.
: X

!

TEST YOURSELF

I
1. Discuss the applicability of Rolle’s theorem of the following Functions :

@) f)=2+-1)¥ in the interval [0,2] (b) fx)=x*in 25x<3

(¢} fix)=tanx in O=x=n ' (d) o) =x*-3x*+4 in the interval [-4,4]
(e} fx}=1/ (x2+ 1) in the interval {-3,3] (f) f(x)=¢" sin x in the interval [0,x]

(g) fix}=|x| in the interval [-1,1] (h) fx)=(x-2) Jx in the interval [0,2]

|
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(D) fo)=(-a)"Ge-b)",mneZ* in the interval [a,b].
2. Show that between any two roots of & cos x = 1, there exists at least one root of e"sin x-1=0.

3. let %0 O, 92 | e +a, = 0. Show that there exists at least one real x berween 0
: n+l n n-1 2

n-1

and 1 such that agx" +aix™ " +...+a, = 0.

sinx sina sinf
cosx cose cosP
tanx tano tanP

5. Verify the Lagrange’s mean value theorem for the following functions :

4. Iffo0 =

where 0< ¢ < B « E Show that f' () = 0, where a<I<fp.

(a) fGy=x"in [-1,1] @) fo)=sinx in [0,7/2]
(© fey=x"in [-1,1], nez* (d) fo)=2x*—T7x+10,xe[2,5)
ANSWERS
1. (a) Not applicable (b) Not applicable (c) Notapplicable (d) Verified X
(e) Verified (f) Verified (g)Not applicable(h}) Not applicable (i) Verified

5. (a) Verified (b) Verified (¢) Verified  (d) Verified

fla+h)- fla)~

= Let f(x) be a function defined on nbd of a point a and hm exists finitely

then the function f(x) is said to be differentiable at ¢ and thls limit is called the derivative
of the function f(x) at x =a.

= The left hfa(nd de?v%nve (regressive -derivative) of f at x =a is given by
Lf'(a}=

= The nght hand denvatlve (Progressive derivative) of f at x = a is given by
RF (@)= fim SEH=@ 44
h=soo i}

» A function f(x) is said to be differentiable at x=a if Rf"(@)=Lf ().

= Every differentiable function is continuous.

= Let f be a function defined on [a,.b] and f '{c) exists for any point ce]a, b{ such that f
‘(¢)>0 then fis increasing at ¢ and if f'(c) < O then f is decreasing at c.

= Let f be a function defined and denvable on [a, b] such that f '(a) f' (b)< O then there

exists some cela, b[ such that f' (cg
« If fis defined and derivable on [a, b] and fria)=f'(b) then for each real number k lying

between f'(a) and f'(b) 3 some cela, b[ such thatf'(c) =

» If fis differentiable in [a, b] such that f (x) # 0 ¥ xelaq, b[ then f '(x) retains the same
sign positive or negative in la, b[.

= If f is differentiable at a point ¢ then [f]| is also differentiable at ¢ provided f{c) # 0.

= Rolle’s Theorem: If a function f defined on {a,b] is :~
{i) continuous on [a,b]. (ii) differentiable on ]Ja,b[. (i) Aa)=f(b).
then 3 ce]a,b[ such that f'(c)=0.

« Geometrically Rolle’s theorem states that ‘Between two points with equal ordinates on
the graph of f, there exists at least one point where the tangent is parallel to x-axis’.

= Algebraically, Rolle’s theorem states that ‘Between two zeroes of f(x) there exists at
least one zero of f"(x}".

» Between two consecutive zeroes of f”(x) there exists atmost one zero of f(x).
= (Lagrange’s mean value theorem) If a function f defined on [q,b] is
(i} continuous on [a,b] (ii) differentiable on Ja,b[

-then there exists at least one real number cela,bl such that M =f (c)
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= If a function f(x) satisfies the condition of mean value theorem and f'(x)=0 for all
xe)a,b[ then Sf(x) is constant on [a,b].

= If two functions have equal derivatives at all points of Ja,b[ then they differ only by a
conscant.

- If a function f is continuous on [a,b], dlfferentlable on Ja,b[ and Fix)=0 Vxe]a b[ then
f is strictly increasing function.

L If f* exists and is bounded on some interval J then fis umformly connnuous onl,
= Geometrically, Lagrange’s theorem state that between two points of the graph f there

exists at least one point where the tangent is paralle] to the chord.
= Cauchy’s mean value theorem: If two functions f and g defined on [a,b] are

(i) continuous on [a,b] (i} differentiable on ]a,b( (iii)g " (x) =0 for any xe]a,b(
then there exists at.Ieast one c&)a,b[ such that f_{b}-f(a) =f, (c]
N 26)-5(0) " ¢(0)
- Lagrange s mean value theorem can be deduce by Cauchy’s mean value theorem as a
particular case for g(x)=x. N

= Geometrically, Cauchy’s mean value theorem states that the mean rates of increase
of two functions'in an. mterva] is equal to the ratio ‘of actual rates of increase of the
functlons at some points within the interval. y

"

FILL IN THE BLANKS
1. Every differentizble function is

. Every continuous function is

. Sum and difference of two differentiable functlons is again -

The first mean value theorem is also known as

If f'(x) > O then f(x) is known as

L If f (x) is positive at a point x = g, then in the neighbourhood of x=a, then function f(x) is

@S nawN

I

| The funcnon Fo)=x|x| is

| If fis a function, differentiable on an interval I, than f (D) is either interval or a .

9. If fis finitely differentiable in a closed interal (g, b] and f'(a), f(b) are of opposite sign then ~

® N

f'e) = for at least one value of ¢ € ]a, b(:
10. If_ f(x} is an even function. Then value of F(0) (if exist) is'equal to

TRUE/ FALSE | '\"
Write ‘T’ for true and ‘F’ for false statement.

1. Every continuous function is differentiable. ‘ (T/F)

8. E}[ery differentiablp function is _g:ontinuous. (T/F) ‘

9, Ei.r"ery differentiable funetion is bounded. {T/F)

3. A function is said to be differentiable if Lf '(x) = Rf (). (T/F)

4 If f (x)>0. Then f(x) is an increasing function. s V7 )

5. The function f{x) = |x| is differentiable everywhere. (T/F)

6. If;f{x) = 0 at each point in ]a, b[ then f(x) is a constant funetion, (T/F)

7. If f is differentiable at ¢ and f(c)= O then % is not necessarily differentiable, (T/F)

L If |rfwo functions have equal derivative at all points in (a, b) then they must be equal. . (T/F)
9. If f(xj is continuous at x=0, then the function x f(x) is differentiable at x =0. (T/F)

MULTIPLE CHOICE QUESTIONS

Choose the most appropriate one :
1, A functlon f: [a, b] - R is said-to be differentiable if f is:
(a) differentiable at each point of [a, b]

~iSelfiInStrictionallMaterial
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(b) differentiable at the ends pointsonly- —  ~ A e s
(t_:)" differentiable at each point of [a, b] except the end points ' __;; o v 8 i
(d) none of the above o
. A function f(x} is said to be d‘ilfferentiable at x = a, if;
{a) right hand and left hand derivative at a exist and equal i
(b) only right hand derivative must exist ;
{c} only left hand dérivative must exist i
(d) none of the above. o)
3. Every differentiable function is: 2 s
(a) necessarily continuous (b) never continuous. e e ey ﬁf. e |
(¢) may or may not be continuous (d) none of the above &% 00
4. Iffis finitely differentiable in a closed interval [a, bl and f'(a), f'(b) are of opposite sign, then:
(@ f'(c)=0Vce [ab] - (b) f(c) = O for at least one cela, bl. N
(©) f'ley =0V ce la, bl (d) none of the'above 5 .
5. Every continuous function is: -
(a) necessarily differentiable (b} never d_if'ferentiablé i
(¢) may or may not be differentiable “{d) none of the above ™ ,\:«:,, t!
6. If f(x) is an even function. Then the value of f(0) (if exist) is equal to:
(a) 1 ™ o (€) + D) mw
7. If a function f is continuous on [a, b), differentiable on la, b{ and if fixy=10 Y xela,
b[ then f(x) has a: ' d - i 4 o
(a) constant value throughtout [e, b] (b}g constant value only at the end points .» i
(¢) constant value through out la, b[ {d). none of the above ‘
8. If f(x) and g(x) are continuous on [a, b] and differentiable on la, b[ and if f'(x) = g ")
throughout the interval ]a, b[, then: o
(&) fix) = g0) ¥ xela, bl (b) fix) =g(x) ¥ xela, bl
(&) f(x) and g{x) differ only by a constant (d) none of the above
9. Iffis continuous on {a, b and'f’(x) > 0 on ]a, bl, then:
(a) fis decreasing on ]a, b[ (b) fis decreasing on [g, bl :
{c) fis increasing on la, b[ (d), fis increasing on [a, b] ®
10. lfy = f(x) be an increasing function of x, then: A
(a) f'Gx)<0 (b)Y frix)=0 (© f')=>0 (d): none of these
ANSWERS
FILL IN THE BLANKS re ot
1. continuous 2. not necessarily differentiable 3. differéntiable -
4. Lagrange’s mean value theorem 5. increasing function 6. increasing
7. differenciable at origin 8. singleton 9. 0 10. O v
TRUE OR FALSE ' =
1. F 18T 19.T 20.T 2L T 22 F £x23. T :
24. F 25. F 26. T TR
MULTIPLE CHOICE QUESTIONS
1. @ 2. 3 @ 4@® 5 © 6. () 7. (a)
8. (c} 9. (d 10 (o
; 0000
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| 8 ) Taylor’s theorem

STRUCTURE
® ”Iaylofs Theorem .= . o ey
® Maclaurin. Theorem - e e e
@ Power Serres . e e e e e & e
. Summary ¥ : - —

() Objective Evaluation

gh LEARN!NG OBJECT!VES

'After reading ths chapter, you should be able to learn:
® The conéepts of Taylor's and Maclaurin’s series —— o
. The concepts of Remainder terms  _. =

i SRS i s A

® The power series of some standard functions.

