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MECHANICS
CHAPTER 1: VECTORANALYSIS

Scalars and vectors, dot and cross products, Triple and Quadruple product of vectors, Scalar and Vector fields, Gradient of a
scalar field and its geometrical interpretarion, Divergence and Curl of a vector field.

CHAPTER 2: ROTATIONAL DYNAMICS

Rigid body motion, Rotational moticn, torque and angular momentum. Moment of inertia and its calculations for disc, cylinder,
spherical shell and solid sphere. Body rolling down en an inclined plane. Fly wheel, Motion of Top.

a

Concept of central force, Kepler's laws of planetary motion, Gravitational law, Gravitational potential and fields due to spherical l
shell and solid sphere. Two particle central force problem and reduced mass. Motion of planets and statellites.

CHAPTER 3: PROPERTIES OF MATTER B
Elasticity, Hook's law, Elastic constants and relation among them, Beam supported at both the ends, cantilever, Torsior: _'.if
cylinder, Maxwell's needie and Searl's method. -

Streamline and turbulent flow, Equation of continuity, Viscosity, Poiseulle's law, Critical velocity, Reynold’s number, Stoke's law p
and terminal velocity. Surface tension and surface energy, Molecular interpretation of surface tension, Pressure on a curved
liquid surface.

UNIT 4 : RELATIVITY

Reference system, Inertial frames, Gallilean invariance, Michelson-Morley's experiment. Einstein's postulates for the special
theory of relativity, Lorentz transformation equations, Length contraction and Time dilation, Concept of simuitaneity,
Relativistic addition of velocities. Variation of mass with velocity. Mass energy equivalence, Momentum-energy relations.

CHAPTER 5: OSCILLATIONS

Potential well and periodic oscillations, Case of harmonic oscillation. Differential equation and solution of simple harmonic
oscillations. Kinetic and potential energy. Examples of simple harmonic oscillations. Spring and mass system. Simple and
compound pendulum. Torsional pendulum.

Superposition of two simple harmonic motions of same frequency along the same line Interference, Superposition of two ~
mutually perpendicular simple harmonic vibrations of the same frequency, Lissajous figures, case of different frequencies.
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Ly UNIT

T VECTOR ANALYSIS

| LEARNING OBJECTIVES -

. H e Scalar and Vector Quantities ~
« |, ® Scalar Product or Dot Product of Two Vectors
e Vector Product or Cross Product of Two Vectors
' l ® Student Activity
® Scajar Triple Product A, (E’xa
. Vector Triple Product Ax (Ex a
;& Student Activity
* v, & Field -
A ;—i‘ e Gradient of a Scalar Field
] The Divergence of a Vector Field
© 1A # CudofaVector Field - -~ _
= o Summary ) ¥ > %
- I_i'-__ 0 Test Yourself
LEARNING OBJECTIVES
Aﬂfter going through this unit you will learn :
I ® Scalar and vector quantities in detail along with their products.
1: e Graphical and geometrical representation of the quantities and the products.
- & Various applications inform of field, Gradient, Curl Divergence.
-
* 1.1. SCALAR AND VECTOR QUANTITIES
_ “ Physical quantities are of two types :
"7 () Scalar quantities (ii) Vector quantities
(i) Scalar Quantities : Scalar quantities are those which contain magnitude only and
* do not contain direction. Mass, length, time, density, speed, pressure, encrgy, work,
. temperature, specific heat, charge, current, potential, frequency etc. are scalar quantitites.
Scalar quantities can be added, substracted and multiplied according to the rule of

elementary algebra.
(i) Vector Quantities : Vector quantities are those quantitics which contain both
~~ magnitude and direction. Displacement, velocity, force, weight, momentum. stress, electric
» and magnetic intensities etc. are vector quantities. —~
. For a quantity to be a vector, it is necessary that it satisfies the parallelogram law of
addltlon »
+  (a) Graphical Representation of Vectors : Graphically, a vector is represented by
a line with an arrow-head, in which the length of the line denotes the magnitude of the
quantlty and the arrow-head shows its direction, as shown in the fig, 1.

: 4':rrow -head
p The vector is denoted by A and its magnitude is denoted by
b A or |A] A !
¢ Equal Vectors : Two vectors are said to be equal if they have -
g L

* the same magnitude and direction.

_)
In the above fig. two vectors A and B are equ’t! i

- =
A=B

\ - Vecior Analvsis
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Null Vector or Zero Vector : } A vector is said to be null vector 1f 1t has zero magnitude.
It can be written as 0.

Addition of Vectors : Let us consider two vectors A and B as shown in fig. 2(a).
Their sum is a vector R, which is obtained by joining the tail of vector A'to the head of
vector B fig. 2(b).

) x K
—
27 B
_ A
@ ; Y
Fig. 2. ® 1

) Pmperfies of Vector Addition :
(i) Vector addition is commutative : This means that addition of vectors is
independent of order of vector added i.e.,

ArB=B+A

From the fig. 3
R=A+B=B+A
(ii) Vector Addition is Associative : This mean that P
in addition of vectors_more than two : e, A, § and X

resultant of adding?A to ¢ the s _;n of B and 18 equal to s
adding ﬁto the sum of A Aand B ie. _
A+(B+8=(A+§+? o

Sgbstraction of Vectors : Let us consider two gctors &g
and B as shown in the fig. 5(a). We have to subtract B from 4

21

Therefore, to_subtract a vector B from a vector Z,) we first
convert Binto — B by_ghanging the direction of B. Now join the
head of A to tail of B and Lh n tail of A to'head of B. Tt is the
resultant and is denoted by R ﬁg 5(b}.

A
.,
LN 4\; ; -1
; ~ &\
(b}

+ 1.2. SCALAR PRODUCT OR DOT PRODUCT OF. TWO VECTORS )

The product of the ﬁnagnirudes of two vectors and the smaller cosine of the angle
between them is known as scalar or dot product of two
vectors

Let A gl)d ﬁ) be two vectors, then their scalar product is
denoted by A+ B and is defined as

4? . E)= ABcos B
_ - =
where @ is the ang_lf:_> between A and B and A and B are the
magnitudes of A and B, respectively. The scalar product of two
vectors is a scalar quantity and may be positive as well as negative.
Properties : (i} The scalar product is commutative i.e.

y !
;‘L—_}'?-_—E-).;{) { - —_—




(ii) The scalar product is / distributive i.e.

._)

Ae(Br+Cy=ArBrarC
(iti) The scalar product of two vectors vanishes when the vectors are at right

angles i.e.

A B'=ABcos 90° =0
{(iv) The scalar product of two vectors is equal to the product of their scalar

~ magnitudes when the vectors are parallel i.e.

A+ B=AB cos 6 =T
0=0"
' - A §)= AB cos 0\“:

A B=AB - [ cos0 =1} ‘

" (v) The scalar product of a vector by itself is equal to the square of the magmtude
of. that vector i.e: Ve

o~ /=

A F(’: A2 )

AAA

l {vi) Thgwscalar_ products of unit vecm‘rs i j,‘k have the following relations.

A A A A AA
(@ivj=jek=kei=0 —
N A M A A A :"_{ h

(byisi=joj=+k k—_,lL -
(vu) The scalar pmduct of two vectors is equal to the sup of the products of
thelr cormSpondmg x, ¥, z-components. :

- e

S
. Proof : LetA and B be two vectors Now in components
A Ay :+A).; +4, k !
d: B=B, i+B ;+B x

| Their scalar product is given by

- —3 A A A A A A
| A*B=(Ayi+Ayj+A k) *(Byi+B,j+Bk)
using the relations

ad

we get

= =
A*B=A B +A,B,+A,B,

« 1.3. VECTOR PRODUCT OR CROSS PRODUCT OF TWO VECTORS

I .
The product of the magnitudes of two vectors and sine of the angle between them in
a direction perpendicular to the plane comammg the two vectors, is known as vector product

or cross product of two vectors. i & C AxB
Ji: The direction of this resultant vector will be l H__:')

perpendicular to the plane containing the two vectors. The -

cross product of two vectors is a vector quantity, so it is

if A ar_l_g B are two vectors then vector product. is
denoted by A x Band i is defined as -

known as vector product ) , /Q\ \
4* »

g.
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Mechanics I) xB=ABsin8n= ?(say) !

t
‘ where 7 is the unit vector perpendlc_Lar to _;he plane™ contammg A andB E):s also

perpendicular to the plane containing A and B.
ki ]

Properties : i
{i) The vector product is not’ commutative i.e.

AxB#BxA .
(ii} The vector product is distributive i.e.
AXBr O =AXB+ART

(iii) The magnitude of the vector product of two vectors at right angles is equal
to the product of the magnitudes of the vectors. i.e.

— A% B'=AB sin 90° .

D et L1

l
3
1
- =
i . AXB=ABn }
3 .
(iv) The vector product of two paratlel vectors is a null vector (or zero). i.e.
For parallel 6 = (0"

:?XB —ABsin 0°

AxB 0

1 (v) The vector product of a vector by itself is a null vector (zero) i.e.

- -
AxA=0
A A A
(vi) The vector products of unit orthogonal vectors i,j, k have the following
relations in the right-handed coordinate system.

MNOA AOA A

| & @) ixj=—jxi=k
oA AAA

jXbk=—kXj=i

A Fa AA A

and kxi——ixk j

ANA A A

(b) iXi=jxj= kx.{ 0
The cyclic order is to be strictly maintained.
(vii) The vector product of two vectors in terms of their x, y and z-components

can be expressed as a determinant,

e

Proof : Let A and B be two vectors such that
- A A A
A=Aci+Ayj+Ak

=2 o A ”
1 B=B.i+B,j+Bk 3
! Their vector producl is - T - .
- A s
AXB (Ax ;+Ay;+A k)x(B ;.—B.;+B A) ra=
] =Ax8x1xx_+AxBys;<J.+A B :xk
- +A ijx:+A Bijj+A szxk

+A,B, er+A B, kXJ+A B, kxk

We know that
HN A A A A Fa
;x:-;x; kxk=0

A A A A

’ and :x;_—;x:—lf
. A HNA
J'Xfu.‘*k)(j—!

I4 Self-Instructional Material




—~ A A A A A -
kxi=—ixk=j N -
theln we get ] N
| AxB=1(Ay B~ A By)-l-J(A B.—A B)+k(AcB,~A,B)
A Fa
i k
l = Ax Ay AZ "
. |B. B, B,
. jLSTUDENT ACTIVITY - -

1. ' When is the sum of two vectors maximum and when is it minimum ?

-3 - .
2. 1If a vector A is multiplied by a scalar m what will be the resultant vector ?

v

]

|
[
i .
'Give at least two examples, each of scalar and vector.

Vector Analysis

Self-Instructional Material 5
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« 1.4. SCALAR TRIPLE PRODUCT A. (Bx O

It is a scalar product of one vector with vectora?roduct of two vectors. Obviously its

resultant will be a scalar. It is denoted by A . (B X
Now we represent the scalar triple product in the form of vector components as

follows:
Let us consider X)= Ay T+ ij"\+_A,_ k
B=8.1+B,]+B,k ;
and C= Cxi'\-f- C).f+C k
Po7 ﬁ-:(sc -B,C)
. -
BxC=|B. B, B,|+]B,C.-B.C)
C: & C| +k(B,C,=B,C)
and Z.(BxB=(a+54,+84) . (78,C,- B, c)
+](B,Cy~B, c,_)+ic‘(B C,~ B, Cy)]

But =l i=k k=1 :
t.j=0k=k7=0
R
X (BXC)= Ay (B, C,= B, C;) + Ay (B, Cy= B, C) +A, (B, C,~ B, C))
" Ay A, A, ~
=|By B, B,
¢ € C

() Geometrical Representation of Scalar TY
Triple Product : The scalar triple product 43

-
A.(Bx a geometrically represents the volume of the ) s N
paralleloplped having its three sides as three given .7
vectors A, B and 8 This is proved as follows : < Y
We know that
_)
Bx C=hBCsin ¢ A
where 7 is a unit vector ip the direction perpendicular e 7 »X
to, the plane of B'and C'and ¢ is the angle between B
Band Fig. 3.

If the angle between n (i.e. direction of B X a and A be 0, then by definition of scalar
product we can write.

.?. (E)x a = A (magnitude of E}x ?cos 9
=A (BCsind)cos 6 [.. magnitude of unit vector is 1]
Now by geometry of fig. 8
BC sin ¢ = area of parallelogram (made by E) and a
and A cos 8 = Projection of A along n ie. the height of the parallelopiped.
Hence A (§> X a = (base area x height of parallelopiped}
= Volume of parallelopiped

(b) Properties of Scalar Triple Product : (i) In scalar triple product dot and cross
¢an be interchanged.

ie. _).(Bxa=(A_x§}.8




(ii) The value of scalar triple product does not change by changing the vectors in
cyclic order while in non-cyclic order its value changes. i.e.