X INTRODUCTION

In this chapter we shall discuss the most important theorems namely Taylor’s theorem., We
shall also discuss Maclaurms series expansion of some standard functions like ¢*, log(1 +x),
sin x, cos x etc.

KX TAYLOR'S THEOREM
Let f(x) be a single valued function defined on [a,a+h] such that
(D) all the derivative of f(x) upto (n-l)d’ order are continuous in [a, a+h], and
(i) "0 exists in (a,a+h) :
then there exists a real number 8,0 < 0 < 1, such that
2 n-1 n fi~p
fla+h)= f(a)+hf (a)+ };' f”(a)+...+hf"_l (a)+%
where p is a given positive integer. '
Proof, Since, f " exists, all the derivative f' f"...f "1 exist and continuous on [e, a+h], consider
a function f defined on [a, a+h] such that

f“( a+6h)

, (a +h—x]2 .
o ¢(X)=flx)+(ath-x)f (x)+——2-!-—f (x)+...
n-1

(@ "(::f))! £ )+ Ala+h=x)P (D)

where A is a constant to be determined such that §{a+h)=d(a)
h2 n-1 fim
Now $(@)=£(a)+ b (a)+ 7 f”(a)+...+h £"1(a)+ ARP
and $(@)=fla+h)
fi 2
= fla+h)= f(a)+hf (a)+% f(a)+...+ 1)! f“‘l( a)+ AhP (2)
Now
@) e f n-1 being all continuous on [a, a+h] the function ¢ is continuous on
la, a-+h],

(ii) Similarly the function ¢ is differentiable on ja, a+h|,

|
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and (iii) ¢la+h)y=¢(a).
Thus, the function ¢ satisfies all the conditions of Rolle’s theorem and hence 3 a real

number 8{0<06<1) such that
¢ (a+6h)=0.

Here ¢ y=f 0+ f () +(a+h-x)f ()]
+ ]2l rh-x) 77 () (et - £ ()]
R AN

(n-1)!
Hlath-x)7Lgm [x]]—Ap[a+ p-x)f

h-x)"" _
*—‘—-——[aﬁL(n_f))l £ (x)- Apfa+h-x)P ™"
- e [Other terms canceled in pairs]
P a1
.'.0=¢’(a+9h]=—W-—fn (a+9h)—Aphp'_1 (l—ﬁ)p
n-l¢q_gyt—P
—ﬁTg_—?;!—fn(a+9h),h?¢0,9¢1

Now, putting the values of A in (2), we get
hﬂ—].

h? e At (1-8)" P
fla+h)= fla)+hf'(a +-2—!~f”(a]+...+(—n—_lT‘;c 1[a)+_—£—)—-

p(n—-1)!

f"(a+6h)

t¥R} FORMS OF REMAINDER AFTER N TERMS
n{1-g)"

F (n - l) !
remainder after n terms. The theorem with this form of remainder is called Taylor’s
theorem with Scholomilch and Roche form of remainder.

(ii) For p=1, we get

(i) ThetermR,= £ (a+8h) which occur after n terms, is called the Taylor’s

R(-ef
R,= W f (a + ﬁh)
Then, R, is called Cauchy’s form of remainder.
(iii) For p=n, we get i
R —-—f"(a+eh) "
then, R, is called Lagrange s form of remainder.

¥¥] ANOTHER FORM OF TAYLOR'S THEOREM
Replacing h by (x-a) in Taylor’s theorem, we get

o= slapete-a) e+ S5 iy Bz S 1ot ayer,

The remainder, after n termns can be wntten as (1)
( ) (1 e]n- nf.
Rn=‘p—(n_1—)!_f (C),a<c<_x,
Deductions
Putting a= 0 in second form of Taylor’s theorem, we get (Maclaurin’s theorem)
2 y1-1
f0O= f(0)+x f(0 )+_’;_|f"(o)+... o 2 "7 (0)+ Ry (1)
. x"(1-8)"F | . . ,
i If Rn=———*f (6x), then (1) is known as Maclaurin’s theorem with

p(n-1)!

Schlomileh and Roche’s form of remainder.

X




Proof. Let us define

i

b
{

r
Taygor's theorem

x" (1 - G]n_p
p{n-1)

i i
(iii) For p=n, R,= -J:l—' f*(6x), is called Lagrange’s form of remainder.

.@ Y TAYLOR'S SERIES

J'Let f{X) possesess continuous derivatives of all orders in the interval [a, a+h), then for every
positive integral value of n, we have
he . ML
- f"(a)+.

f(a+h)—f( J+hf(a)+ = 1}.f“‘ (a)+R
‘where = —f" (a+6h),(0<8<1). (1)
| Equanon {1} can also be written as

B2
Sn= fla)+hf () + o7 £ (@) 4+

(i) Forp=1,R,= f" (ex}is called Cauchy’s form of remainder.

hn—l

n-1
| = (a)
Then flath)=S,+R,.
Let us suppose R, —0 as n—, then lim §, -f(a+h]
| R—pan
ie, the series f{a}+ bf’ (a}+%,- f{a}+... +( _Utf“'l (a)+... converges to fla+h).
Thus, '

(i} Iff possess a continuous derivatives of every order in [a, a+h].
(if) The remainder after n terms R,—0 as n—>=, then

fla+h)= £(a)+ hf*(a)+ ’;zl £r(a)+- +——f“ (a)+-
This series is known as Taylor’s series for the expansion of fla+h) as a power series in h.
E¥R] MACLAURIN'S SERIES
:Ifwe put a=0 and replace h by x in Taylor;s series, we gﬁt
f)= f(0)+xf’(0)+%f”(0)+...+%f“ (0)+...
This series is known as Maclaurin’s series fc.Jr the expansion of f(x) as a power series in x.
REMARKS

o Maclaurin’s series is a particular case of Taylor's series.

¢ Maclaurin's expansions of f(x) fails if any |of the funetions f(x), f* (x), f"(x}... becomes infinite

or discontinuous at any point of the 1nterval [@, x] or if R, does not tends to zero as n tends
to infinity,

KX MACLAURIN'S THEOREM

Let f(x) be a function of x which possesses continuous derivatives of all orders in the
interval [0,x] and can be expanded as an infinite series in x, then

2 n
J00= £(0)+.x £/ (0)+ Z- £7(0) 4 2 7(0) ..

fO)=Ag+Ayxc+ AP +A5C + .. (D)
Let the expression (1) be differentiable term by term any number of times. Then by
| successive differentiation, we have

£(x)=Ap+249x +3A3x% + 4A 4% + .
Fr(x)=21.40+3.2A50+43A4x% + ..
f{x)=32.A3+43.2A4x+...

. JSelfzinstrictionaliMateri
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Putting x=0, we get
f0)= Ag, f (0)=Ay, f (0)=21A5, f "(0)=343....

(0 i
=1 A0=f(0),A1=f’(0),A2= fz(! ) }A3= f 3(! }

Substitute all these values in (1), we get

2 n
FOd= F(0)+x f’(0)+% f”(0]+‘..+% FH{0)+...

REMARKS

e The Maclaurin's theorem is a particular case of Taylor's Theorem, and can be obtained by
replacing a=0 and h=x in Taylor's theorem.

e If the function f(x) is denoted by y, then the expansion may be written in the form

2 m
X
y=y(0}+x.0 (0]"'?)’2(0]*'--*%!‘% (0)+-..

where y(0), y1(0)2(0),....y, (0} etc. denotes values of %,y1.¥z...¥n respectively for x=0.

[EX] FAILURE OF TAYLOR'S AND MACLAURIN'S THEOREM

(a) Taylor’s theorem fails to expand f(a+Hh) in an infinite power series in the following cases :
» If any of the function f(x), f'(x), f"(x)... become infinite or does not exists for any
value of x in the given interval.
+ If R, does not tends to zero as n—»c.
(b) Maclaurin’s theorem fails to expand f(x) in an infinite power series in the following cases :
« If any of the function f(x), f'(x}, f* (x)... becomes infinite or does not exist in interval
[0, x].
» If R, does not tends to zero as n—w.

REMARK T TR

e Before expanding a given function as an infinite Taylor's or Maclaurin’s series, it is essential
to examine the behaviour of R, as n—w, which is not simple in many cases. We, therefore,

generally obtain the expansion by assuming the possibility of expanding it in an infinite series
by assuming that R,—( as n—e,

£33 POWER SERIES EXPANSIONS OF SOME STANDARD FUNCTIONS

To find the power series expansion we shall use the following procedure.

Step (1) Put the given function equal to f(x).

Step (2) Differentiate f(x), a number of times and obtain f’(x), F0), f7(x)... and so on.
Step (3) Put x = 0 and find f(0), f(0), £7(0}... and s0 on.