Z). (?xaz'?. (8XB=?. (X)xﬁs

1 - ]
and f.(?xES:—EZ.(fxa:-A.(?xE}
‘ (iii) Scalar triple product will be zero, if two vectors are equal i.e.,
_..)
A (AxS=0

or ' [AAC]=0 )

I (v If A_) 1—3—) and 8are coplanar then scalar triple product will be zero.
| (v) If three vectors X) E) and E)are such that Z} + E)+ ?= 0 then

+ 1.5. VECTOR TRIPLE PRODUCT A'x (Bx ©

It is the vector product of one vector with vector product of two other vectors.

- . . =
Obviously, its resultant will be a vector quantity. It is.denoted by A x (B x-a and is given |_

by -
. Now we have_to prove this retation :
LHS. =AX(EXO

Fud N
. . P ) @
=(iAc+fA,+RA)x B By B, [
. ¢ G l

. - F
= (A +fA,+ kA x (B, C,- B, C)) + /B, Cx - BoC) +k (B, €, - B; C,)

Using relations )
Fat

ixi=0 ?xf:ﬁ j“x;=—2

fxf=0 fxk=t Exf=-t

Exk=0 Qx?:}“ ?xﬁ:i‘f
We get

X Bx T =8 (B, C,— B, Cp) Ay~ (B, C,— B, C)) A,
-k(B,C,-B,C) A, +1(B,Cy- B, C A,
+7B,C,-B,C)A,~1(B, Cx—B,C) A,
={[ByA, G, +ByA; C;— CyAy By~ Cr A By
+] (B, A, C;+ ByA, Co— Cy A, B,— Cy AL By
+%[B,A, C,+B,A; C— C,A B~ C,A,B) ... (1)

“ Now RHS.=B@A.C-C(A. B -

= (’f‘.{;x + j"By__+_ié B) [Ax Cx+Ay Cy + A, C;
— (@ Ce+7Cy+ R C) (A B+ Ay By+ A, C))
‘ =[7B, (Ay Cy+ A, Cy+ A;C) — 1 Cy (A By + Ay By + A, B)]
+ 7By (A G+ Ay Cy+ A, C) =T C, (Ax By + Ay By + A, By)]
| b +[R By (Ax Cx+ A, Cy+ A, C) —k C, (A B, + Ay By + A By

Vector Analysis

Self-Instructional Material 7
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Mechanics =T[BcAy Gy + By A, C, 2 Cy Ay B, — Cy A, By)
+](By Ay Cy+ By A, C;~ C, A B~ Cy A, B
+8(B,A,C,+B,A,B,~C, A B,~C,A,B] ..(2)
From equations (1) and (2) we find that
; LHS. = RHS.

Hence ‘X)X(E)X8=B(A.8—€(X§}
In the determinent form it may be writen as

g C|

.f AF a7

|- ) This relation is known as Lagrange’s identity,
i (a) Properties of Vector Triple Product : (i) Vector triple product does not obey ~
! associative property i.e. b iy

. Ax(BxE)’:(Ainx?' -

(ii) Vector triple product does not obey commutative law i.e.,

Z}x(?xa#?x(gxﬁ’j‘
« STUDENT ACTIVITY

1 4. Show that in a scalar triple product the dot and cross can be interchanged.

oo
4

5. Prove that when two vectors are equal or parallel then the scalar triple product is zero.

8 Self-Instructional Material




+ 1.6. FIELD

: The region in space in which a function u is defined at all points, is known as
- ﬁeld Thus in cartesian-coordinates u = f (x, y, z) specifies a field.

(a) Scalar field ::The region in space in which a scalar quantity is continuous and is
defined by a single value at every point of the posmon variable is called a scalar field.

“ If ¢ is a scalar function of position variable 7 with a set of co-ordinates (x, v, 2), then
we denote the scalar field as ¢ (7* ¢ (x, v, 2). -

i Examples : (i} Variation of tempreture at various points along a ‘metal rod one end
of Wthh is heated while the other,end i$ kept cold is an example of scalar temperature
flCl]d

+ (11) Variation of electric potential at various points surrounding a charged body is an
—example of scalar potential field. B

(b} Vector field : The region in space in' which a vector quantity is-continuous and
is defined by a single value at every point of the position variable is called a vector field.

= If V'is a vector function of position variable 7 with a set of coordinates (x, ¥, z), then

i

we denote the vector field as
V=V 0 ;

| Examples (1) The electric field is an example of vector ﬁeld ‘(i) The gravitational
ﬁeld acting on a body is another example of vector field.

. 11‘l .7. GRADIENT OF A SCALAR FIELD

| Let us consider a point P in the scalar field havmg position vector 72+ v T+zk
and let the value of the scalar field at'this point be ¢ (7— o (x,y, ), where ¢ (x,y,2) is
contmuous dlfferentlable function of x, y and z. Now

—51 = rate of change of ¢ at point P along the X- direction

ﬁ = rate of change of ¢ at point along the Y-direction

andt £ = rate of change of ¢ at point along the Z-direction’
This means that ¢ has different rates of variation along different directions. The
quzintity (gdleg 7 aﬂﬁ) is known as gradlent of ¢ or grad ¢ ie grad
o d ¢
ﬁr\ ayn ﬁﬁ [ Ay aj\"‘_ ) ?‘P

Here ?(del) is called vector differential operator.

'Fromgradq: ?q; £z+£ ﬁ@ Lhegrad¢is
vector due to 7, }andﬁ

. (a) Physical significance : Now, let us have a scalar
field and let ¢ and ¢ + do be its two level surfaces, very
close to each other as shown in the fig. 9.

Let the scalar quanmy at these surfaces be ¢ and
¢ +do, respectively. Let 7 and 7% dr~ be the position
vectors of points P and R with respect to origin O. -

The distance between P and R is

Fig. 9.

Vector Analysis

Self-Instructional Material .9
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PR=OR-OF
=ridrirtdr . -
Further. let PQ represent the normal to the surface at point P, hence P_é an

represents the minimum possible distance between ¢ and ¢ + 4. Also Let 7 be a unit
vector along this direction PQ and 0 be the angle between PR and PQ.

Now it is evident that the rate of change of ¢ at point P will be %E along
PR and %? along PQ.
In APRQ
PO=PRcos§ or 8h-arcose D
or i J— ﬁ ﬁcose e (D)

“orcos @ or

. %? will be maximum when
cos9=1 or 6=0

Thus, %? is maximum rate of change of ¢ with distance and it will be a vector having

magni!tude %E and direction along 6 =0 i.e. along normal to the surface at that point. This

vector is called the gradient (or grad) of a’scalar at that point and is expressed as

£

grad o= %Eﬁ

K

Thus, the gradient of a scalar field ¢ at any point is ‘always a vector quantity,
whose magnitude is maximum rate of change of ¢ at that point and direction along the
normal at that point.

It is also called geometrical interpretation of gradient of scalar field.

Example : The potential field produced by any charge and consider an equipotential
level surface (of potential V). Then evidently, grad V at any point of this surface will
represent a vector, which is equal to electric field intensity E

i.e. Electric field E) =~ grad V
E=-Vv

(b) Gradient ¢ in Rectangular Coordinates : Let ¢ be a function of x‘, y, z then by
definition of partial derivative

_9 9%  0d¢
, d?—axdx+aydy+azdz 3
we know from the above
grad ¢=%¥3

~

where 1 = unit vector
On multiplying by d7on both sides }

T (gradti))d?’=%$3 dar’

=%Edrcose [ a.mdrcose]




_9%
_axdx
=d¢
From eq. (3)
_36, 3 . 3
d¢—axdx+aydy+azdz
Hﬁnoe (grad¢).dr_)=%.dx+%.dy+g%.dz )
-: =[?§+f%§+£%§).(dx?+dy~j\+dz2) ey
” Now
i P+ gk
d_de;+dy;+dzﬂ
" Hencebyeq ) weget ¢ ° %
|. grad ¢:z§¢—+;%+££ Y )

wlilich represents the grad ¢ in terms of rectangular coordinates.

]-'i Again, by definition operator

| V=242 £
ay oz

s0 by eq. {(5), we get

]|' grad ¢-—;£ 511 ﬁﬁ ?q)

ie. grad ¢ = ?q:
.. 1.8. THE DIVERGENCE OF A VECTOR FIELD

: The divergence of a vector at any point in a vector field is always a scalar quantity
equal to the amount of flux per unit volume diverging from that poin
_;f Ax, A 2) be any vector field then the divergence of that vector A is denoted by

diw AorVv.A and given by

I divA:?.A:[faiJr}‘%wa%}("‘mx+j"Ay+1’2Az)

} 5 04, 34, M, "7 - 4
V. ox 9y dy +3_z

div A

div A is a scalar quantity and this is very useful in the principles of Hydrodynamlcs and |-

Electromagnetism.

Now we have to calculate the value of div A For this, consider .2 véry small
paralleioplped as shown in the fig. 10. in a vector field. I_‘gt the'sides of paralleloplped be
along x, y ' and z-axes and their lengths be dx, dy, dz. Let A be the value of vector at centre
0 of parallelopiped and its components along x, y and z-axes are A,, A and A, respectively.

The rate of change of A, along x-axis may be written as its dcrwatwe with respect

dA A,
to —a;x and consiquently, the increase in magnitude of A, will be o % dx. Therefore the
total magnitude of x component of A at point Q is = x component at O + increase in it from
Oto Q i

Vector Analysis

Self-Instructional Material 11 _
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1 dAx
=Ax+ T —dx
T2 ox
1 dAx
Similarly, we can say that at point P, it will be = A, a—dx
1 9A i 9V,
Y Ay"i?yxdy Vimg g U2
F 3
B T - / ~
F
i
A -~ %
vy
' | & s 4 |
Ay G dx — oo ..-,)ca_”" e & -
X C vy
[ G »X
DL 4
O L
" A
oA, " Z 17
Ayt 5 0 X
Fig. 10,

Here negative sign is taken due to point P which lies on negative direction of x.

Since the flux through any small area is defined as product of area and normal
component of vector on this area, thus

(i) Flux through the face EFGH (area = dy dz) will be *

b

0A
=[Ax+l—idx]dydz

2 Ox
(i) Flux through the face ABCD whose area dy dz will be
_ [A 104, ] 4
=TTy T v

£
Here positive and negative signs are taken according to the direction.

So, the net excess of flux leaving or diverging from the parallelopiped along x ClIl'CCtIOl'l
will be.™ )

. 1 9A 19
[At-}--z' a"dx)dydz (‘M x=3

X 1, .
. dx)dydzz

—~

=5
Similarly, we can say lhat the net excess of flux leaving the parallelopiped along

¥ and z-directions will be

aA"dxd dz and aA"dxd d
ay Y aZ an oz Y az

Hence, the total flux diverging from the parallelopiped (of volume dx dy dz)
(.9 Ax BA). dA;
_[ ax T ay 0z dxdydz

or the flux diverginé per unit volume will be
dA, JA, JA ,

_8x+ay+8;5_ e (D)

This represents the div of the vector at that point i.e.
o_0A; 34, JA ’
y 2%

de-

o dy . oz




T
~— ‘
Example : In the case of flow of any fluid in any region, if A represents the velocity
of fluid then div A gives the rate at which the fluid diverges per -unit volume from that
point. N “ 2
If div A is positive then this means that the density of fluid is decreasing and if div
A’is negative then this shows th=* the density of fluid is increasing at that point.

- _ -
Div A in terms of operator 7': We know in terms of components Vand A may be
written as’

! y . 0z .
ahd A=A+ A, 44 R : z

l - ? ?:(?%1}‘%+2%} (Ax:+ij+Az£) }
_ dA, dA, JdA;-
T oox * ady 4z

Hence -
—) aA aA BA =
: de ? ax+ay+8z.
| This is the desired result. *

"' 1.9. CURL OF A VECTOR FIELD

~ The curl of a vector function at any point in the non-lamellar vector field or non-curl
field is the maximum line integ;al of the vector, computed per unit area at that point.

. Consider a vector field A, the magnitude and direction of which, is a function of
position coordinates at a point, then the curl of the vector field A'is denoted by curl A and

given by .
A A >
2 2 2 A
curl X= 3 Iy & E R
i Ay Ay A; . -, i
~ Inthe adjacent (fig. 11) anon-lamellar field is represented g ]
bjr several lines of flow. Now we consider a plane rectangular e ! >
area in the field. When the area is perpendicular to the field ! -
(as shown by position 1) then the line integral round it is zero "
because no line of flow lies along its boundary. But when the Fig, 11.

area is parallel to the field (as shown by positions 2) then the :
lme integral round the boundary has a finite value because the value of the vector at the
upper edge would be different for different orientations. The maximum line integral
computed per unit area along the boundary is the curl of the vector field.

. (a) Physical Significance : (i) When a rigid body is in motion then the curl of its
linear velocity at any point gives double its angular velocity-in magnitude and direction.

(i) When a current is passed through a conductor, then the curl of magnetic field at

a nearby point represents the current flowing per unit area ai that point. So curl of magnetic
field is called magnetomotive force.