Step (4) Substitute the values of f(0), f(0), f(0), f7(0),... in

2
fed= £(0)+x £ (0)+ 5 £ (0)+-
We shall now consider Maclaurin’s series expansions of the function €°,sin x,co8 X,
{1+x)™ and log x.
(§) Expansion of €*. Let f(x)=¢" VxeR.
Then FM(x)=¢" VxeR.
Thus, for each positive n, f " is defined in the interval [-h, h].
Writing, Lagrange’s form of remainder, after n terms

n
R, (0= J:Tuf“ (&x), 0 R, 0<0<1
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Il\Iow we shall show that lim R, (x)=0. Here, it is enough to show that ¢ is bounded in
fl—yoe
[—h h] and lim —-——0
T
" Since, 0<0<1 and xe[-h,h], therefore |6x}<h and consequently, 0<:eax<eh, hence ¥
is bounded.
7 , Xn )
Now, let us write TGp=— W¥neN.
'f'hen il o X jim G4l g
ig ay n+1 N—3ee dy
p = lim a, exists and equal to zero.

! el
N[C)W, lim 1 Ry (x) =¥ [lim ;—:| =0

Hence we find that the function f(x) has a Maclaurin’s series expansions for each
X< [—h h]. This implies :

2
f63=1(0)+ o (0)+ Z7 £(0) -t 1 1].
Substituting f0) =¢”, f' ()= €*,..., f"()=¢" at x = 0, we have

f“ 1{0)+.. vxeR.

2 .3 n-1
X _ XX X"
| et =l+x+ 2!+3!+"'+(n ) +... ¥xeR
! (ii) Expansion of sin x. Let f(x)=sinx, YxeR
=> f"(x}zsin(x+r12—“], vxeR

V;\(ﬁﬁng, Lagrange’s form of remainder after n terms, we have

| n
i R,(x)= %f” {8x), where 0<8<1
| +

n
= £wsm[&w: +n_r|:)
n 2

{
Now, for all xeR,

Ji . . |Rn (x }‘ =
lim Ry(x)=0
. fl—=)o0
Thus, we find that, the function f{x) has a Maclaurin's series expansions for each x in
{-h,h]. Hence, we have

X2 P
!L f(x)-_—f(o)+xf’(0)+— ”(0)+...+( Y

o)+ vxeR.

Now, substituting f(x)=sin x, f"(x) = sin — , we have

3.5 2
sinx = x——3—;+;—--- VxeR.
(iljj) Expansion of cos x.
L¢|:t f(¥)=cosx, ¥xeR
Tﬁen Flo0= cos[ x+?]

Thus for eaeh n, f" is defined in every interval [k, k1.
Writing, Lagrange’s remamder after n terms, we have

R (x)——f“(ex] where 0<0<1

| H
=—x——cos E1>c+iIE
l n! 2

#SelfiInctructionaliMateria
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Now, for all xR,
|Ra ()] < _‘
and r}gnm_’;i - [asin ()]

Thus, we find that, the function f has a Maclaurin’s series expansions for each
x € [-h, h}, which gives
f(x)=f(0)+xf'(0]+£-f"(o)+...+"_fn(o)+... VxeR.

Now;, substituting f(x}=cos x..., f "(0)= cos ——2 , we have
2 4
: X X
¢ = 1 —_————..
05 X TP vxeR.

(iv) Expansion of (1+x)™.
Case (i). Let m is a positive integer, then letting
f6=(1+x)", vxeR.
We find that for each neN, f " (x) exist for all xR, and whenever n>m, f(x)=0 ¥xeR.
= R,(x)=0, whenever n>m.

Hence, lim R, (x)=0 and for all xeR, we have

e

fOO=f(0)+x £ (0)}+...+ % f™(0), (. All other terms must vanish.)
Substituting the value of f (x), f(0},..., f "' (0), We have

(1+:rc)nrl =1+mx+ m(n;l—l) 2+t x™
Case (ii). Let m not be a positive integer (may be a fraction or negative integer).
Here, we find that, if we write
fo)=(1+9™, whenever x#-1
then F100=m(m-1)...0m-n+1)(1 +x)™" whenever x=-1.
Thus, for each positive integer n, f” is defined in [-h,i] for each h between 0 and 1.

Now, writing Cauchy’s form of remajmder aftet n terms, we have
k)
n(x)—-————f (8x),where0 <8 <1

(-1}t

n r—1
x—g——?}l—m[m—1)...{m~n+1](1+&x)m*n
_m(m+1).(mn+l) ,(1-8 n-1 e
- n-1)f J‘[1+ax) (1reqg™

Now, we observe that
m(m—~1)...(m—n+1) o

a) lim =0
( ) A=y (H—l)l
. m+1)..(m-n+1) o
If we write an = (n-1n
Then, we have Inl . (m—n)— — lim Sl oy
n n n—= Oy
If follows that if |x| <1, then lim @, =0
129 Y1 noe
Tl =300 1+'9X

In fact, since 0<0<1 and -1<x<1, therefore, 0<[1 Bx] 1

-1
hrn 1_9 =0
and hence am e =

AN
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*L
© If m>1, then(1+6x)™" (1—,|.J~§!]m_1

For (a), (b) and (c), we find that for all xin }-1,1[ lim Ry{x)=0

A—oo

; ‘Thus, we find that for each h between 0 and 1, the ﬁmcuon f has Maclaurir’s series
{expansion for all xe[~h,h].

| Hence, we have -1 .
foy=£(0)+xf(0 J+—-f”( St f1HO)+ - vxel-1 11
i Substituting the values of f(x), f(0), £(0), .../ ™" }(0), we have

(l+)c]nrl =1+mx+ m(m_l]x2+m(m"1)(.ﬁl_2)x3+...
| 2! 3t
L +m(m—1] {m .n+l)

nl

x"+ _whenever-1<x <1

](v) Expansion of log,(1+x).

‘Let J)=log(1+x}-1<x<1,

: n-1

{Then = &—(nn—l) »whenever x>-1.
' 1+x)

‘Now, we shall consider the following cases :

4Case (a) Let O=x<1. Writing Lagrange’s form of remainder after n terms, we have
H

' Ry= %ﬁn{ax)=x_n.(_-1)"‘1 {n-1)! =(*1)nd ( x ]ﬂ

n! (1+6x)" n \l+6x

Since, 0=x=<1,0<0<1, therefore

0
! (lﬁx

<1

|Ry| < -,and~ — 0asn - oo
n n

Therefore lim R, =0.
f—oo

Case (b) Let-1<x<0. Since in this case N xax need not be less than unity, therefore,
+

we may not be able to show easily that R,—0 as n—w by considering Lagrange’s
remainder.

Now, writing Cauchy’s form of remainder, we have

n -1 n
Ro= g0 (o)
=(_]]n-1xn(1—9]“‘1 1

; 1+0x “1+8x
since [x] <1

1-6 1-8 n-1
tihereﬁ-’re 14 6x so that [m] <1 and WJ<1—_IX—]
. | |n
hus ol <o

This implies that lim &, = 0., smce |x| <1. Thus we find that if -1 <x<1,
then tim Ry=0.""7

2 -
fO}= £{0)+xf"{0)+ %f”(0]+...+ (:—:—)‘f”‘l (0}+... whenever —1<x=1.
Substituting the values of f(x), f(0), f (0), ..., f""1(0), .-, we get

3
| log(l+x)=x_£2._.+%_m, whenever -1<x=<1,
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Example 1. Show that

Selution.

2 n-1 n
a=1 +xloga+%(loga]2 +oF (:—1)1 (loga)"_1 + %aa“ (loga),0<8<1.
Let fl)=d" . w(1)
Then f(x)=d"(log @)" VneN and VxeR (2)

Now, putting x=0, in (1) and (2), we get
f(O)-":l,fn(O)=(log a)' Vv neN.
From (2) f"(@0)=a"(log a)".
Now, by Maclaurin’s seribs with Lagrange’s form of remainder after n terms we
have

xn—l n-1 x" ar n
ol O+ (ese)
..{3)

Now, substituting the above values in (3}, we get

2
flx)= f(0)+xf’(0)+£2-!- Fr(O) 4.

n-1 n
(log a)“gl + %ae" (loga)" .

2
_ X (loga)? + ..ot -~
d=1+xloga+ 2 (loga) +“'+(n-1)!

Here, Lagrange’s form of remainder after n terms

n
R,= x_laex (loga)n where 0<f8<1.
n

Example 2, Expand e“ sin” x by Maclaurin’s series and find the general term. Hence, show that

Solution .

e9= 1+sine+—1—sin29+£sin39+...
2! 3¢

Here y=asia” x ey

Then Yi= P sin”! X a = Y | (2)
1-x2 \[1 - x?