I {b) Expression for Curl of a Vector Field : Let us consider an infinitesimal
rectangular area PQRS at point O, where A has the components of magnitudes

Ay A, and A, as shown in the fig. 12. Let the sides'dv. dy be parallel to the x- and-y-axis,

Vecior Anaivsis

“Self-Instructional Matericis 1y



ﬂ&echankm

14. Self-Instructional Material

so that the normal to the area is along the z-aris. The arrows on the sides show the directions
in which the components of A act. Since the rectangle is very small therefore the

components of A at the middle of any side may " Ay 3
be taken as the average value along that side. \_) 4/-
Le.
' ) mR
long PQ, A~ 194, ‘
along PQ, 4, -7 % = dy
194 dy 0 £ ox
along OR. A, + ) ——y-a dx ) / = Ax?
1 aA . ‘9( :
239 ° Azks >

: P dx Q
along PS, A —1& dx Fig 12.
V2 ox )
Therefore, the line integral along the boundary PORS .
*
1 0A, 1 94
(2 e, S

dA, 0A
| ¥ _ X
[ ox oy )dxdy

Here dx dy is the area of the element, so the line integral per unit area is

ox dy

- By definition, this is the magnitude of the component curl of X)a!ong Z-axis re.

y
. aA -8A; s .
curl, A [ Ix W )l? i
; ilarly, al Iy A= A 94 )
imilarly, along y-axis cur ( % o J
| . - (0Az dAy \a
and along x-axis curly A = [ P 9z i
On adding these three components, we get . _
3, 3y, 0Ac 34, \s (34, 34,
curIA (ay 0z ] ( oz dx ]”H-( dx Iy )ﬁ
A A .4
! J
o |9 9 @
curl A= 3% 3 3z
A, A Al 1
%. .
(c) Curl A in terms of operator ?: Now we have to prove that
curl .? = ?x Z-)
we have 7
Pxa=(d 0,202 ifc Ay T+ Ay T+ AL R)
ox ay
using : i S
ixf=fxf=kxt=0"* g
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A A
IXj=-} s
Ixk=-kxj=?
and z 2X?=—?X£=_}\
; (
VxA= \%?4‘% j\+a%£]x(A ?+Ay;+A l’c\) ’
b — (0dA, B_AX A (0A, O0A, 04, JdA,
‘ o Txas dy oz J£+[az-8x] (8}:' dy Jﬁ
;\ j\ ﬁ ) M B /L"__
I A R N ) )
T | ox dy 0z
‘ Ay Ay A
?xrz_):curlz?-
' Thus, the curl of a vector is always a vector quantity. /

- . . e . . -
A vector A'is said to be irrotational if its curl is equal to zero i.e. ?XA =0.

« | SUMMARY ' ! /

« || Physical quantities are of two types : (i) Scalar quantitiés™ (ii) Vector quantitie’s

« |' Scalar quantities are those which contain magnitude only and do not contain direction.

« . Vector quantities are those quantities which contain both magnitude and-directi%.

« 1 A vector is said to be null vector if it has zero magnitude. It can be written as 0.

« |1 The product of the magnitudes of two vectors and the smal/ler cosme of the angle
1l between them is known as scalar or dot product of two vectors.

* |t The product of the magnitudes of two vectors and sine of the angle between them in |-

a direction perpendicular to the plane containing the two vectors, is known as vector

product or cross product of two vectors

o}t The scalar triple product x. (Bx 8 geometrically represents the volume of the

parallelopiped having its three sides as three given vectors A B and E)

« [ The region in space in which a function u is defined at all points, is known as fieid.

« | The region in space in which a scalar quantity is continuous and is defined by a single

1) value at every point of the position variable is called a scalar field.

« |} The region in space in which a veetor quantity i§ continuous and is defined by a single

value at every point of the position variable is called a vector field.

» /] The gradient of a scalar field ¢ at.any point is always a vector quantity.

«1" The divergence of a vector at any point in a vector field is always a scalar quantity

equal to the amount of flux per unit volume diverging from that point.

« ' The curl of a vector function at any point in the non-lamellar vector field or non-curl

” field is the maximum line integral of the vector, computed per unit area at that-point.

» ! The relation I) X (f? X 8 = ? (1? . ES - ?(r? : 55 is known as Lagrange’s identity.
s| TEST YOURSELF

1] Explain scalar and vector quantities. Explain the laws mvolved in addition and
i subtraction of vectors.
2! What do you understand by the scalar product of two vectors ?
3:! What do you understand by the vector product of two vectors ?
4. What do you mean by scalar triple product of vectors 7 Derive its expryession and its
properties.
5i| Derive an expression for vector triple product.

| “ ' : Self-Instructional Material 1%
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11.
1T @ perpendlculgr only to -é or only to B

6. What is field ? What are scalar and vector fields ? Give one example of each.

7. Define gradient of a scalar field. The gradient of a scalar field is a vector, explain.
Give its physical significance. T,

8. Define the divergence of a vector field and find an expression for it.

9. Define the Curl of a vector field. Give the physu:al significance of the curl of a vctor

~ fiel _cl ]Iggrwe an expression for it. =

10. If Ax B'=0, then .
(a) A and B, both are zero i * b Yo, T

(b) one out of A and B must be zero

{c) é_:and J_E: should be parallel
(d) A and B should be perpendicular to each other.

If A% B=Cthen C 2

[

(b) parallel to A’only or B only =

{c) parallel to both A and 5 . 3 z
(d) perpendicular to both A'and B " e ‘ .
12. The dot product of two vectors-vanishes when ;
= (a) one vector is null vector - - = e
(b} both vectors are null vectors
(c) the angle between both vectors is 90° - .
(d) All above P
13-'; Two vectors A and B are perpencltcular if _
“@AXxB=0 ®AF=0  ©AxB=l  (@AB=
14. Whg equation,is correct? NN _
(a) 4_)x B AR sin 9“ — (3] é}x Q;;AB cos O
(c) AxB=ABsin@n T~ () AXB=AB *
15. The scalar triple product is represented as- _ r
; = = - =
@A. (5.5 B B -
R e T B, N -
© AXEXS (d) Alf‘'above
16. The value of A X (E)Si(a+?x(8x3-_|-ax(?x§is :
- = L -
{a) 0« (b)) AxB A, B =+ {d) None: of these <
17. The dwergence of a vector field i.e., div A is equal to;
@ 7.2, VA © VxA’ @.V 4
18:-Iff?s the position vector then div r is equal to : .
T~.(a) zero (b) 3 ©7 < “(d)" none of these. "
i
19. Ifa vector Ais soleno:da] then : _ |
- ¥ -
@ divA20 () diva=0  (©culA=0  (d)curlAx0,
20. The divergence of a vector field is .
(a) always a vector field . {(b) alway a scalar field =
(c) can both scalar and vector field (d) always zero. o 2
21. Which of the following is not true : N
(a) curl grad $=0 (b) div curl A'=0 ) =
{c) curl curl 1?= 0 2 (d) v? (%J= 0. ’
22, A vector is irrotational, then vhich is not true ?
" - - " #
(a) curl A=0 B divda=0
(©) div curl A =0 (d) curl grad S =0. »




23. Which one of the following is NOT correct? Vector Analysis
(a) The gradient of a scalar ficld is always a vector field. i
{b) A vector field can always be expressed as gradient of a scalar field.
{(c) The divergence of a vector is always a scaiar.
(d) The line integral round a close path in a non-cur! vector field is zero.
24, The divergence of the curl of a vector quantity is-:

.0

1 (a) always positive (b) always negative
(c} .zero (d) none of these
25. Which of the following is not possible?
[ (a) gradient of a scalar (b) divergence of & vector
~ (c) divergence of a scalar () curl of a vector
26. Gradient of a scalar is :
i (a) vector (b) scalar (c) may be scalar or vector (d) zero,
ANSWERS

|; 10. (¢} 1. (D) 12.(d) 13.(b) 14.(c) 15.(b) 16.(a) 17.(a) 18.(b) 19. (b)
20.(b) 21.(c) 22.(d) 23.(b) 24. (b} 25, (c). 26. (c)
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UNIT
2 :
ROTATIONAL DYNAMICS

Rotational Moticn : Torque and Angutar Momentum
Torque Acting on a Particle

& Student Activity

Moment of inertia

Kinetic Energy of a Rotating Body

Theorems of Moment of Inertia.

Moment of Inertia of a Circular Disc

Moment of Inertia of an Annular Disc

Moment of Inertia of a Solid Cylinder

Moment of [nertia of Cylinder about its Own Axis
Moment of Inertia of a Thin Spherical Shell

About Diameter

Construction of Flywheel

Body Rolling down an Inclined Plang

o Student Activily

Precession

Newton's Law of Gravitation

Gravitational Field

Gravitational Potential of Shell at Extemal Point
Gravitational Potential due to a Solid Sphere at an External Point
Kepler's Laws of Pianetary Motion

Period of Motion of a Planet about Sun
Weightlessness Inside Satellite

Energy Consideration in the Motion of Planets and Satellites
Two-body Problem and the Reduced Mass

2 Summary

O Students’ Activity

0 Test Yourself

After going through this unit you will learmn :

LEARNING OBJECTIVES

Rotational Motion in detail along with the torque and Angular Momentum acting on the
rotating body.

What is Moment of Inettia and its application on masses of differery shape.
Gravitational field and gravitational potenttal on different bodies.

About the motion of Planets and Satellites their energy consideration and their
weightlessness. —

L

» 2.1. ROTATIONAL MOTION : TORQUE AND ANGULAR MOMENTUM

(i) Angular Displacement (8) : Angular displacement is the angle described by the
position vector r~ about the axis of rotation. It is denoted by 0 and is measured in radian
or degree.

If 8 is positive then rotation will be anticlockwise and if © is negative then rotation
will be clockwise.




LS S
e o

(ii) Angular velocity (@) : The rate of change of angular displacement is known
as’ angu]ar velocity. It is denoted by @ and is defined as
! e de 5
T oat
It is measured in radian/sec. In rigid body the radial lines from all the particles of the
body are perpendicular to the axis of rotation. These particles sweep out equal angles in
equal time intervals so the angular velocity ® is same for every particle of the rigid body.
Angular velocity depends upon the point about which the rotation is considered.
(iii) Angular acceleration (o) : The rate of change of angular velocity of a body
about the axis of rotation is known as angular acceleration. It is denoted by « and is
defined as

3
§
!!
i
It is measured in radian/sec?. Angular acceleration is same for all particles of the rigid

body.
. (iv) Equations of rotational motion : There are three rélations between rotational

kmematlc variables. These are :

d

e

o=

5|

S| i
(o]

2
%

() e=wp=0ot (2) 8=(i)0r+%a12 (3) 0*=wj+200

where g = initial angular velocity
. o=final angular velocity
o = angular acceleration
8 = angular displacement
J t=time
}, These equations are known as equations of rotational motion.
’ When the motion is linear then above equations reduce to :

) veuta (2 s=ur+%a22 (3) v = 12 + 2as

Now we have to prove the equations of rotational motion.

‘! Proof of : |m=m0+ou |
1
]

Let a rigid body be rotating about an axis with a uniform angular acceleration o, then

wesknow a=d—m
' dt
do=od D

I Letat t=0 ® =X

and,  at r=¢ 0=
1 On integrating the eqn. (1) between above limit-, i.e.,
' t
;! Im dw =I o dt
. ay 0

5 (@], = o [41§

® - 0y = 0t (£ - 0)
1 b 0= W+ o o (2)
|

[%"EJ [ m:%?_} __
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This proves the relation first.

Proof of : B=mgr+%ou2
Let  be the angular velocity of the rigid body at any time ‘¢" then
we know that
L
T odt
o dO=wdt
Letatt=0 6=0
and atr=t 6=0

So on integrating equation (3) we get
8 t
[Tae=] war
o 0
!
(0= oo+ on)d

t

9—'0:{(00 r+%‘|

9=m0r+%ar2

0

This proves the relation second.
Proof of : o’ =mf+208

We know that ®= %

d® dm[de}
and g=——=—F=|—

when 0 = 0, ® = g initial angular velocity

and when 8 = 8y, » = » final angular velocity.

- On integrating (5) we get

J.mmdm=_|-zad9
o

o - g

> =c(0-0)

mzzm%+ 208

This proves the relation third.

-0

(by (2)]

@)

. (3)

.. (6)




e

(a) Torque Acting on a Partile : The torque acting on a particle can be explained
easnly by the following example. When we switch on a fan then the centre of the fan remains
unmoved while the fan rotates with an equal acceleration. As the centre of mass of the fan
remains at rest then the vector sum of extemnal force acting on the fan must be zero. This
means that an angular acceleration is produced even when resultant external force is
zero. And we also know that we can not produce angular acceleration without applying an
external force. Hence here the question arises or what is the reason for producing anguiar
acceleration 7" )

The answer is torque due to the force. When an external force acts on a body then
it has a tendency to rotate the body about a fixed axis. In this position the force acting on
the body is known as torque on the body.

| The torque acting on the body is equal to the product of the magnitude of force and
perpendicular distance of the line of action of force from the axis of rotation. It is denoted
'by . Axis of
. . . rotation
. Thus torque = force x perpendicular distance

P=7xF *
. a3

where F = magnitude of force S Line of
: action of
r = perpendicular distance force

. : ig. 1
Its unit is N-m. in S.1. system. Fig.

Angular momentum of a particle : Let us consider a particle of mass m whose
position vector is 7~ from the origin O as shown in the fig. 2. The linear momentum of the
particle is given by

_)
P=mv’
where 7= linear velocity of the particle.

I The angular momentum of the particle about origin O is equal to the vector product
of JT and p° pie,

._..)
‘ L=7x p’ : (D
Z
* In magnitude
L=rpsin@ L
where 9 is the angle between 7 and p.
From above it is clear that the angular momentum
about O is zero when the line of action of P passes o X
through O. In this position 6 = 0.
Relation between torque and angular X .

momentum : v

" From eqn..(l) Fig. 2

dL’ _4 =
dt dt xp)
, _dr, P+ Px dp’
dt dt
. —Px i Px L
dt
—_
! =0+7% dp
dt

Rotational Dynandes
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_)
d—"J:;f’x*i’E) (2

dt dt
But according to Newton’s 279 law
We have force ? = QE’
dt ¢ *

_)
~ by (2) % —xF (3)
But T X ?

_)

so, by (3) ‘;—‘? =1

Thus, the rate of change of angular momentum of a particle is equal to the torque
acting on the particle.
(d) Angular momentum of a particle moving with constant velocity : From eqn.

1 (2), we have

&5y

Py B
dt

%

— ayv
=r'xm i
v—’=0

_)

/8

Then o

B

If v_)is constant, i.e.,

BB

_)
L =constant

i

Hence the angular momentum about any point of a single particle moving with
constant velocity remains constant throughout the motion.

» STUDENT ACTIVITY

1. If a body is rotating, is it necessarily being acted upon by an external torque 7

-

2. Torque and work are both defined as force times distance. Explain, how do they differ?




» 2.3. MOMENT OF INERTIA

. (a) Moment of inertia : ““The moment of inertia of a rigid body about a given axis
of rotation is the sum of the products of the masses of the various particles and squares of
their perpendicular distance from the axis of rotation.”

Consider a body rotating about an axis OZ and let m{, m3, msz ... . be the masses
of the particles of the body and r;, ry, r3 be the distances
from the axis of rotation OZ. Then moment of inertia of the
dey about axis of rotation is given by

2

d=myr“+m r22+m3 r32+

E I=Sm?

2

The unit of moment of inertia in cgs system is g cm

and kg m® in SI system. Its dimensional formula is Fig. 3
[1\»11..2'[0], It is temsor quantity.

Moment of inertia depends upon the following factors :

1. Mass of the body.

2. Distribution of the mass of the body.
i1 3. Distance from the axis of rotation.
]‘ (b) Physical Significance :

We know that

3 K.E. of translation of body = % mv?

i K.E. of rotation of body =-é-1 o?

an

On comparing it is clear that u is similar to ® therefore m is similar to 7. Hence
moment of inertia () plays the same role in rotational motion.as mass {m) plays in
linear motion, '

* This is the physical significance of moment of inertia.

(¢) Radius of Gyration : The distance from the axis of rotation for every body may
always be found, at which if whole mass of the body is concentrated then the moment of
inertia of the body about that axis remains same. This distance from the axis of rotation is
called radius of gyration about the axis. .

§ Let M be the mass of the body which is concentrated at distance K from the axis of
rotation, then moment of inertia is given by

I=MK®
Fi
K= \/ |
* Hence it may be defined as “‘the perpendicular distance from the axis of rotation, the
square of which when multiplied with total mass of the body, gives the moment of inertia
of the body about that axis.”

i Unit in M.K.S. system is meter and dimensional formula is [L].
The radius of gyration is not a constant quantity.

» 2.4. KINETIC ENERGY OF A ROTATING BODY

Let us consider a body of mass M rotating with an angular velocity ® about an axis
whose kinetic energy is to be determined. Letm , m; , mj ... be the masses of the particles

—

i
soi(

-
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of the body and r; , r3, r3 ... be the distances of these particles from the axis of rotation.
When the body rotates then all the particles of the body rotate with the same angular velocity
® but move with different linear velocities. Let vy, v2, v ... be the linear velocities of
the different particles.

In this position

Kinetic energy of the particle of mass m

K] ;%ml L’lz
or K1=%m1 l‘|2(02

Similarly, kinetic energy of the particle of mass 3

Kz = % my rzz (Dz

therefore kinetic energy of the body

K=K|+K2+K3...
1 1 1
=Em|v12+5m2v22+5m3 ‘P32+:..
K=lm1r]2c02+lm2r22w2+lm r32c02+...
2 2 2"
K=l 2 5 mr
2
K=%Ic02 [ I=Zm?]

This is the required expression for the kinetic energy of ‘the body in terms of moment
of inertia.

From above I= %
)
If @ = | Radian

Hence, “The moment of inertia of a body about a given axis is equal to double of
the kinetic energy of the body rotating with unit angular velocity about the given axis.”

(b) Angular momentum of a rotating body : It is defined as *“The sum of the
moments of linear momentum of all the particles of a rotating rigid body about the axis of
rotation and is called angular momentum about that axis.”

Consider a rigid body which is moving around an axis of rotation. Let thre be a
particle of mass m at distance r from the axis of rotation. If @ is the angular velocity then
the linear velocity of the particle of mass m is rw.

. Linear momentum = mass X velocity

P=mxrw
The moment of this momentum is
PXr=mXr@xr=mr~o
i.e., angular momentum of a panicle—(:-f mass m=mr* ®

Therefore angular momentum of the body




L=Im~raw

W L=0Zms

i [ I=Zm P

| Thus “angular momentum of the body is equal to the product of the moment of inertia
and the angular velocity of the body about that axis.”

Now we have K=%!m2 and L=] @
2 .2 .2 ‘
=il L%
2 1 U
2
L
{ K=

This is relationship between angular momentum and kinetic energy of the body.
[ (¢} Power and Work Done by a Torque ; Let us consider a rigid body rotating about
a fixed axis on which a torque acts.
This torque produces the angular acceleration and increases the kinetic energy of the
body. We know that the rate of change of kinetic energy (work done) is equal to the power

delivered by the torque i.e, -
;‘ Power = rate of change of kinetic energy or rate of change of work done
dm
1 p= dr
_4ll, 2
]l = [2 lw ]
()
=lo,
=fow [where o = angular acceleration]
dw
—=p=
|l & TW .

where 7T is a torque acting on the body.

| The work done due to small angular displacement d 8 is

'{ dwxTwdt
do
dw=1d0 |:m,— dt]
Total work done :
2
‘ w=1{"tde
9

This is the work done by the torque.

(d) Relation between torque and angular acceleration : Let us consider a rigid
body rotating about a given axis with a uniform angular acceleration o, and let a torque
T act on the body.

Consider that m, ,my, my ... are the masses of the particles of the body at

perpendicular distances r|, rp, r3 ..., respectively from the axis of rotation.

TR e
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Mechanics Since body is rigid so the angular acceleration of all particles of the body remains
same while their linear acceleration is different due to different distances of the particles

from the axis.
i Leta;, ay, a3 ... be the linear accelerations of the particles then

ar=rio, a2=r20,a3=r3 0, ...
Force on particle of mass m;
] fi=may=mno
Moment of this force about the axis of rotation
=fixri=(mr ) Xri=mr’a

Similarly, moment of forces on other particles about the axis of rotation is
My ?‘22 O, mj .?'32 ...
.. Torque acting on the body
T=my r120t+m2 ?‘22 C!.+m3_?‘32 o+...
={my rlz + my rzz + ny r32 Yo

=EmA) o

T=la [ =% mr]

Ifa=1thent=1/
Hence “moment of inertia of a body about a given axis is numerically equal to torque
acting on the body rotating with unit angular acceleration about it.”
The above relation in vector form may be written as
=1

This equation is called fundamental equation of rotation or law of rotition.

« 2.5. THEOREMS OF MOMENT OF INERTIA

There are two important theorems to determine the moment of inertia. They help in
determining the moment of inertia about any axis if moment of inertia about one axis is
known. They are :

{a) Theorem of parallel axes : According to this theorem, “Moment of inertia of
a body about any axis is equal to its moment of inertia about a parallel axis through
its centre of mass plus Mhz, where M is the mass of the body and % the perpendicular
distance between the two axes.” e,

3
| I= I+ M s A
This is the “theorem of parallel axes”.
Proof : Let us consider a particle of the body of mass
m at a distance r from the line AB. Here we have to calculate 0 C P
| the moment of inertia of the body about the line GH which HmhTe =
| .is parallel to the centre of mass axis AB. Let & be the
i .perpendicular distance between AB and GH as shown in — .
the fig. 4.
Therefore the moment of inertia of the body about H B
centre of mass axis AB is
Fig. 4

i L,=Zmr

1', Now, moment of inertia of the body about the line GH is
26 Self-Instructional Material




I=Zm(r+h)?

=T m [P+ h + 2rh)
=ImP+Imh*+L2mrh
3! =+ Em+2hImr
=l ,+ MM +0

where M = Total mass of the body and Z m r=sum of the moments of the masses of
particles constituting the body about an axis through its mass must be zero.

I=1,,+Mn? Hence proved.

i (b) Theorem of perpendicular axes : According to this theorem, “The moment of
inertia of a plane lamina (a two-dimensional body) about an axis perpendicular to its
plane (OZ) is equal to sum of the moments of inertia about any two mutually
perpendicular axes OX and OY in its plane intersecting on the first axis.”

i.e., fz=lx+1y
where x, y, z axes are mutually perpendicular to each other.

~ Proof : According to this theorem, the sum of the moments of inertia of a plane
lamina about any two mutnally perpendicular axes in its plane is equal to its moment
of inertia about an axis perpendicular to the plane of the lamina and passing through

the point of intersection of the first two axes.
Y
ie, L=I+],

Now we have to prove it.
Let us consider a particle P of mass m at distance r from X
O and at distances x and y from OY and OX, respectively.
Then the moment of inertia about OX is my2 and hence I,,

the moment of inertia of the lamina about OX is z
Fig. §
[,=Zm.y? o (D)
Similarly, the moment of inertia of the lamina about Y is
L=Zmx? ... (ii)
i1 and the moment of inertia of the lamina about OZ is
I,=Xm P
j L=Zm(?+y% Lo A=2+y
L=Smx?+Zmy?
L=I+I;
Hence L=L+] {from eqs. (i) and (ii)]
This proves the theorem of perpendicular axis. ~

* 2.6. MOMENT OF INERTIA OF A CIRCULAR DISC

i (i) Moment of inertia of a circular disc about an axis through its centre and
perpendicular to its plane : Let us consider a circular disc of mass M and radius R with

2!
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centre ‘O’. We have to calculate the moment of inertia of the disc
about the line y y’, i.¢., the axis which passes through the centre
O and is perpendicular to the plane of disc.

.o, Mass of the disc =M

and Area of the disc =t R?

. M )
. Mass per unit area =—

n R
Consider a small element of the disc which is also circular in shape of radius x and
width dx,
area of the element =2 T x dx

. Mass of the element = iz (2rxdx)= ZM;dx
mR" R

M.I. of this element about y'y *

ZMR;'dx'(xg)

_2MXPdx
RZ
~. MLL of the circular disc about yy " is

R
I= 2M2x3dx=%4r£dx
0 R R* 0

_1 e
I= 5 MR
(ii) About diameter ;: M.L of the circular disc about any

diameter can be obtained by using theorem of perpendicular axis, i.e.,

I=lpg+Icp=214g [ AB=CD] ‘v
1 ) D
IAB=ZMR Fig. 7 (a)
(iii) About tangent : M.L. of the disc about tangent EF can be obtained by using the
theorem of parallel axis, i.e., c
2_1,, 02 2
IEF=IAB+MR =ZMR +MR A B
R
5
—gME E——f—F
Fig. 7 (b)

« 2.7. MOMENT OF INERTIA OF AN ANNULAR DISC

(i) Moment of inertia of an annular disc about an axis through its centre and
perpendicular to its plane : Let us consider an annular disc of mass M and inner radius
R and outer radius be Ry with centre ‘O”. Consider a small strip of this disc, it will be a
ring. Let x be the radius of this ring.

Mass of the disc =M




M

. Mass per unit area=————
(R~ R%)

" Area of small ring =2 wx dx

anlar=—M

(R - Ry?)

M.L of this ring about the axis passing through its centre and perpendicular to its

*. Mass of the ring =

Fig. 8

n(Ry? — Ry%)

plane

-

= mass X (dislancf.‘.‘.)2
M

2M
| = 2 _ph ot _'—"de
R {Ry" — R(”)

R -RD

M.I of the disc about an axis which passes through the centre and is perpendicular
to the plane is

R
- p=ft M __ﬂ_[x“] :
t, - _ Ea
1 R (Ry2 - R RE-RHLA g
M M -
J [Ry* - R* =2 (R + R

2(R2-R%)

1=2 R+ R

. (ii) About the diameter : Moment of inertia of the annular disc about any diameter
cal}’fbe obtained by using the theorem of perpendicular axis.

1=IAB+ICD <
| \T/
Iap==1
AB=7 L
1 M Fig. 9
IAB=§ '5“(1?2 +R%)
M
| Iag= (Rz +R%)

This is the desired result.