= [ 1—x2]y1=ay = (1-x2)3/12—02)'2=0 (3}

Now, differentiating both the sides, we have
(1 - Jr2)2)’1)'2 ~2xy,2 - 2a%yy; =0
= 2y, [(1-X2)J'2—xyl —azy]= 0 : .(4)

Since 2y, =0 hence [(l—xz)yz—xyl—azy] =0.
Now, differentiating n times by Leibnitz theorem, we get

n(n-1
( )yn('z)_y'n+1x_n.)’n-1_azyn=0

(1 —12)3’n+2 + My (-2} +

= (l—xz)yn+2—(2n+l)xyn+1 —(nz +<:l2)y,,1 =0 ..(5)
Now, we can easily find, (from (1) to (5)} the following values '
Mo=1,0d0=a,  (yo=c’
VrsDo=0*+a ¥ (6)
Replacing n by (n-2) in (6), we get
Gdo=[-22+a2) Vo =[(-2*+a2) (-2 +a*} Do
If nt is odd, then :
G)o=[-22+a2) (42 +a%)...3%+aH 12 +a) 6o
= [(=2%+a21 (-9 +d%)..[(8%+aD) (1% +aD)].a
If n is even, then
(o=[(n-2)*+d?] [((r=4)?+a2)...(42+aD) 22+ 2o
= (-2 2+ a2 [+ [(42+aD) (22 + D)
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Example 3.

Solution .

|

Example 4.

Solution .

L T M r
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a[12 + az)(Sz +a.2)...[(n —2)2 +a2], if nis odd
a? (22 + az)(42 + az)...[(n - 2)2 + az], if niseven
Putting n=1,2,3,4.... in (6), we get

09o=03*+a) (1% +a%a, o= +aH 2 +aD)a? etc.
Now putting all these values in the Maclaurin’s theorem

Hence, y,,(0)=

y=(y)o+x. y1)0+ sz)[J +_J’n

2 2 2 2
asinx _ a® 5 a(l*+a®) 3 a(2®+a%) 4
We have € —1+ax+——2!x + 3 X7+ Y X

The general term is Xa: i “(¥n)y-

Now putting x=sin 8 and a=1, in the above equanon we get
ed = 1+sm9+§7sm 0+§—sm 8+..

Expand log sin(x+h) in powers of h by Taylor’s theorem.

Let fG=log sin (x)

= Sfoc+h)=log sin (x+h).

Expanding f(x+h) by Taylor’s theorem in powers of 1, we have

2 3
focth)= F()+ b ()4 2 ()2 2 ().
Now Sf=log sinx = f x)=cotx

Fo =—cosec?x = =2 cosecx cot x etc.

Substituting all these values in equation (1), we get

2 3
2, 2h 2

. , h
log sin(x+h)=logsinx + hcot x —Ercosec X — = CoSecx cotx +..

Expand sin x in powers of (x - %J with the help of Taylor’s theorem.
Let f(X¥)=sinx.
Since, we want to expand f(x) in powers of [x - %J , hence, we can write

s[5 (5

Now, expanding by Taylor’s theorem, we get

Gl X I |
Al {22 |

(SR

J+---...(1)

Now FOO=sinx = f( g) =1
f)=cosx = f {g] =0
Fo)=—sinx = f‘(—g] =_1
f(x)=-cosx = f’(%} =0
and so on. -

Substituting all these values in (1), we get

{1}
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Example 5. If f0)=(—)>* and fix+h)= f(x}+ hf’(x]+% £ (x+8h)
find the value of 8. '
Solution. Here, we have .
fOy=(x-a)*? =  fath)=(+h-a)*?

- ()= 3 (x-a)* 2 and 5 () = B x-a)?

F7(x +0R) = 4[ x+6h-a)’?

Putting all these values in the given relation, we have
2
[x+h—a]5/2= x—a}5/2 Sh( ]3/2+-§(x+eh—a)1/2l12—I
Now, taking limit as x-»u, we have

p572 - T(eh)“z K - 64

21 _ 0= 25"
Example b. Let f is twice differentiable function and Ifl<a, |f7|<B, for x>a, then show that

[f|<2op vx>a

Solytion. Let us suppose x>a and h>0, then
2
fOckh) = fx)+ R (x)+ %»f”(x +6h), 0<6<1

= hf’(x]=f(x+h)—f(x")~h2—if”(x+eh)'l

= |’ (x) ()= |FlxrR)- f(x)~h—2-f”(x+9h)

<|f(x+ ) +[-F{x) \+—1 —f"{x+6h)|
(By using triangular inequality}
r h?
<ca+o+ ——B 20+ —

2
= ’f’ x)\<2—a+h[3 F(h)(say)

Now, |f' (0| is independent of h and also less than F(h) for all values of h.
Therefore |f (x| must be less than the minimum value of F(h).
For, maxima or minima of F(h), we have

F’(h)=0

2c B —12 |2
= —~h—2 +§ = = h= :I:ZJ;
and F'(h):i—g>0forh=2\l%
Hence j(h)is minimum for h = 2 \E ,

the minimum value of F(h) is = Za%\[% + %.ZJ% = 2.faff
Hence If 00 <2 JoB .
TEST YOURSELF

1. If " exists and continuous on fa,b] and differentiable on ]a,b[, then prove that

Y fib)~ f(a)w— (b-){f (a)-f ()} =~ ( ) L f"d)
&iCelfiinstructionaliMatel
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Taylor's theorem * | ¢ - 201
vfuihere d € R such that dela, b[.

2. Prove that
sin ax= ax ax? + 2> -t a" Iy sin{ 2= 1 II:J + o"x" sin(aﬂx NG
Ii I TR TR P T 2 ! 2

._ 2

3. IEf(x)= f(0)+x"(0)+ —;‘T_f”(&x] » find the value of 6 as x—1, f(x) being (1 —x]s"z.
r i

4. Show that the number 6 which occurs in the Taylor's Theorem with Lagrange’s form of
[ . f n+l (ﬂ) . n+l :
r?malnder after n terms approaches the limit F‘*'_lT as h—0 provided that f "*1(x) is
cc';[ntinuous and different from zero as x—a.
5. Show that the function x°~3x%+ 3x+2 is monotonically increasing in every interval.
6. Obtain by Maclaurin’s theorem the expansion of £5°*

7. If}:(x) =exp [— _12-] , for x=0 and f(0)=0, then show that :
| x

(DF"(0)=0 Yn=0,1,2,... '

antl:l (ii)The Taylor’s series for f about 0 agrees with F0) only at x=0.

8. Expand “log sec x” by Maclaurin's series expansion, upto the term containing 5.
I

9. If":x_>0, show that x_x_2+_xi_( ]og(1+x)< x_£+x_:3-.

, 2 31+x) 23

— —— ANSWERS

3. 9=-2?§ o 7 y=1+x+f;_v.{8i+... 9. y=£2£-i-_1;-g-+§-:-+
KX SOME MORE EXPANSIONS
Example 1. Expand tan x,
Solution. Let fx) = Iran'l x = A0)=0
(o fr= 1+lx2 = fO)=1 |
=(1 +x2)*l =14l . (By Binomial expansion)

fo)=-2c+>- 65+, = f0)=0
1 =-2+412430* ... = f7(0)==2

fiv(x) =24x-1200+ .. = fi"'(o) =0
FY0=24-3601+... = fY0)=24
Put all these vaiues in Maclaurin’s seriés, we get
3 .5 _7
tan 1 X=x- X + X _x
3 5 7
REMARKS E e %

o To .:éxpand an alone inverse function, find its first derivative, expand by Binomial theorem and
then find other derivatives.
The expansion of tan™" x is valid only if -1<x<1.
This expansion for tan™ x known as Gregory's series, which is very useful in finding the value

of .
# In a like manner, we may get sin:]x—x+—1~ x_3+1_3 L’(i+ 1.3.5 2c—7-+
g ve 273 245 246 7 "
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9] Example 2.

Solution.

Solution.

Example 3.

i g — iy e - o

Ify=sin(m sin~} x), then show that

{l—xz]%—x%+m2y= o

Hence, or otherwise expand sin m@ in powers of sin 6.
Here, we have

y = f(x)=sin (m sin~! x)
_ -1 m
= yl—cos(msm x). —
o (=P, 2= mPcosi(m sin )
- (1P 2= m*[1-sin*(m sin” x)]
= 1=y 2=miD) [ y=sin(m sin”
= (14x2)y12+m2 _m?=0

Differentiating w.r.t. x, we get
(=) 2y yy-207, 2+ 2mPyy1 =0

= 2111~y +m ¥} =0
= (1-A)y - +m%y=0
Now, differentiating (4) n times, we get

n(n-1)
1.2
= [l—xz]yn+2—(2n+l)xyn+1 {” —m ]yn =0
Now, put x=0in (1), (2), (4) and (5), we get
Y(0)=0, y(0) =m, y2(0) +m’y(0} =0=y3(0)}=0

and  Yar2@=0Cm ().
Putting n=2,4,6,.. . in (6), we get

¥4(0)= (22—m 2(0)=0

Ye(0)= (4*-m )y4(0) =0

yg(0)=0

... and so on.

Here, we observe that y,(0)=0 if n is even.
Now, putting n=1,3,5,.. .in (6) we get

¥3(0)= (1 -m )y 0 =(1? —m )m

y5(0) (3%m )y3(0)* 3=mA(1*-m®.m

Yn(-2)= st ~Yn + MYy =0

[1 - xz] Ynea + NYne1 (-2}

Putting all these values in Maclaunn 5 series, we get

mfi? ) 4 (12 ](32-"*2) ;

sin(msin_lx)=m.r+ | x°+ Y x4+
Let 9=sin;1x = x=5in 0 .
Then, we get
2_ .2 22 2vee2 2
sinmﬁ=msinE}+ﬂ(l—:)”—m—-)-sin?’e+m{1 mS)T(B m_) sin59+..‘

46°30’ upto four decimal places.

CALCULUS

«(1)

.(2)

191
(3

&)

..(5)

.(6)

Expand tan x by Macluarin’s theorem as far as x° and hence find the value of tan

Let fix)=tanx = f(0)=0
f'(x)=sec2x=1 +tan’x = f (=1
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© f00=2 tan x sec>x=2 tan x(1+tan>x)=2 tan x+2 tan°x = £(0)=0
f
’ =2 sec’x+6 tan’x sec2x=2(1 +tan2x) +6 tanzx(l +tan2x)
=2+8 tan’x+6 tan’x = f7{0)=2
f iv(x) =16 tan x sec>x+24 tan°x sec’x=8 sec’x(2 tan x+3 tan?'x) .
1 4 =8(1+tan2x) (2 tan x+3 tan3x)
=16 tan x+40 tar°x+24 tan°x = F¥(0)=0
J and £¥(x)=16 seci+120 tan’x sec>x+120 tan*x sec?x
-i1 =8 seczx(2+15 tan?x+ 15 tan4x) : =fY(0)=16
Now, putting all these values in Maclaurin's series’
'] xz ] x3 rrr x4 v x5 v
" foy= O+ (0)+ S £ (0)+ 5 f (0)"31’ O+ 5y 1 (0)
x3 xs
Weget tanx =0+x+=—.2+—16+...
K} L1
| 2
= tanx =542 32554,
3
Deduction. Here Y (93% o3
O y - = == == i H
x—4630—[462J (2) 3 xlSORadzans
= ﬂXE = 31x11 = ﬁ =0.812
120 7 60x7 420
Now, putting  x= 46°30'=0.812 in (1) , we get

3
0.812
tan 46°30'=0.812+ (—3—]

+ _1_25(0.81 2)° = 0.812+0.1784+0.047 = 1.0374

¢
Example 4. Expand log{x++(1+ x2)} in ascending powers of x and find the general term.

Solution.  Let ¥=log{x + J(1 + x2)} (1) | .

| 1 Le__2x |1 '
t = n= x+\[l+x2 2J(1+x2) J1+x2 -(2)

=  y(1+H-1=0.
Differentiating again w.r.L. x, we get

271 [(1+x)yp+3711=0
= [(1+x)y,+x71]1=0 (-2 2y, #0) (3)

Differentiating {3) n times, we get

-1
(1= x)Ynaz + M Ya1 20+ N(,:_z ) ¥2:2 Yp41 X+ 10y, =0
= 1+ 3Dy 0+ 20+ DX pe1 + 120, =0 (4}
; Putting x=0 in {1),(2},(3) and (4), we have
|
P ¥(0)=0, y1(0}=1, y2(0)=0
In+2(0)=n"y,(0) (5)

From (5}, we have
y3(0)=-1%,0)=-17

[Selfiinctruc tiohal|Materia
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¥5(0)=(=3%)y3(0) =(-32)(-1H=3%1%
¥7(0)=(-52y5(0)= (-5 3% (-19)=-5
Putting n-2 for nt in (5), we get
Ya0)={~(n-2)2y,_»(0) (6)
= [-(1-2)2 [-(1—4) 21y 4 (©).

Here we observe that
If nis 0dd, then y, (0} =[~(n-2)*1{~(-4)]-...(-5) (-39 (=17).1
= [-17" D2 (2)?(n4)? . 5% 3% 12 (D)
Also from (5), we get y4(0) =_2° Yo (0)=0
ye(®)=—4 .y4(0)—0 ... and so on.

23242

... and so on,

If n is even.
Then, yn(0)=0.
Putting all these values in Maclaurin’s series
2 3
_ X 'y X
Y=y O+ 0+ S 72(0)+ 7 v3(9)+

- 3 5 7
We get log[x+\/(1+x2]]_ xh% 124 J; {32 12) J;l (52.32.12]4____

n
General term. The general term = J:l—l ¥n{0)

where (0= ()2 (no2) (0 4)?.52321% | ifnisodd
8 0 , if niseven
. inx x2 3.x4
Example 5. Prove by Maclaurin’s theorem, that ¢¥'"* =1+ x+——--"" 4
1.2 1234
Solution. Let fx) =" = o) = =1
fo="" cosx =  f(0) = cos 0=1
0= eSi" *{sin x) +cos x " *cos x
i r[cos X—sin x} = f"(0) =eo[1—0] =1

sinx

£ 00 =e""¥[2 cos x(—sin x)-cos x] +e""*cos x.[cos2x-sin x]

=¢5" %05 x{-2sin x-1+cos>x-sin x]

"™ Xcos x[3 sin x+sin’x} = F7(0)=0

f “'(x) = "™ *cos x{3 c0s x+2 sin x cos X]

sin x

i .2
S Xin x[3 sin x+sin®¢] ~{3 sin x+sin’c]cos x e *cos x

] +e
= fHoy=-3.
Putting all these values in Maclaurin’s theorem, given by

2 x3 4 iy
f09 = f(0)+xf’(0)+’;—l IORES fm(o)+£4T £ (0)+...

- 2 4
we get, SNy X 3X
1.2 1234

Example 6.(1) If f(x)=x 318+ 15x-24, calculate the valve of { )by Taylor’s series.

(i Iffod=x 3ox+ 5, find the value of f(2.001) with the help of Taylor’s theorem. Find
the approximate change in the value of f(x) when x changes from 2 to 2.001.
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}
Taylot’s theorem

f(x)=2tanx sec?x=2 tan x(1 +tan2x)=2 tan x+2 tan°x = f(0)=0
=2 sec™c+6 tan’x sec2x=2(1 +tan2x) +6 tanzx(l +tan2x)

=2+8 tan’x+6 tan’x = f7(0)=2
l f iv(x) =16 tan x sec’x+24 tan’x sec’x=8 sec?x(2 tan x+3 tan’x)
=8(1+tan’) (2 tan x+3 tanx)
=16 tan x+40 tan°x+24 tan"x =>fi‘f(0) =0

and f'0)=16 sec?x+120 tanzx sec?x+120 tan’x sec?x

Now, putting ail these values in Maclaurin’s series’

x3

2 & 5
fey=£(0)+ " (0)+ 507 (0)+ 57 £7{0)+ = £¥ (0)+ 1 £ (0) ..

\ =8 sec’x(2+15 tan®x+15 tan'x) = fY{0)=16
3!

3 5
We get tan x =0+x+-’;—|.2+%.16+...

3
= tanx=,,X 2.5,
3 5

Deduction. Here ¥ (93% 93
-5 T - =| 2= == i i
x =46°30'= [46 2] ( > ) 5 %180 Radians
=31 .22 31x11 314 _ ..o
120 7 60x7 420
Now, putting  x= 46°30’=0.812 in (1) , we get

3
. {0.812)° 2
tan 46°30’=0.812+ TS

(0.812)° = 0,812+0.1784+0.047 = 1.0374

Sofution. Let Y=log{x+(1+ xz)} A1)

1 14+ 2x _ 1
= = eaiea? | afuend | J1end (2)

=y 2(l+x3)-1=0,
Differentiating again w.r.t. x, we get
21 [(1+xP)ya+xy,1=0
= [(1+xP)ya+xy,]1=0 (- 2y, #0) (3)
Differentiating (3) n times, we get

; ; 4
Example 4. Expand log{x+J(1+x%)} in ascending powers of x and find the general term.

n{n-1)

(1- %P ypeo +nypeq .20+ Y22+ YpppX+ny, =0

= (+ %3y pen+ (204 Daypyq +nly, =0 ..(4)
Putting x=0in (1),(2),(3) and (4), we have
., ¥(0)}=0, y1{0)=1, y,(0)=0
Yur2(0)=ny,(0) (5

From (5), we have ) 5
¥3(0)=-1"y1{0)=-1

IRgtructionallMatetiall
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¥5(0)=(=3%y3(0) = (-39 (1% =3%1°

¥7(0)=(-52ys (0 =(-5) (-2} (-1=-5°3%1" ... ands0on.
Putting n-2 for n in (3}, we get
Y0 = {~(-2*1y,2(0) (6)
=[-(1-2)"1 (4" V4 (0).
Here we observe that
If n is odd, then y,(0) = [-(n-2)*1{-(n—4) 2,59 (=3%)(<1%).1
=112 (r-2)*(n—)?...5%.3% 12 (7
Also from (5), we get y,4(0) :—22.)/2(0) =0
Ye(O) =~42.y4(0]=0 ... and so on.
If nn is even. )
Then, vn(0)=0.
Putting all these values in Maclaurin’s series
X 2 X3
y= y(0)+ﬁy1(0)+;y2(0) —3—,)'3(0)
3 5
2y | L X 2 X7 f2.2) X (2,242
wegec log| x+ L] - x- 302 {2 (525247

n
x
General term. The general term = —=yn (0)

where y,(0)= [—l)(“_l)/2 {n- 2}2 (n- 4)2 523212 | ifnisodd
f 0 , if niseven
. i x2 3.xt
Example 5. Prove by Maclaurin’s theorem, that 8" =1+ x+ ——-————+
1.2 1.2.34
Soltion. Let  f)=¢"* = o) =e’=1

Fo)=e"cosx = f’(0)=eo c0s 0=1

fe)=¢e M X( smx)+cosxe *cos x .
=" *[cos?x-sin x] = £ (0)=e"[1-0]=1 !