(iii) About the tangent ;: Moment of inertia of the annular disc can be obtained by
using the theorem of parallel axis, i.e.,

1

Flg. 10

i "EF Icm"'MRZ
=Iap+M Ry A//TQ
t =M R2 4R+ MR2 5\9}1
| =7 R"+R 2 E £
I

M
fEF=I (Ry2+5Ry?%)
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2.8. MOMENT OF INERTIA OF A SOLID CYLINDER

Moment of inertia of a solid cylinder

about an axis perpendicular to geometrical
axis and passing through its centre.

Let us consider a solid cylinder of mass

Y
—f{2——> 4—”2A-——-H

R
U

M and radius R with centre of mass ‘0", Let [ be Ofe—x
the length of the cylinder as shown in the fig. 11. B
Let XX " be the axis of the cylinder and YY’ be dx
the axis about which M.IL. is to be determined. Y

Consider a small part of this cylinder. It Fig. I

will be a disc of the same radius R and width
dx. Let x be the distance of this disc from YY",

and

Mass of the cylinder = M

volume of the cylinder == R

. Mass per unit volume =

nREI
Volume of the disc = surface area x width
= R? dx
Mass of disc = 5 .mR? =de
R 4
M.I. of this disc about its diameter, i e, about AB
= -l— mass X radiusZ
4
_IM 2 IMR
41 dx. R = 4 | dx

M.IL of the disc about YY"’ can be obtained by using theorem of parallel axes

_IM 2 M
-4id.r.R+Idx.x2

= % % (R + 45%) dx
M.L of the solid cylinder about YY”’
12
{7 L1M 2
=] TR +452) dx

" :szm d.x+4rl2 xzdx]

E N P N L N L
~IX

-2 =i

R?%-r%lﬁ]

H

[2,..8 3
R f+24l:|

~X ~IX

xl

()




(b) If p is the density of its material then

| M=1tR2£p

2__M

; "ip
!l 50 by (1) we get

a B M
j I_M[12+4n!pJ

Now, 7 will be minimum if%=0 ie.,

d. [# M
i dI[M[12+4nlp]:’_0
i
H ME— M =0
{ 12 411:12p

I M  =®mRip

6 4nﬁp_4nﬂp

R u

This is the required relation between / and R.

. (¢} If the rod is very thin so that its radius is negligible (R = 0) then from equation
(1) M.I of the rod about the axis in part (a) is

'li _MP
] =75

" If K is the radius of gyration of the rod about this axis then

_ME_
‘ I= B =MK

l

V12
» 2.9. MOMENT OF INERTIA OF A CYLINDER ABOUT ITS OWN AXIS

. (a) Moment of inertia of cylinder about its own axis : Let us consider a cylinder of
mass M and radius R. Let { be the length of the p
-cylinder as shown 'in the fig, 12. Let XX’ be . m iR m
its geometrical axis about which its moment X \ } X
Q

of inertia is to be determined. Consider a
small part of this cylinder. It will be a disc. e ! »
Let the mass of this disc be m.

[M.I. of one dis¢ PQ about

Fig. 12

XX’'= % X (mass) X (radius)2 = % m R?

gM.l. of the whole cylinder about XX * will be equal to the sum of the moment of

inertia of these discs, ie.,

D SIS, T S B S
. -sz:sz+2mR+...

et —

—
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where I m =M = mass of the cylinder.

Now the M.IL of the cylinder about the line parallel to its axis and touching its surface
can be obtained by using theorem of parallel axes, ie.,

lMR2+MR2=%MR2

2 _
(b) The M.I. of the cylinder about its own axis
1,
=3 MR

M.L of the cylinder about the equatorial axis is

2 R
“""'[12+ 4]

when these are equal, then

12" 4| 2

£ R R

) 1274 2
P R

12- 4

2=3R?

1=V3 R

This is the required relation between / and R.

« 2.10. MOMENT OF INERTIA OF A THIN SPHERICAL SHELL

(1) About a diameter : Let us consider a thin spherical shell of mass M and radius

R with centre O.

Consider a small part of this shell, This lies between two parallel ptanes AB and CD
and is perpendicular to XX . This small part will be a ring. Let its thickness be dx at a

distance x from the centre O as shown in fig. 13
From the fig.

Radius of ring =R cos 0
y=YR* - X2

and x=Rsin9
dx=R cos 8 d6

. Mass of the spherical shell=M
Surface area of the shell =4 1t R?




3

|

distance R from the centre. Now from theorem of parallel axis M.I. of the shell about

.~ Mass per unit area =
47 R?

area of the ring = circumference X width !

=2nyAC
=2n.RcosB8.RdD
=27 Rdx
. M - M
. Mass of ring = 2T Rdx=—dx i
g 4n R? 2R

M.L. of ring about XX ' = mass X (radius)?

M o2 M 2 _
=R XY ..ZRX(R_—xZ)dx

M.I. of the spherical shell is

JR MR M2 MR Mx
= LS o LK S T
gl 2R T 2R 2 6R

_2, 2
I—3MR

(if) About the tangent : In case when spherical shell is parallel to any diameter at a

R

tangent is

]
i
i

I,:%MR2+MR2=%MR2. -

 '2.11. ABOUT DIAMETER

wnh centre . We have to calculate the moment of inertia of
this sphere about its diameter, i.e., about XX * as shown in the

Let us consider a solid sphere of mass M and radius R

figh14 A )
" Volume of the solid sphere = 3" R X olex X
Mass per unit volume of the solid sphere
__M M
! % nR> 47 R ~ v
Consider a small part of this sphere, it will be a disc. Fig. 14

Le{ x be the radius of this disc and dx be the thickness of this
dlSC with centre O: e

i

From the flgure the radius of this thin-disc is

Volume of this disc =1t (R2 - ’xz)'dx

Mass of disc = 3 -1 (Rz—xz)dx
’ 4R
¥
= —gﬂ?.n}?z—*gﬂg_.n'xz dx
47R 47 R _
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M 3M
(a7
~. MLIL of this disc about XX’ —% mass X (mdlus)2

=l3— (R* -2y dx R* - )
24R
1___ 2
2r 5 (R = ) dx

=1 (R4 H-2R A dx
2 4R

= MLL of the solid sphere about XX is

R
I= _[ 1 3M (R 42 R )

13—“‘{;) (R + 5 -2 R ) dx
24R°-R

=1 3“"; [R4x—2R2.53—+~"i[
24R 305
_2., 02
I=5MR

(ii) About a tangent : Any tangent to the sphere at any point is parallel to one of its
diameters so by the theorem of parallel axes

!,=%MR2+MR2=%MR2.

» 2.12. CONSTRUCTION OF FLYWHEEL

(a) Construction of flywheel : A flywheel is a large heavy wheel with a long
cylindrical axle supported on ball-bearings. The wheel is constructed such that whole of
its mass is concentrated at its rim: Its centre of mass lies on its axis of rotation so that it
remains at rest in any position. A peg is attached on its rim.

(b} Use of flywheel in stationary C—————J«—Fly-wheel
engines : The flywheel is used in Til«— Shatt
stationary engines to make the motion of A
the engine uniform. In these engines, the ['] ] | [« CrankC
linear motion of a piston is converted into |- 1 _ I‘ B
the rotatory motion of a shaft. An /
. - in fie. Connech
zllgr.angemenl for doing this is shown in fig npoeé: ing Driving wheel
A connecting rod is joined with the Fig. 15

piston A and to a crank C and B. To one

end of the crank-shaft is attached a large flywheel and at the other end there is the driving
wheel which is connected to the machinery that is to be driven by the engine. As the piston
moves from A’ to A, the crank rotates from the position B’ to the position B and as the
pistan returns back from the position B to 8 ’. Thus the crank-shaft has made one complete
rotation. When the connecting rod makes some angle with' the crank, then a torque is




developed which rotates the crank-shaft. But, in each rotation there are two points B and
B |r at which the connecting rod and the crank are in the same straight line.

; (c) Determination of the moment of inertia of a flywheel : Now we have to calculate
the moment of inertia of a fly-wheel. For this, its axle is mounted on ball-bearings in a
horlzontal position as shown in the fig, 16, A small
peg P is attached to the axle. A loop made at one (\:N P
end of a fine cord is fastened to the peg. The cord
is wrapped several times around the axle and mass
miis attached to the other end of the cord.

When the mass m falis vertically down, then

the cord is unwrapped and the wheel rotates. The Bm
gravitational potential energy lost by the mass in
itsl.'E vertical fall is converted partly into kinetic Fig. 16

enlérgy of translation of the falling mass itself,
part[) into the kinetic energy of rotation of the flywheel and partly used in doing work
agamst the friction in the ball bearings.

Hence at B and B’ the torque produced by the piston is zero. These points are called
the “dead centres’. At two other points the crank is at right angles to the connecting rod
anfi then the torque is maximum. Thus the torque considerably varies. Therefore the
machmery connected to the shaft can not run uniformty. But the flywheel makes it uniform.
The flywheel rotates with the shaft and gains K.E. of rotation. As the torque becomes
mitimum at the dead centres, the flywheel continues to rotate on account of its large M.
and carries the crank shaft with it. Hence the machine goes on running with practically the
same speed.

. Let A be the vertical distance through which the mass falls before the cord leaves the
axle. Then the gravitational potential energy lost by the mass m is high.

|! Let / be the moment of inertia of the flywheel about the axle. Let v be the velocity
gamed by the mass and w the angular velocity gained by the flywheel at the instant when
the cord leaves the axle. Then, the kinetic energy of translation gained by the mass m is

1 mv? and the kinetic energy of rotation gained by the flywheel is 110

Let ny be the number of rotations of the flywheel before the cord leaves the axle and
S the work done against the friction during each rotation. Then, the energy used up against
the friction is n,f,
1{ Now loss in potential energy = gain in K.E. by mass
“ + gain in K.E. by flywheel + energy used against friction
.

mgh=%mv2+%lm2 +nrf
!1 But v=r® where r is the radius of the axle.
Il mgh=—;-mr2m2+%lw2+n1f . {D

When the cord leaves the axle, the flywheel continues to rotate for some and finally
comes into rest due to the friction force on its bearings. Let it ake ny rotations more

beflore finally coming to rest. This means that the kinetic energy = 7 I0? of the flywheel is
used up against-the friction in n, rotations.

%fco%nzf

1 Io?
=3
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nigh

_1 2,1 2, .M
-2mr2m+2m{l+n2J

- (@)

When the cord leaves the axle then the wheel has an angular velocity @. After making
ny rotations in time 1, its velocity is reduced to zero owing to the friction force. Suppose
the friction force remains constant during this time, the average angular velocity of the

wheel is
w+0
2

. 2Zn
This should be equal to

L]
2

"o, . . . .
, since the wheel makes n, rotations during time ¢, i.e.,

36 Self-Instructional Material

t

®_2nm it
20
4R ny
0=
t
So by eqn. (2), we get
| EE
81'!2!12'
I=—+ " vi . (3)
1
1+—
ny

This is the required expression for the moment of inertia of a flywheel.

Procedure : The cord is wrapped around the axle so that the mass m is at the same
height as a fixed point marked on a wall. The length of the cord is so adjusted that when
the mass m reaches the ground, the other end of the cord just leaves the axle. The distance
A from the fixed point to the ground is measured by a scale. The cord is again wrapped
around the axle and the mass is allowed to fall. The number of rotations, n;, made by the
wheel before the cord leaves the axle is counted. The cord is once again wrapped around
the axle and the mass is allowed to fall. As soon as the mass strikes the ground, a stop
watch is started. The time ¢ and the number of rotations n) made by the wheel before
coming to rest are noted. The radius r of the axle is obtained by measuring its diameter at
several places by means of a vemnier callipers, [ is then calculated from the above relation

3).
» 2.13. BODY ROLLING DOWN AN INCLINED PLANE

(a) Body rolling down an inclined plane : Let us consider a body of mass M and
radius R rolling down an inclined plane, which makes an angle 8 with horizontal. When a
bedy rolls without slipping then it rotates about a horizontal axis through its centre of mass




F

and also its centre of mass moves. So, the rolling may be
assurned as a rotational motion about an axis through' its
ccntre of mass plus a translational motion of the centre of
mass

Y In fig. 17, a body starts to roll down at certain height.
When it rolls then it suffers loss in gravitational potential
energy, but gains kinetic energy that of rotation. This loss

in kinetic energy must be equal to the total gain in Kinetic Fig. 17
energy, provided no energy is lost due to friction between
theibody and the plane.
Let v be the linear velocity of its centre of mass and o be the angular velocity about the
centre of mass after rolling down the plane a distance s.
| The loss-in gravitational potential energy
- = weight x loss in vertical height = Mgs sin 0.

-55iN6

-

Now, transtational K.E. gained by the body = % M2

and the rotational K.E. = % I @?

where [ is the moment of inertia about rotational axis. “n
" Total energy gained by the body

1 1
a =§Mv2+§;’cmm2

{ If K be the radius of gyration of the body about the axis of rotation, then

..(1)

1=MK?
also w=

- byegn. (1)
Total energy gained by the body

Y R <
J =EMV2{1+FJ

+ Assuming that no energy is used up against friction, the loss in potential energy is
equal to the total gain in kinetic energy, ie.,

! 2
| Mg.ssin9=le {l+£]
- 2 R?
| v2=25=gsm2
K
I+_}?
P2 2gssmﬁ
| ¢
1+—2
R

——r—
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2 eg55in 0
—8? ; e (2)
1+;2'

V=

This is the required expression for the final velocity of the body rolling on an inclined
plane.

v-=2as
7
T 2s
sin B
a=2% p . (3)
1+'§£

This is the expression for the final acceleration:

(b) For different rolling bodies, acceleration is obtained as follows :

(i) Solid sphere : The moment of inertia of a solid sphere about its diameter is given
by

I=MK2=%MR2

K_2
RS
50 by eqn. (3)
a=8328_3  cng (@
2 7
I+§

(ti) Disc : The M 1. of a disc about the axis passing through its centre and perpendicular
to its plane is given by

1

I=MK2=§-MR2
K _1
R 2
50 by eqn. (3) a= smlB =%g sin © - (5
l+§

This is also the acceleration for cylinder.
(tii) Spherical shell : Its M.I. about the diameter is given by

2

I:MK2=§MR2
K_2
B3
_&sin®_3 .
50 by egn. (3) a= > -ggsmﬁ ... (6)
l+§




(iv) Ring : Its M.I. about the axis passing through its centre and perpendicular to its
pla:lile is given by

1|-% 1= MK* = MR?

I| R2

i1 so by eqn. (3) I

[‘ a=g%=gsinﬁ . - (7)

From eqns. (@), (5), (6) and (7) we get the ratio of acceleration of solid sphere, disc,
spherical shell and ring as

: _5.2.3.1

. Hence the acceleration of solid sphere, disc, shell and ring are in a decreasing order.
Therefore, if all of them start rolling at the same instant then, the sphere will reach down
the plane first, then the disc, then the shell and then the ring.

* |[STUDENT ACTIVITY

3. ' Find the relation between length and the radius of the cylinder so that MLL. is minimum.

=

{
4. l[f earth were to shrink suddenly, what would happen to the length of the day ?
}
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» 2.14. PRECESSION

When a torque is exerted perpendicular to the axis of rotation of a rotating body then
the rate of rotation of the body remains constant but the direction of the axis of rotation
changes, i.e., the axis of rotation itself rotates. The motion of the axis of rotation about a
fixed axis due to an external torque is called precession. The axis about which the direction
of rotation of the body precesses is called the axis of precession.

In other words we can say that the turning of the axis of rotation is called
precession.

Gyroscope : In majority cases, the body, subjected to precessional motion, i
supported at a point, away from the vertical line through its centre of gravity, where the
axis of rotation is free to turn about the centre of gravity of the body.

Such a body, with its axis of spin supported at a point away from its centre of gravity
and with the precessional rate of its spin axis maintained by the gravitational torque (due
to its weight) about that point is called a gyroscope or a top.

Precession of a top spinning in earth’s gravitational field : Top is a symmetrical
body rotating about an axis, one point of which is fixed, In the fig. 18(a) top is spinning
with angular velocity w about its own axis of symmetry, O is the fixed point at the origin
of an inertial reference frame. Its angular momentum is L, pointing along the axis of rotation.
This axis makes an angle @ with the vertical.

Let the position of centre of mass be 7 with respect to O.

B
/\

&
F 3

Fig. 18 ()]
The weight of the top is mg which exerts a torque about the fixed point O.
We have
Px F= P mg’
Its magnitude is
t=rmg (180° - Q)= rmgsin O (1)

Accordmg to right-hand-rule the direction of torque is perpendicular to the plane
_}
containing 7’and mg. This means that the torque T3s perpendicular to L or perpendicular
to the axis of rotanon .of the top.
The torque T changes 'the angular momentun L of the top. The change AL is also in
the direction of the torque, i.e., perpendicular to L.
If this change takes place in a E)me Ar, the torque is given by

= 8L 2

1B

- . , - =
The angular momenturp L+ AL, after a time At is the vector sum of L and AL. When
AL the perpendicular to L and is very small so the new angular momentum vector




™ : L = . o
L + AL has the same magnitude as the initial angular momentum L, but a different direction,
i.¢., the angular momentum remains constant in magnitude but varies in direction. The top

f:the angular momentum vector L describes a circle around z-axis. In time Ar the radius ,
of this circle moves through an angle A¢. The angular velocity of precession @p is defined |-

as the rate at which the axis of rotation itself rotates about a fixed axis OL in the laboratory.

AL
Lsin®
“ " Lsin® #
Ar

Lsmﬁ
mp_ﬁ At

Now, Ad =

‘t ’
©P=Tsin® - 3)

From eq. (1) putting the value of T in eqn. (3) we get

_ rmg sin 8
®p Lsin®

mgr
o=

Thus the angular velocity of precession is independent of © and is inversely
proportional to the magnitude of angular momentum. Larger the angular momentum smaller
will be the precessional velocity. As the spinning to P slows down, its angular momentum
L (= o) decreases and the angular velocity of precession increases, @ is a vector pointing
vertically upward as shown in fig. {8 (b).

_ T
From OP=Tsne

T=wpLsin®

i From the fig. 18 (b) it is clear that O is the angle between Wp and E,’ and Tis 2 vector
per}be_r;dicular to the plane formed by 6}: and L. So wp L sin 8 is a vector product of @}
and L, i.e,

_)
= @p x L Hence Proved.

* 2.15. NEWTON'S LAW OF GRAVITATION

- According to this law, every object attracts every other object with a force which
is directly proportional to the product of the two masses and inversely proportional
to the square of distance between them. ¢

- Let my and m, be the masses separated by a distance .

then Foee my my

Fo

2

1 On combini Foo h2
‘1 On combining, oc—rz«- Fig. 15

Bl

r Y

ok
-

F ms

3¢
 J
-
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Gml n

2

‘where G is called gravitational constant. G is also called universal constant because its

numerical value does not depend on the nature of the medium. Negative sign shows
attraction.

If my=my=1andr=1then

we get G=F.

. L1
Hence, the gravitational constant G is numerically equal to the force with which
two particles, each of unit mass and placed at a unit distance apart, attract each other.

| N m?
kg2

G=6.67x10‘8w-2-

gm?

The value of G is 6.67 X 107

or

2

my my

Since, G=F

[MLT] [L?]
M] {M]

G is a scalar quantity and is different from the acceleration due to gravity 2~ which
is a vector quantity. g~ is neither universal nor constant.

Important Characteristics of Gravitational Force :

(1) This law is applicable for spherical bodies.

(2) It arises due to the masses of the bodies.

(3) They are attractive, central and form action-reaction pair.

(b) Gravity : Gravity is a special case of gravitation in which one of the objects must
be earth, thus gravity represents forces of attraction between earth and any other object.

If m is the mass of a body placed on the surface of earth where acceleration due to
gravity is g, then

Dimension of G is [G] = =ML3IT?

gravity pull = weight of body = mg

The units and dimensions of gravity pull or weight are the same as those of force.
Difference between gravitation and gravity : The following points differentiate the

| gravitation and gravity.

1. Gravitation is the force of attraction acting between any two bodies of the universe,
while gravity is the earth’s gravitation pull on the body lying on or near the surface of
earth.

2. The gravitational force on a body of mass m; duc to an other body of mass )
placed at a distance r from each other, is

my my
r2

while the force of gravity on a body of mass m is F =mg.

F=G

3. The force of gravitation between two bodies can be zero if the separation between
two bodies becomes infinity while the force of gravity on a body is zero at the centre of
the earth.




+ '2.16. GRAVITATIONAL FIELD

We know that every particle of matter exerts a force of attraction on each other. The
grav:tatmnal field of a body at a point in a field is defined as the force experienced
by the body of unit mass placed at that point provided the presence of unit mass does
not disturb the original gravitational field. Or the space surrounding the attracting
particle within which its gravitational force of attraction can be experienced is called
- gravitational field of the particle.

{ It is always directed towards the centre of gravity of the body. It is a vector quantity.’

Gravitational attraction : The intensity of gravitational field or the gravitational |

attraction, at a point in the field is the force experienced by a unit mass placed at that
point, provided the unit mass itself does not groduce any change in the field. Thus, if
there is a gravitational field due to a particle of mass M, the attraction F at a point, whose
dlstance r from the particle is

Mx1
F=-G
2
GM
or F=-2%
2

' Gravitational attraction is a vector quantity. 3
{l Gravitational potential : When a mass moves in a gravitational field then work is
done against the gravitational attraction but if it moves in the direction of the field then
work is done by the field itself. Hence the gravitational potential at a point in a gravitational
field is defined as ““The amount of work done in bringing a body of unit mass from
infil mty to that point without acceleration”,
§ . Let us consider a body of mass M which is situated at O as shown in the fig. Let a
unit mass be placed at point and at 2 distance r from O.
The gravitational attraction exerted on the unit mass is given by

: M O PP
! - . - -
‘ F 2 towards O MO————. — e —
- f———r
{;Let the unit mass move against this attraction from P
Fig. 20

to.P.! through a distance dr.
The work done against the gravitational attraction = — (F) dr

GM

=—dr

2

| Thus the work done as the unit mass moves from infinity will be

~ GM
——dr
2
‘Now work done as the unit mass moves from infinity to P will be
|
l oM

r

ZGM[_l] _GM
r r ¥

ﬁ‘his will be equal to the gravitational potential, i.e.,
|

| v=_54

r

Rotaticnal Dynamics
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Potential is a scalar quantity. Here the negative sign shows that the potential increases
in the direction of r increasing. The potential at infinity is considered to be zero and becomes
increasingly negative in a direction towards ihe attracting mass.

Relation between gravitational attraction and potential : Let F be the gravitational
attraction at a point. The work done as a unit mass moves from this point to another point
in the direction of the field through a small distance dr

=F(—dn
By definition, this is equal to the difference of potential dV between two points.
dV=F (-dr)
dv

F=—E

This is the relationship between gravitational atiraction and potential. _
From above it is clear that the rate of change of potential with respect to distance

is equal to gravitational attraction.
Or gravitational attraction at a point is the negative value of gradient of

gravitational potential at that point.

« 2.17. GRAVITATIONAL POTENTIAL OF SHELL AT AN EXTERNAL
POINT

Let O be the centre of a thin spherical shell of radius R. Let P be the point at distance
r from O at which the gravitational potential and attraction is to be determined. Let ¢ be

Xw

the mass per unit area of the shell. Rdo
Imagine the shell to be divided into a number of A
circular rings, with centres on OP. Consider one such ®
ring AB of radius AT = R sin 6 and thickness R db. M TN P
The area of this ring = circumference x thickness o
=2 mrsin @ x (R d0) B
Therefore its mass =2 Rsin O (Rd0) ¢ Fig. 21
=2nR?Gsin0dO

To first approximation every element of this ring at the same distance AP = x from P.
Therefore, the potential 4V at P due to this ring is given by

dV=-G Massofthermgz_GZn:R2csmede (D)
x X
From AAQP, we have
2
: RP+ A -
AAOP cos 9= 2Ry .. {2)
Differentiating eq. (2) we get
. 0+0-2x
—-sin@dd=—"—7—"
. 2Rr
. x dx
sin@db= Ry

Putting this value in eqn. (1) we get

2
JVe_gLER o[id_x]z_GZchdx
X Rr r




. The potential V due to whole shell is obtained by integrating this expression between Rotational Dynamics
NandM Le,(r—R)to (r+R).
l r+k bo-
Lo v=]  .giEReo,
r—R

ZRRU[ r+R
x]r-—R

=-G

=_G21cho2R

__ginklc }

r

’ M is the mass of shell then M=4nR* o

V=—-G"M'—
r

This is the expression for the potential due to spherical shell at an external point.
Gravitational Attraction : As the shell is symmetrical with respect to the point P,
the attraction F at P is along PO and is equal to negative gradient of potential, ie.,

i F=-%V .

' dr
d)|-GM
. F=-Z
i dar [ r ] .
GM
F=——r
2.
This'is the required expression for the gravitational attraction at an external point due
to spherical shell. A

- (b) Gravitational potential at an internal point :
Consn.ier a point P inside the shell at a distacne r from
O as shown in thé fig. 22.

‘ The potential at P due to ring is

dV=_G“—f°~dx

" The potential V due to the whole shell is obtained by Fig. 22
integrating " this expression between N(n=R-r) and
M{x=R+7

R+r
- V=j —Ganodx
r

2RRG . R+r

V=-0(C: [x}R_r
2nRG, R+r
V=-G [X]R__r ,
V=—G@.2r=—c(4mc)
V=—G% [ 4nR? o)
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Mechanics This is required expression for the potential due to spherical shell at an internal point.
From above it is clear that the potential is independent of r and is same as at a point
on the surface of the shell. Thus the potential inside the shell is constant and equal to its

value at the surface.
Gravitational attraction : We know

) __dv
F=- ar
d M|
I __dr[_GR]
F=0

i.e., gravitational attraction inside the shell is zero.

| Graphical representation :

Spherical

J shell —R/

Potential o R r—
curve

Aftractive o RIR T—p

curve 4 /
F=0 \
F—cM

l Fig. 23

» 2.18. GRAVITATIONAL POTENTIAL DUE TO A SOLID SPHERE AT
AN EXTERNAL POINT

’ Let us consider a solid sphere of mass M and radius R with centre O. Let p be the
density of the sphere.