£ () =¢""[2 cos x(~sin x)-cos x] +€*" “cos x. [cos™x-sin x]

€™ ¥ eos x[~2sin x-1+cos x-sin x]

=— 8P %o0s x[3 sinx+sin’x] = f7(0)=0

£ =— " *cos x[3 cos x+2 sin x cos x]

+e5"%gin x[3 sin x-+sin®x} —[3 sin x+sin*x]cos x € “cos x

= FYo=-3.
Putting all these values in Maclaurin’s theorem, given by
X

2 3 4
03 = F(O)+xf"(0)+ ”(0] "’[0]+'-4—! FY(0)+...

we get, SX 2yt e

Example 6.(i) If fx) =x° + 8¢ +15x-24, calculate the valve of [%J by Taylor’s series.
G I =x"-2x+5, find the value of f(2.001) with the help of Taylor’s theorem. Find

the approximate change in the value of f(x} when x changes from 2 to 2.001.




7

'Ta§10fs theorem

Soluiion . (i) By Taylor’s Theorem, we havze
;' forthy= S b (x)+ 2 g+
| !

! We want to ﬁndfﬁ—;] f.e‘,f(1+Il(—)]

1
Putx=1 and h= 10 and expand by Taylor's series, we get

m o,
?S-I_f (x)+...

f{%)=f[p%]:f(1)+%f'(1)+#.§-!f"(1) g (1)
Now flx)=x>+8x*+15x-24 =  f1)=0
£ 00=3+16x+15 =  f()=34
F)=6x+16 = f(1)=22
fr=6 = fr(1)=6
F¥ea=0 = f¥1=0

Put all these values in (2) we get

i 1m 1 N
141 ]=0+L 34 _
f( *10) *16°3** 160" Toog = 3:4+0.11-+0.001=3.511.

——————— W

; (i) Here put x=2 and h=0.001 in Taylor’s series, we get
f2.001)= £(2}+(0.001) f'(2)+&92$£ fr{2)+ (0. 001) 7 (2)+
Now )= X-2%+5 = f(2) =9
£69= 32 = f@=10
o= 6x =  f(2)=12
‘ =6 = f(2)=6.
Feo=0 =  f2)=0
Put all these values in (2), we get
1

f(2.0001)=9+(0. 001]1o+_ {0.001)? (12)+ (0002 6+...
=9+0.01+0. 000006+0 000000001
= 9.010006001 =9.01 approximately.
Apprommate value of f(2.001)-f(2)=9.01-9=0.01 approximately.

1 terms.
Solution. Let ¥ = fed=log(1+sin x).
By Maclaurin’s expansion for f(x), we have

2 -3 4
X x X X
y=f(x)=a(y]0+ﬁ(yl]o+_2_!(y2Jo+§(y3)o Frrale*
Now = log(1+sin x) (¥)g=0
__gosx (), =
N1= T sinx 7o
_ —sinx(1+sinx)- cos? X _ (1+sinx) - 1
72 (1+sin x)z (1+sin x]2 1+sinx
= (rado=-1
_ cosx ___ Cosx 1 .
P37 Crsingp | (Crsing) [irsing) - 712

(1)

-(2)

Example 7. Expand log (1+sin %) by Maclaurin’s theorem in ascending power of x upto first five

(1)

elf
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= 0’3)9““1 -1=1
Yamyysys = Gado=~1.1~(-1)*=-1-1=-2
Y5=-Y V4 Y23 =-Y1aIYoY3

= (r5)o=-1.(-2)-3(-1).1=2+3=5 and so on.
: X X2 x3 x4

Therefore, log(1+sin x) = 0+ = 1+ 2 {-1)+ .1+ = {-2)+...
12 317 4

x2 x3 X4 Xs
R e

: 2 6 12 25
Example 8, Expand sin (n/4+6) in powers of ©.
Solution. Let f(8)= sin(n/4+0)
f (@ =cos(n/4+8)
fr(8)=-sin(r/4+06)
f7(0)=—os(n/4+0)
F¥(@)=sin(n/4+6)
The n* derivative of £(0) is given by

Moy = i r.ar
fr@= sm(9+ 2 + 3 )
The Maclaurin’s expansion of f(8) with Lagrange's from of remainder is

2 3 n-1
F0)= O 1 O+ G 5O 3Ot g O R D)

fO)=sin n/4=1/J2
f'(0)=cos n/4=1/2
F7(0)=—sin n/4=-12
£ (0)=cos n/4=-1/V2
F¥(0)= 1/J2 and so on.

I T U T

it n
where R, = %f” {te) = %sin[te+g+n—;),04r<l.

8" n nR n n nandy_[e"
R,|=1—sin] tB+—=+— || =|—]-|sin| tO + —+ — [ £|—1.
Now |Ry| n!sm[ ) 2] nl 5‘[ 4 2) !
n n
. lim |R,,|£ lim L =0 v lim EL-:
Ji—vea n=oo| it n=es 1!
im R, =0
[ )

Thus all the conditions of Maclaurin’s series expansion are satisfied. Hence, from
(1), the expansion of sin (8-+n/4) is given by

sin[f3+£]—-—1—+E ! +£ - ]+~(£[— 1 ]+
7Y N RTINS AT - Y A
g 82 63 0% &5 60 ¢
T4 ———— F—t— ————
121 31 4l 51 6t 7

'1. Expand the following functions by Maclaurin's theorem : log,(1+¢")

2. Expand the following functions by Maclaurin’s theorem : log(1+tan x}.




Tay;ibr"s theorem
Slﬂ;_i_% (i) By Taylor’s Theorem, we havze ;
focthy= 50 )+ () o 2 )

i We want to ﬁndf(ié) Le. f(lﬁ-i%}

1 .
Put x=1 and h= 10 and expand by Taylor‘s series, we get

{55)- /{0 ) - 10 000 L e s

Now f00=x>+82+15x-24 = n 3‘(1):0
f()=3"+16x+15 = f(1)=34
f)=6x+16 = f(1)=22
=6 = (D=6
Y oo=0 = D=0

Put all these values in (2) we get

1 111
! 1+— (=0 —34
| f[ +10J * 10 190 " 1005 = 34+0.1140.001=3511.

(ii) Here putx=2 and h=0.001 in Taylor’s series, we get

t K
Now fod= x*—2x+5 =  f(2)=9
| f0)= 32 =  f(2)=10
{ Fx)=6x = f(2)=12
‘ =6 =  f(2)=6-
fAo=0 = fY2=0
, Put all these values in (2), we get

1 f(2.0001)= 9+(0. 001)10+2l(0 001) (12)+3i(0 0015 6+
=9+0.01+0.000006+0.000000001
! = 9.010006001 =9.01 approximately.
Appronmate value of f(2.001)-f(2)=9.01-9=0.01 approximately.

Example 7. Expand log (1+sin x) by Maclaurin’s theorem in ascending power of x upto first five

terms. i
Solution. Let ¥ = fix)=log(1+sin x). :
By Maclaurin’s expansion for f(x), we have |

2 3 4
y=ft)= (¥)y+ '1{!()’1 Jo * %(yzjo Srlvsle+ i, (ya)o+

{
Now + ¥y =log(14sinx) S (=0
cosx
= 1+sinx (yl)
! —smx(l+sinx)—cos?x {1+sinx) 1
y = = — = - -
2 (1+sinx)? (1+sinx)?  1+sinx
= @2)0="—1
Cos X COs X 1
Y3= 7= =-¥1¥2

(1+sinx) (1+sinx) (1+sin x)

w(1)

{2)

3
i f2.001)= £(2)+(0.001) f"(2)+ (00‘”] L 2o QU iy, )

(1)
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= (rado=-1-1)=1 _ ,
y4=—y1y3—y22 = Yao=-1.1-(-D)"=-1-1=-2
Y5 =YY a4 Y323 =-Y1Y4-3YY3

= ¥5)o=-1.(-2)-3(-1).1=2+43=5 and so on,
. x x2 x3 x4
Therefore, log(145in X} = 0+ = .1+ —.(~1)+ == 1+ =.(-2)+..
1! 2! K1} 41

x2 J‘.’3 X4 x5
=Xt =t ...
2 6 12 25"
Examgple 8. Expand sin (n/4+6) in powers of 6.
Solution. Let f(8)= sin(n/4+6) = F(0)=sin n/4=1/V2
£ (B)=cos(n/4+6) = £ (0)=cos n/4=1/V2
F7(8)=—sin(n/4+8) = £ (@)=-sin n/4=-12
fr(®)=—cos(n/4+8) = f(0)=cos n/4= -1/
FY(®)=sin(n/4+0) = £¥(0)= 1/J2and so on.

The n'" derivative of f(0) is given by
ncg)yesin| 8+ 5+ 1T
f (B).-sm[8+4+ 2]

The Maclaurin’s expansion of f(B) with Lagrange's from of remainder is
i O 8"l -
f(8)=f{o )+ f [0]+~—f (0)+ T —f (0)+...+(n_1]!f" L{0)+R, (D

eﬂ

g" 0 noan
where R, = — f*(t8)= —sin| 10+ —+— |, 0<t<1.
2=/ ) n!sm[ T3 2]
n
8—sm[t9+——+ﬁ]
4 nil

Bﬂ
= sm[t9+ +—— <
2 nl 4 2
lim R; =0

f
=0 [ lim & = ]
TI—szo nl!
=300

Thus all the conditions of Maclaurin’s series expansion are satisfied. Hence, from
(1), the expansion of sin {8+x/4) is given by

wfoo2) 5o 5 5

oy 1], e o o ot e o° ¢
sin 9+Z = 1+ ——-——— to—t———— ..

Now |R,|=

;]
lim |R,,|s lim [

n—pea —eo

Nz T T T TR T T I

STUDENT ACTIVITY

"1, Bxpand-the following functions by Maclaurin’s theorem : log (1 +e%y

2. Expand the following functions by Maclaurin's theorem : log(1+tan x).

sgnlCelffinstractionaliMaterial:#il




/A |

it b ey iyt - st - e

i Taylor’s theorem

D —_

| 3. Hfy= mtan ' x =ag+apx+ap+..+apd+..., show that (n+1)ap,; +(n-1)a,_y = ma,, .

x
4. If e =gg+ax+ aox? +.. 4 ap x™ +... show that

l ‘E - 1 py _ Gn-2 dp_r 4]
: a = a, + + +...+ Fore ™
3 n+] n+l[ n

1 2! ri n!

1.! Expand the following functions by Maclaurin’s theorem ;

l (i) Secx (i) <% i) €"secx

2. Apply Maclaurin's theorem to prove that log sec x= %xz + —!—x4 + L B4

12 45

“lx=ap+agx+ agx? +... Prove that (n+1){n+2)ap,z = n’a,

3., If y=sin

4. Show that :
! ox3 2254 92,5 3,7 ' 2772

j (@) feosx=1+x —=—+ - + +'"+C05(T) x4

| 3! 4! 5! 7! n!
[

x4

2 2x3 22 5 an 2n/2
i) eSsinyx=x+x4-22 o —...+sin| —
,I( 0 3! 5 ( 4 ] n!

n

- 3 (a + b2)
(i) ™ sinbx=bx+ abx2 -?ﬂ—b—bx3 +..+ ——I—x" sin(h tan~! 2) + o
: n! a

—— 2 .
(iv) e coshbx =1+ax + b 2+
| n
2 2 2,32
'l ala® -3b a‘+b<|2 :
||$ +_(~——]x +...+L—]x"cos[ntan'IEJ+...
31 n! a

5. 'Expand the following :

' (i) tan 'xin powers of ( x—- %) (i) 23+7% +x-1 in powers of x-2.

(jii) sin‘l(x+h) in power of x. (iv) log sin x in power of (x—a).

6. ;Show that log{x+hk) = logh+£— L
7. Use Taylor's theorem to prove that
i tan_l(x+h)—tan x+hsm9$ ;

—(hsin®)? ——Sinzza +(hsine)® Si“SBe # oot (=1) (Rsing)? 870
n

where 8 = cot™ ! x

elf:InstructionaliMateria
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48, Ify= ¢ % | show that (1 4x2)Y g g+ 201+ 1)x=11y, 4 +0{n+1)y,=0. Hence, or otherwise,

- . 1y, .
find out the coefficient of x° if ¢ * is expanded in powers of x.
9. I:‘.Jcpann:l.(sin‘lx)2 in ascending powers of x and deduce that

.2 - . . B
g2 = o S 9+22l25m B+22.42 2sin 9+...
21 4! 6!
ANSWERS
- 6 2 .3 4 .5 2 4.3
ST} T A2 S e A SN SUE SO 2 AN SO 011y P UG = . - S
4! 6!- 2 3 24 5 o2t 3
2
2 2
| n n n
ta — |+ x—-— 1+— |- -— 41+—1 |+
5. e [ ) (x 4)/( +16] “(x 4] [ 16]
(i) 45+530-2) +190-2)%+2(x-2)%+ ..
-1/2 2 —3/2 3 -5/2
(iif) sin‘l'h+x(1-h2) +-’52—'h(1—h2) +%[(l—h2) (1+2h2)]_+... .
2 3
(iv) logsina-{r(xv-a)cota—(x 2?) cosecza-c—%koseczacota%..
2 992 242 22242 (2n-2)
8. L 9, 2.x—+-~2-'-2---.vc4+2'2 4 x6+...+—4—(-n—Lx2"+
24 21 4 6! {2n)!

» Let f{x} be a single valued function defined on [a, a+h] such that
(i) all the derivative of f(x) upto (n—l)ﬂ1l order are continuous in f[a, a+h], and
(ii} mx) exists in {a,a+h) then there exists a real number ¢,0 < q < 1, such that

W (1-8)""P
p(n=1)!

1
{n-1)t

2
fla+hy= f(a)+hf‘(a)+%f”(a)+...+ f"‘l(a)+ f"(a+0h)

where p is a given positive integer.
LR
ml—f (a-+8h) which occur after n terms, is cailed the Taylor's
remainder after n terms, The theorem with this form of remainder is called Faylor’s theorem
with Scholomilch and Roche form of remainder.

' (1-0)""
» Forp=1, we getR,= ﬁ f"(a+6h) Then, R,, is called Cauchy’s form of remainder.

= The term R,=

4 .

w For p=n, we get Rn= - F*(a+06h) then, R, is called Lagrange’s form of remainder.

= Let f{x) possesess continuous derivatives of all orders in the interval [a, a+h], then for every
positive integral value of n, we have

2 n=1
Fla+i)y= f(g)+hf’(a)+%f"(a)+.,.+ (:—l]l i (a)+ Ry

n .
where, R,,= % f7{a+8h),(0<08<1).

= If we put a=0 and replace h by x in Taylor’s series, we get

. ' xz " xn Tt
foO=f(0)+xf (0)+E-f [O)+...+—n-1—f {0)+...
This series is known as Maclaurin’s series for the expansion of f{x) as a power series in x.

. 23 Lh-l
we =lix+—+—+..4
2t 3! {n-1)!

<. 1SeltilnstructionaliMateriall




Tafi,r‘lor’s theorem

3. Ify=¢mtan™ x =ag+ax+ap +...+apd+..., show that {n+1)ap, +(n-1)a,_1 = may, .

X
4. If & =ap+ayx+amx®+..+a,x" +...show that

| I N 1 -1, %p-2 Bir , 90
| Uyt = a, + + S +.
" “ n+l n+1[ TR rl

\
TE9T YOURSELF
1. Expand the following functions by Maclaurin’s theorem :
M Secx (i) &% i) esecx
2. Apply Maclaurin’s theorem to prove that log sec x= % ¥+ Tli x4 ‘_;13 NI

- -
3. Ify=sin 1x=a0+a1x+a2x2+... Prove that (n+1)(n+2)a,, 5 =na,

4. Show that :

:. x 2x3 22X4 22x5 23 7 21‘1{2 n
(i} e cosx = 14+x ———+ - + +...+COS 4 +...

X
3 4] 5t 7! n!

2 203 225 . (nn) 2"/2
(i) e*sinx=x+x*-— 1 - tsinf — xt+

: 3! 5] n!

n
2 3 [a +b2)
(i) ™ sinbx = bx +abx + 3a’d b3 T sin(n tan~} -El] +ou
3! n! a
a?-p? 2
(iv} e™eosbx =1+ax Xt
! . _
a2 —3p2 2. 12\3
-3b a‘+b
Jl )x3+...+-(——'-)—x cor{rrttan'1 b)+...
n!
5. E.xpand the followmg
(1) tan"x in powers of [x - %) (ii) 2¢°+7%+x-1 in powers of x-2.
(iiij' sin~Mx+h) in power of x. (iv) log sin x in power of (x—a).
x2 x3
6. Show thatlog(x+h) = logh+ = - >4+ X _
AT

7. Uslq Taylor’s theorem to prove that

| sind

tan™? (x + h) = tan~1 xc + hsin@

~(rsin®)? S22 1 (hsing? 050 1y (gineyt S0

w]iere 6= c()t'1

élfzlnstructionaliMater
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-1
. [fy=¢®" X show that 1+, 42+ [2014 1)x=11yp 41 +n(r+1)y,=0. Hence, or otherwise,

find out the coefficient of x° if e‘a“-l X is expanded in powers of x.
9. Expand (sin )% in ascending powers of x and deduce that

.2 .4 . 6
_sm 8+22‘251n B+22_42 2sin B+...

2 _
67=2 21 4! 6!
ANSWERS
. x2 5)(4 61)(6 " x2 x3 llx4 x5 21;2 41‘3
1. D1+ —+—— Ho () 14xd—- e, ()1 Xt —— 4
o4 6! 2 3 24 5 2t 3

2 2 2 2
TR . T (. Ll I AN S a°
S. (b % '[4)+(x 4)/[”16] “(x 4) 4[”16) *e
(ii) 45+53(X—2)+l9(x~2)2+2(:__c+2)3+...

—1/2 52 -3/2 3 -5/2
(iii).sin"1h+x(1—h2) +1‘2—!h(1-h2) +3‘i[(1rh2) (1+2h2)]+...

(=af o (x=a)

2

(iv) logsina+{x —a)cota —-———cosec a-+-——— 2cosec*acota+...
i 2! 3!
2 2 2,2 2,2 2
1 x%  2.2° 4 22°4° ¢ 2.2%4% . (2n-2)" o
. o_ L 2t /X X .t +
8. 24 O T 6 (2n)! X

E‘ﬁ; bm
» Let f(x) be a single valued function defined on [a, a+h] such that
(i) all the derivative of f(x) upto (n—l)th order are continuous in {a, a+h}, and
(ii) fn{x) exists in (a,a+h) then there exists a real number g,0 < g < 1, such that
’ hz " hn_l n-1 K (1 _B)n—p
fla+h)= fla)+hf (a)+af (a)+...+(n_l)!f (a)+W

M (a+6h)

where p is a given positive integer.
W {1-e)""

P{n-1)!
remainder after n terms. The theorem with this form of remainder is called Taylor’s theorem
with Scholomilch and Roche form of remainder.