Let P be the point outside the sphere at which the potential and attraction are to be
determined. Let OP =r.

Imagine the sphere to be divided into a large number
of thin concentric shells of masses my, 3, m3 ...etc. The
potential at P due to these shells will be

M M M
| e LNy bt et N
r r r

where 7 is the distance of P from the centre O.of the

shells. As the potential is a scalar quantity, therefore the Fig. 24
potential V due to whole sphere is equal to the sum of

the potentials due to such shells, ie.,

G
[ =-—?(m1+mz+m3+...)

‘ But i +my +m3=... =M is the mass of sphere

T Self-Instructiona! Material
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This is the expression for the potential due to solid sphere at an external point.
| Gravitational Attraction : The gravitational attraction F at a point is equal to the
negative gradient of potential at that point, i.e.,

i
|

i
dv
F== dr
' d M| -
i St
M
F=-G=
| 7
This is the required expression for the attraction due to solid sphere at an extemnal

point. .
Thus the solid sphere exerts attraction at an external point as if its whole mass
were concentrated at its centre.
(ii) Potential due to solid sphere at an internal point : Let us consider a point P
inside the sphere at a distance r from the centre O as shown in the fig. 25.
‘ Imagine a concentric sphere, through P so that the point P will be external for the
inn;ér solid sphere of radius r and internal for the outer spherical shell of radius R.

The mass of the inner solid sphere is % 7 P p. Therefore

the potential at P due to this sphere is

| Inrp
: V|=—G
"
4
Vi=——rGp A e (®

3

The potential at point P due to outer spherical shell is
obtained as follows : )

Imagine this shell to be divided into a number of thin concentric shells. Consider one
such shell of radius x and infinitesimaly small thickness dx. The volume of this shell is

=4 12 (dx)

andiits mass is 4 7t (dx) p. A’ the potential at any point within a spherical shell is the
same as on the surface, therefore the potential at P due 1o the thin shell under consideration

will. be

i
é -G Mass of the shell

radius of the shell

Fig, 25

__ginr@dxp
X

"1_ =—G4nx(dx)p g,

The potential V; at P due to the whole shell of internal radius r and extérnal radius
R is obtained by integrating the expression between the limits x = r and x=R.

- Thus,

‘ R
: V2=jr—G4nx(dx)p

Rotarional Dynamics
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R
=-4TEGP[§:\

r

=—4nGp|iR—;——'§*]

4 IRE 372 *
V2=—§Tpoli—2-—Ti| )

as the potential is a scalar quantity the total potential V at P is obtained by adding the

potentials given by eqns. (2) and (3). N
: V=V +V, .
4 4 3R 37
V_—3nGpr2—3nGp[ )~ 2}
__4 3®2 37
——31|:G ( + 2 2}

If M is the mass of the spherre then M = % n R p

2
ve—cm|3R -
2R3

This is the expression for the potential due to solid sphere at an internal point.
Gravitational Attraction :

We know
F=-2 ~
Solid '
2. sphere R
1 [_ M [3R___r3]]
dr IR
Potential
=M 020 curve o R »
oM 2R3 | fa”  v=—clf
o Attractive o R —»
This isthe expression for the attraction. curve
Thus, the gravitational attraction at a /‘ F=_gM
point inside a solid sphere is proportional to . GMs 2
its distance from the centre. R®
Graphical‘representation : Fig. 26
At the centre (r=0) -
3GM
Ye="2 R




and at the surface (r=R)

GM

| s="7x

" Thus % Ve

|
* 2.19. KEPLER'S LAWS OF PLANETARY MOTION

- Kepler gave three laws which describe the motion of the ALaney
planets around the sun. These are : :

s 1. Law of Orbit : The path of each planet about the Sun . >

1

sun is an ellipse with the sun at one focus.
t (F1P + FP) is same for all points in the orbit.

2. The Law of Areas : Each planet moves in such a
way that an imaginary line drawn from the sun to the planet
sweeps out equal areas in equal time, i.e, the areal velocity
of the radius vector is constant.

From fig. 28

Area SAB = Area SCD

The planet moves faster when it is nearer to the sun.

|| 3. Law of Period : The square of the period of
revolution of any planet around the sun is proportional to the /7 I‘\
cube of the semi-major axis of its elliptical orbit. l
+——3a
i e.]} T o & &j
J T = period a = semi-major axis

Derivation of Kepler’s Laws from Newton’s Law of Fig. 29
Gravitation : Let us consider a planet of mass m revolving
around the sun in an elliptical orbit under gravitational field. According to Newton’s Law
of Gravitation, the attractive force acting on the planet due to the sun is given by

?=—G‘gm? (1)

Since the gravitational force is a central force. Hence the angular momentum L is
conserved in magnitude and direction. As a result of this, the motion of the planet must
take place in a fixed plane and the areal veloctiy of its radius vector should be constant.
This is Kepler s second Law.

The magnitude of areal velocity is

A _ L '
dt  2m
Letg‘-i=b-wherehis constant
i dt 2
and! JL:t’(n=J»m2d—g
dr
“ hoL L f,2d8
27 2m 2m [ dt];
_2 4
h ” (2)

Rotational Dynamics
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The radial force on the planet is

F = mass % radial acceleration

&r  (d

F= m[drz [a‘r
Mm
F=-GZ2
Z

.~ From eq. (3)

[dz @],% ‘
dr [df IS

dr_ () __GM
at I\ 2

From eqn. (2), we get /

a9 _h
a2
- By eqn. (4)
dr _B__GM
¢ A
Let .i"=l
1]
dr__1du
d 2 dt
| du o
ue do " dt
1 du ., 2
=5 T ()
2 do
du
—h de
, R d*r &y do
Asgain, differentiatin —_=- .
; S aer d
r_ o pdu
dit d e

Putting this value of £ in egn. (5) we get

dr
—hzuzdz—uz—h3u3=—GMu2
de

du  _GM
d 9* e

J

. (3)

.. (4)

. (5)

[from eqn. (2)]




h_z = constant

: 2
tlo B lan, (o,
::}'9 h h

l This is the differential equation of second order.
,l Let the solution of this equation be

- G—? =-CcosB
= —24 -Ccos9
h
RAIGM K
p —I—GM cos 9 ...{6)
or C =l—-ecosB
i r
where  eccentricit e= iz_z_C and = h—z = semi-latus rectum
SR, oM oM~ :
Since the orbit of the planet around the sun must be a ‘closed’ one, hence the total
GMm

energy of the planet, i.e., E= LR

2 should be ‘negative’. We find that E is negative

onllj_a when e< 1.
- Hence the orbit of the planet around the sun is an ellipse. This is Kepler’s First Law.
Let ‘a’ and ‘%’ are be semi-major and semi-minor axes of the eltipse, then

it If T be the time period of the planet around (he sun then
_ area of ellipse
T 2rea of ellipse

" areal velocity

nab
= hi2
; 2
| pATY &
h2
P
R 54__“2_5293
GMb¢/a
3
| = 4t
} GM
- Tead
il This is Kepler’s Third Law. -

Rotational Dynamics ™~
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+ 2.20. PERIOD OF MOTION OF A PLANET AROUND THE SUN

We know that all the planet in universe revolve around the sun in an elliptical orbit.
Except for Mercury and Pluto, the orbits of all the planets may be considered approximately
circular.

Let us consider a planet of mass m, revolving around the sun of mass M, in an orbit
of radius . R is the radius of the orbit of sun. C is the centre of system, then we have

MR =mr
Since M>>m
and R<<r

hence we may assume that the sun is situated at C. In this position the force of attraction
between Sun and Planet is given by

G Mm

F=——
2
and centripetal force is

F=.='1mr0.‘o2

M
G—m=mr(02

2
GM=w? P

Fig. 30

2n

T where T is the period of revolution of the planet.

Since w=

_4n
GM = = s

|-n-
A

= ()

r
A GM

ALK

4
= tant ===
constan 1: GM constant}

This is Kepler’s Third Law

From egm. (1)
e
T=2n @

This is the expression for the period of revolution.

+ 2.21. WEIGHTLESSNESS INSIDE A SATELLITE

We know that the only force acting on satellite revolving around the earth in an orbit
of radius r is the gravitational attraction of the earth which is directed towards the centre

of the earth.
In this position the acceleration is

Fp
a="— (D
’2 Setellite
where M is the mass of the earth. The gravitational force
Fg is given by




Fe=G

. Mm Rotational Dynamics
| 7

| |

and-fictitious or pseudo force is given by F,, = - ma.

l This is directed away from the centre of the orbit, .
it For system the force is given by

F=Fg+FP5—GMm-ma

=—-’2——m—’2—=0 [by eqn. (1]

Thus, the net force on all bodies inside the satellite is zero and they will be in the
state of ‘weightlessness’. Hence they will appear to move without acceleration inside the
satellite.

From the above we conclude that the value of acceleration due to gravity, ie., g for »
pendulum inside a.satellite would be zero and hence the simple pendulum experiment can
not be conducted inside the satellite.

» 2.22, ENERGY CONSIDERATION IN THE MOTION OF PLANETS
: AND SATELLITES

" Let us consider a satellite of mass m in a circular orbit of radius r about earth of mass
M which is assumed to be at rest in an inertial reference frame. The potential energy of
the system is

Ur)=— ., + U ()

where e is the work done by the gravitational force of the earth on the satellite as the
satellite moves from infinity to a distance r. The potential energy at infinity is assumed
to be zero, ie., ‘

|, ' U (e) =0 then
U(r)=—0)w=—rF(r)dr -
«
T GMm
vin=-| - d
| =-] -4
] =
{ U(r)=[_G:4m:|
l GMm i
| Un=-=2

‘Thus the potential encrgy is negative. The kinetic energy of the system is given by

K=%m£
We know that the gravitational force supplies the centripetal force, i.e.,
- GM). m_v2
2 r
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a2 = GMm
r
so kinetic energy is
_1 GMm
K= 2 r

Kinetic energy is always positive. This shows that the moving body can do work in

coming to zero energy.
Total energy is

E=U+K=—6Mm+lGMm
2 r
| GMm
E_*2 ¥

This energy is constant and negative. Kinetic energy can never be negative but it

| would be zero at r=ee. The potential energy is always negative, being zero at 7= eo.

The meaning of negative total energy is that the orbit of satellite is a ‘closed’ one,
i.e., the satellite is always bound under the gravitational force of the earth.

(b) Variation in kinetic energy and potential energy of a planet moving around
the Sun in an Ellipitical orbit ; The total energy of the system, i.e., sun + satellite is given
by

E =Kkinetic energy + gravitational potential energy

Since the force on the planet due to sun is conservative, the total energy E is constant

in time. Hence as the planet max moves then both r and v vary and hence the Kinetic energy

and potential energy individually vary, but the total energy remains unchanged. -

Hence the kinetic is minimum when r is smallest, i.e., when the planet is at the point
of closet approach to the sun and minimum when r is largest. Potential energy is maximum
negative when r is smallest and minimum negative when r is largest.

(c) Satellite moving down : When the satellite moves in a lower orbit then its energy
dissipates due to the atmospheric friction. Therefore, in a particular orbit the gravitational
attraction on the satellite exceeds the force required to keep the satellite in that orbit. As a
result of which the satellite moves down towards the earth into lower orbit. In the lower
orbit the potential energy decreases, i.e., becomes more negative so that the kinetic energy
increases because the total energy is conserved. Hence the satellite describes a smaller orbit
with increased speed. In fact, due to atmospheric friction, the satellite spirals down towards
the earth with increasing speed and ultimately bumns out in the denser lower atmosphere.

+ 2.23. TWO-BODY PROBLEM AND REDUCED MASS

The two body problem with central forces can always be reduced to the form of one

body problem.
Let us consider two particles of mass m; and m; whose position vectors with respect

to an origin O in an inertial reference frame are Ffand Qas shown in fig. 32.

From fig. 32 =R -7

The particles exert gravitational forces of auractig)n on each other which act along
the vector 7 And are thus “central forces™. Let F}, and Fy| be the forces acting on particles

my due to my and on my due to m. Then the equations of motion for m) and m; with
respect O are




N - -t
i} szf) = _fm f_zz
m—= =i
dé ™ M2
_)
- I _@ R B
and my —5- =]
dr
By Newton’s Third Law ©
Fig. A2

Fyy=-Fiy=F then
l &N F G EE_F '
D dl’z my dfz L)

| On substituting these equations we get
i

_@E@=_{L+¢J?

di my  my

g 2> :
. 2P (1, 0)p

dr my my

-
The central force F may be written as
? A
=Fr
where F is the magnitude of the force and is any function of r and 7 is the unit vector
along 7 Then

&P 11 A
| =—1—+—1Fr
de my my
} 2 =
1 . dr__lps )
dr K
H
where _1.=L RS
; Lom om
X mymy
or. =
' m1+m2
5 7 —
[ From eqn. (1), are_rb
a’

This is exactly the same as the equation of motion of a single particle of mass J at a
. . . . A

position vector 7from a fixed centre which exerts on it a central force F r.