W {1-e)""
= Forp=1, we getR,= —-PE—[HT}TI " (a+6k) Then, R, is called Cauchy’s form of remainder.

= The term: R,= f7(a+6h) which occur after n terms, is called the Taylor's

[£3
» For p=n, we get Rn= ETf“ {a+6h) then, R, is calied Lagrange’s form of remainder.
= Let f(x) possesess continuous derivatives of all orders in the interval [a, a+h], then for every
positive integral value of n, we have

h2 ! hn—l _
fa+hy= fla}+ i (a)+ o f (ﬂ*---’fmfn Ha)+Ry

hn B
where, R,= —Jf" (a+6h),(0<B<1).
= If we put a=0 and replace i by x in Taylor’s series, we get
- x2 T xn Tl
fO0= FO)+x f (0)+Ef (0)+...+;;~f (0)+...

This series is known as Maclaurin’s series for the expansion of f(x} as a power series in x.
2 . x3 xn—l
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Tay{l“or’s theorem

'i P T

i\ X
» 51nx-x—§—!-+gl—— - ¥xeR.
: m(m-~1). 4 .
- (_1+x]m=l+:nr1x+—(--—)x2+...-t»x’ITI
{ -I x? X3
*.-]193[1+x]=x-7+-?-__,, whenever -1 <x=1,

. . n-1 n
- af= l+xloga +12|—(loga)2 fot -""——(lc-ga)“_1 +£;-aex(loga]" ,0<B<l,
! nl

{n-1p

FILL IN THE BLANKS
|

1l
1. Nllaclauﬁn's theorem is a particular case of

hn(l _ e)n'-]

'F. = =
2. Forp=1, R, P11

TRUE/FALSE

f{a+86h) then R, is called

Write ‘T’ for true and ‘P’ for false statement.
1. Maclaurin’s theorem is a particular case of Taylor’s theorem.
2. Taylor's theorem is a particular case of Maclaurin's theorem.

MULTIPLE CHOICE QUESTIONS

(T/F)
(1/F)

Choose the most appropriate one.
1. Iff(x) is an even function then the value of £°(0), if exists is equal to :

(a) 1 Y (c} 2 (d) «
2. If ala__functionfis continuous on (g, bl, differentiable on Ja; b[ and iff'(x) = 0¥xela, b[ then
fixdhasa:

(a):[ constant value throughout [a,b] (b) constant value only on the end points
(c). constant value throughout Ja,b[ {d) none of the above
3. If f(x) and g(x) are continuous on [a,b] and differentiable on la,b[ and if £ (x)=g"(x)
thr'loughout the interval ]a, b[ then :
() fx)=g(x) Yxela,bl (b) flx)#g(x) vxela,b{
{(c) f(x) and g{(x) differ only by a constant (d) neone of the above
4. If fis continuous on [a,b) and f"(x}=0 on Ja,b[ then : ’
(a) fis decreasing on Ja,b( (b) fis decreasing on [a,b]
{c) _ fis increasing on [a,b] (d} none of the above
5. I f(x) is an increasing function on x, then :
(a) ;f'(IJEO {b) fO)=0 (& fx)>0
6. If f1(x) is positive at a point x=a then in the nbd of g
(a) f(x) is positive {b) f(x) is increasing
(€} f0x) is negative (d) none of the above
7. The function f(x} has equal values at the point x=a and x=b then :
(a) there is a maximum of f(x) between g and b
(b} there is a minimum of f(x) between a and b
(c) Ithere is @ maximum or minimum of f(x} between g and b
(d) none of the above
8. If f"(x)>0 at points in Ja,b[ then the function s :
{a) slgrictly increasing
(c) constant

@

none of the above

(b) strictly decreasing
(d) none of the above
9. Ifa fﬁnction Fx) satisfy the condition of mean value theorem and F)=0 vxela,b[ then :
(a) fx)=0 (b) f(x) is an increasing function
i

b

]
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(c) f(x) is constant (d) none of the above
10. The value of ¢ of Rolle’s theorem for the function f(x}=sin x in [0,x] is given by :
(a) n/3 (b) n/2 (¢ n (d) none of the above
11. The value of ¢ of Lagrange’s mean value theorem for f(x)=x{x-1) in [1,2] is given by :
(a) 1 (b) 3 (c) 3 (d) noneof t.he above
4 2 4

12. Lagrange’s form of remainder after n terms in Taylor's development of the function ex in a
finite form in the interval [a,a+h] is :

i+l
@ E (a+6h h a+6h R"

oy b) '(We (c) & 8h (d) none of the above

n!
ANSWERS
iFILL iN THE BLANKS

1. Taylor's theorem 2. Cauchy’s form of remainder
TRUE/FALSE
1. T 2. F

MULTIPLE CHOICE QUESTIONS
1. (b} 2. (a) 3. (¢ 4. (0 5. {(c) 6. (b) 7. (©
8. (a) 9. (¢ 10. (b) 11. (b) 12. (a)

o030
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o x3 xs
-» S!l'lx:x——éT‘FEI—'—... YxeR.

|
i
Taylor's theorem

m(mql)x2+...+xm

- tl+x]m =1+mx+

. x% x3
E - log(1+x]=x—w2—+—3——..., whenever -1 <xx1,

f L 2 n-1 i n
{ »aﬁ= 1+xloga +%(loga)2 +o.4 (:_ ol (Ioga)" 1, %aa"[loga]" ,0<B<1,

FILL IN.THE BLANKS

1}. Mﬁclaurin’s theorem is a particular case of
N h"(1 - gy
R =1, R o= =
2 Forp =1, R, pi—1)1
TRUE/FALSE

Write ";fl_" for true and ‘F’ for falge statement.

SMa+6h) then R, is called . |

1, Ma'r:claurin’s theorem is a particular case of Taylor’s theorem,

(1/F) |
2. Taylor's theorem is a particular case of Maclaurin’s theorem. (T/F) ‘

MULTIPLE CHOICE QUESTIONS
Choose the most appropriate one. |
1. Iff(x) is an even function then the value of £(0), if exists is equal to : EI
' (21 ®) o (©) 2 (d) o ‘
2. Ifa function £ is continuous on [a, b], differentiable on le;blandiff () =0vxe la, b[ then !

| fG) hasa:

(a} constant value throughout [a,b]
(9] ébnstam value throughout Ja,b]
3. If f(x) and g(x} are continuous on
throughour the interval la, b[ then : |
(@) fix)=g(x) ¥xela,b] (b) fld=g(x) vxejab(
(¢} fix} and g(x) differ only by a constant (d) none of the above
4. If fis continvous on [a.b] and f"()=0 on la,b[ then : ~
(a) fis decreasing on Ja,b[
(c) fis increasing on [a,b)
5. If fix) is an increasing function on X, then :

(a} f'(x)=0 ®) f =0 © [ 0)>0 (d}
6. If f'(x) is positive at a point x=qa then in the nbd of a :

(a) f(i-) is positive

{€) f(x) is negative

7. The fuhction S(x) has equal values ar the point
(a) thére is a maximum of f(x) between ¢ and b :
(b} there is a minimum of f{x) between g and b l
{c) thelr"e is a maximum or minimum of f(x) between a and b 'i
(d) non’p of the above ‘

8. Iff'(x)::>0 at points in Ja,b[ then the function fis :
(a) strig::t]y increasing (b) strictly decreasing
(c} constant

: |

(d} none of the above _

9 ifa fun{:tion_f(x) satisfy the condition of mean valye theorem and f*(x)=0 ng}a,b[ then ; ‘
(a) f)=0

(b) f(x) is an increasing function

(b) constant value only on the end points :
(d) none of the above

[a,b] and differentiable on la,b[ and if FO=¢"00 ‘

(b} fis decreasing on {a,b]
(d) none of the above ‘

none of the abave |

(b} f(x) is increasing |
(d) none of the above
x=a and x=>b then :




- -{Salf\instructionaliMateriall |

CALCULUS

(c) f(x) is constant - (d) none of the above

10. The value of ¢ of Rolle’s theorem for the function f(x)=sin x in [0,x] is given by :
(a) n/3 (b) =/2 © = {d) none of the-above
11. The value of ¢ of Lagrange’s mean value theorem for f}=x{x~1)-in [1,2] is given by:

(a) % ) 3 {c) 754. (d) none of the above

2

12, Lagrange's form of remainder after n terms in Taylor’s development of the function ex in a
finite form in the interval [a.a+ hlis:

n h"+1 n
@ % (a+0h (). -(me‘”eh © %—l-eeh {d) none of the above
ANSWERS

FILL IN THE BLANKS'

e e et

1. Taylor's theorem 2. Cauchy's form of remainder

TRUE/FALSE -

1. T 2, F
MULTIPLE CHOICE QUESTIONS

1. (0 2. & 3 4@©@ 5 @ 6 ® 7 ©
8. (a) 9, (c) 10. (b) 11. by 12. (a)

0a0a