Here the negative sign shows that the force on the particle and its vector distance

from the centre of force are opposite in direction.
Thus, the original two-body problem involving two vectors 77and 75 has been reduced

is known as the

toa one-body problem involving a single vector 7 Here L=
: my +my

‘ré'iduced mass’ of the system of two particles and has a value less than both rn; and m;.

. '!I?SUMMARY
. i Angular displacement is the angle described by the position vector 7 about the axis of
© rotation,

« | The rate of change of angular displacement is known as angular velocity.

Rotational Dynamicr
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The rate of change of angular velocity of a body about the axis of rotation is known
as angular acceleration.

Torque is defined as the external force acting on the body which rotates the body about
fixed axis. Iy

The rate of change of angular momentum of a particie is equal to the torque acting on
the particle.

The moment of inertia of a rigid body about a given axis of rotation is the sum of the

products of the masses of the various particles and squares of their perpendicular

distance from the axis of rotation. It given by /=% mr?.
Theorem of parallel axes states that Moment of inertia of a body about any axis is
equal to its moment of inertia about a parallel axis through its centre of mass plus

M#?, where M is the mass of the body and A the perpendicular distance between the
two axes.

The equation T& /0 is called fundamental equation of relation or law of rotation,
where T = Torque, / = Momentof Inertia, o = Angular acceleration.

Theorem of perpendicular axes states that *“The moment of inertia of a plane lamina
(a two-dimensional body) about an axis perpendicular to its plane (OZ) is equal to sum
of the moments of inertia about any two mutually perpendicular axes OX and OY in
its plane intersecting on the first axis.”

A flywheel is a large heavy wheel with a long cylindrical axle supported on
ball-bearings. The wheel is constructed such that whole of its mass is concentrated at
its rim.

The motion of the axis of rotation about a fixed axis due to an external torque is called
precession,

The axis about which the direction of rotation of the body precesses is called the axis
of precession.

According to this law, every object attracts every other object with a force which is
directly proportional to the product of the two masses and inversely proportional to
the square of distance between them.

Gravity is a special case of gravitation in which one of the objects must be earth, thus
gravity represents forces of attraction between earth and any other object.

The space surrounding the attracting particle within which its gravitational force of
attraction can be experienced is called gravitational field of the particle.

The gravitational potential at a point in a gravitational field is defined as ‘“The amount
of work done in bringing a body of unit mass from infinity to that point without
acceleration”.

Kepler gave three laws which describe the motion of the planets around the sun. These
are:

1. Law of Orbit : The path of each planet about the sun is an ellipse with the sun at
one focus.

2. The Law of Areas : Each planet moves in such a way that an imaginary line drawn
from the sun to the planet sweeps out equal areas in equal time, i.e., the areal velocity
of the radius vector is constant.

3. Law of Period : The square of the period of revolution of any planet arcund the
sun is proportional to the cube of the semi-major axis of its elliptical orbit.

[ 3
T=2m éﬁ is the expression for the period of revolution and is derived using

Kepler's laws.
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« . STUDENT ACTIVITY

5.3 State and explain Newton's law of universal gravitation.

6. What do you mean by gravity ?

7.. Differentiate between gravitation and gravity.

{i

8. {'Define gravitational field.

i
b

}i

9. |Define gravitational attraction.

3
|
|
|

|
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10. Define gravitational potential,

» TEST YOURSELF

1.

a0

4.

SO

A

10.

11.

12.
13.

14.

15.

Define torque Tcting on a particle about an axis. Obtain its angular momentum. Find
out the relationship between torque and angular momentum.

Define moment of inertia of a body. Give its physical significance.

Derive an expression for the kinetic energy of a body rotating about an axis. hence
define the M.1. of the body.

Prove that for a rigid body the angular momentum about an axis of rotation is equal
to the product of M.I. and the angular velocity about that axis. Hence show that the
K.E. of rotation is L?/2I.

Obtain a relation between the torque applied and the angular acceleration produced in
the body.

State and prove the theorem of parallel axes.

State and prove the theorem of perpendicular axis.

Obtain an expression for M.1. of a thin circular disc (i) about an axis passing through
its centre and perpendicular to its plane (ii) about a diameter and (iti) about a tangent
in its plane.

Find M.L of annular disc of mass M, inner radius R1 and outer radius R2 : (1) about
an axis passing through its center and perpendicular to its plane (ii) about a diameter
and (iii) about the tangent in its plane.

A solid sphere rolls on a table. What fraction of its total K.E. is rotational ?

[Ans. 2/7]

Deduce expressions for the gravitational potential and ati®ciion due to thin uniform
spherical shelil at a point (a) outside and (b) mside the shell.

What are Kepler's laws of planetary motion ?

Show how by introducing the idea of reduced mass, a two body problem under central
forces can be reduced to a one body problem.

If the rotational motion of a body about an axis is {o be changed then we miust apply
about the axis :

(a) Torque (b) Torque and Force
{c) Force {d) None of these
The moment of inertia of a thin uniform circular disc of mass M and radius R abcut
any tangent is :
MR? MR? 5 MR?
(a) 4 (b) BN (c) 3 (d) None of these




16.

17.

20:
21,

22.

The moment of inertia of uniform solid sphere of mass M and radius R about diameter
is:

@imrt ) 2 m ©2 MR (d) None of these

3

The moment of inertia of uniform solid cylinder of mass M, radius R and length /
about long axis of symmetry is :
2
() % MR (b) M.P_ M f (c) MR (d) None of these
The rate of change of :mgular momentum is equal to :
(a) Force (b) Angular Acceleration
(¢) Torque (d) Moment of Inertia

. A gymnast is sitting on a rotating stool with her arms outstretched. Suddenly she folds

her arms near the body. Which of the following is correct :
(a) Angular speed decreases

{b) Moment of inertia decreases

{c) Angular momentum decreases

(d} Angular speed remains constant

Moment of momentum-is called :

(a) Torque (b) Weight

{c) Moment of inertia (d) Angular momentum

When the torque acting on a system is zero, which of the following will bz constant?
* {(a) Force (b) Linear momentum

(c) Angular momentum (d) Linear impulse

A solid sphere of mass M rolls down an inclined plane withow slipping from rest at
the top of the inclined plane. The linear speed of the sphere at the bottom of the inclined
plane is V. The K.E. of the sphere is :

(a) %‘MVQ (b) %le () —§-MV2 @ 15 Mv2

Two circular discs A and B have equal mass and thickness but. are made of metals
with densities d4 and dp (d4 > dg ). If their moments of inertia about an axis passing
through the centre and normal to circular faces be J4 and /g then}:
(@) 14 =1Ip (b) Ia > Ip (c)la<lIg (dyIaz1Ip

. What must be the relation between I and R if the moment of inertia of the cylinder

about its axis is be the same as the moment of inertia about the equatorial :.xis :
3

3
@I=Y3R (®R=V3! (© I=—R @ R=7351

25,

The total kinetic energy of a rolling uniform disc is equal to :

(a) 2 translational kinetic energy (b) 3 translational kinetic energy

| (¢} 2 translational kinetic energy  (d) None of these
26, The moment of inertia of the spherical shell of mass M and radius R about a tangent

I

i

(a) (b) %MRz ©) % MR (d) % MR?
27! } Fly-wheels have wide applications in :

(a) Stationary engines (b) Mobile engines.

{c) Transport (d) None of these

28.‘

A body of mass M and radius R rolls down a plane inclined at an angle 0 to the

fj horizontal without slipping, the acceleration of a body will depend upon :
, (a) Mass (b) Angle 9 (c) Height (d) None of these

Rotational Dynamics
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Mecharics 29. A sphere, a spherical shell, a ring and a cylinder are allowed to roll down
simultaneously an inclined plane from the same height without slipping which will

reach earlier :
(a) Shell (b) Cylinder (c) Sphere (d) Ring
! 20. The relation between angular momentum and angular velocity is :

@ T =Px@ O T =& x7 (c)?=;); AI=1 @
': ANSWERS

14. (a) 15.(c) 16. (@) 17.(d) 18.(c) 19.(b) 20.(d) 2L.(c) 22. (d) 23.(c)
24. (2) 25.(b) 26.(a) 27.(a) 28.(b) 29.(c) 30.(d)
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UNIT Properties of Matter

PROPERTIES OF MATTER

Elasticity

Modulus of Elasticity
Relation among Elastic Constants ¥
Angle of Twist and Angle of Shear

Statical Method of Determining Modulus of Rigidity
Torsional Oscillations

Maxwell's Needle

Tems

Couple Required to Bend a Beam (Bending Moment)
Beam Loaded at Free End

Beam Loaded at the Middle Point

Determination of Young's Modulus

0 Student's Activity ‘
Surface Tension

Surface Energy

Pressure Difference across a Liquid Surface

Capillary

Method for Rise of Liquid in a Capillary Tube

0 Student Activity

Streamlined Flow (Steady Flow)

Principle of Continuity

Viscosity

Streamlined, Laminar and Turbulent Flows

Critical Velocity

Reyneld's Number

Effects of Temperature and Presure

Practical Uses of the Knowledge of Viscosity

Flow of Liquid through a Capillary Tube (Poiseuille's Formula)
Rotation Viscometer

Stoke’s Law

a Summary

! O Student Activity .

LEARNING OBJECTIVES

Afteilr,f going through this unit yod will learn : -
® Various properties of matter such as elasticity, surface tension, surface energy, efc. in
. detail. =

® Determination of young's modulus and its application,

® The flow of liquid in detail along with the various principal's applicable,

« 3.1, ELASTICITY

“Abody undergoes a change in its shape or size or both, when external force is applicd.
In this position it is called deformed. When external forces are removed, and if the body

g —— e
* & & 00

===
]
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returns to its original form completely then the body is said to be perfectly elastic body
and this property of the body to regain its original form, on the removal of the
deforming force, is called elasticity of the body.

(a) Perfectly Elastic Body : A body which regains its original configuration
immediately and completely after the removal of deform ing force from it, is called perfectly
elastic body. For example, quartz is perfectly elastic body.

(b) Perfectly Plastic Body : It may be defined as the body which does not regain its
original configuration at all on the removal of deforming force. Putty and Paraffin wax are
the example, of perfectly plastic body.

(c¢) Stress : When a deforming force is applied on the body then it changes the
configuration of the body by changing the normal positions of the molecules or atoms of
the body. Due to this an internal restoring force comes into play which tends to bring the

body back to its original form.
The stress of the body may be defined as, “the internal restoring force per unit area

of a deformed body is called stress”, i.e., é
Restoring-force
Stress =

Area

The unit of stress in S.I. system is Nm 2 and in CGS system it is d},'ne;’cm2 and
dimension is [ML ™' T™2).
Stress is of three types :
Tensile stress, compressional stress and tangential stress.
(d) Strain : When a deforming force is applied on a body then there is a change in
the configuration of the body. In this position the body is said to be strained or deformed.

The ratio of the change in configuration to the original configuration is known as
strain, i.e.,
Change in configuration
Original configuration

It has no unit and no dimensions. Strain is of 3 types : Longitudinal strain, volumetric
strain and shearing strain.

Shearing strain = 2 x Longitudinal strain
Volumetric strain = 3 X Longitudinal strain
() Shear : When a body is acted upon by deforming forces tangential to its surface

then it suffers a change in shape and in this position the body is said to be sheared.

© Elaggig_Limit-:-ElastiE'limit is the upper limit of deforming force upto which if
ﬁorming’force is removed, the body regains its original form completely and beyord
which if deforming force is increased the body loses its property of elasticity and gets
permanently deformed.

Elastic limit is the property of the body while elasticity is the property of material of

the body.
« 3.2, MODULUS OF ELASTICITY

Modulus of elasticity or coefficient of elasticity of a body is defined as the ratio of
the stress to the corresponding strain produced, within the elastic limit.
It is denoted by E

Strain =

_ Stress
Strain

It does not depend upon the magnitude of stress and strain but depends upon the
nature of the material of the body.

Modulus of elasticity is of the following types :

(a) Young’s Modulus of Elasticity (¥) : It is defined as “within the limit of elasticity
the ratio of normal stress to longitudinal strain is known as Young's modulus of elasticity.”

It is denoted by Y.




e
LY

"
1

Normal stress Properties of Mater
" Longitudinal strain

|
\ Let us consider a wire of length /, radius r and uniform area of cross-section A. Let

I be suspended from a rigid support. When normal force F is applied at its free end then
it increases in its lenght by Al (say).
|
' So longitudinal strain =

.~

|

andl normal stress =

il
2

I
3
Tt

l Y="pm

Fl
n2Al
]i This is the expresswn for Young’s modulus

Its unit is Nm™2 in S.I. system and dyncfcm in C.G.S. system. ‘¥’ for liquid is zero.

(b) Bulk Modulus of Elasticity (K) : It is defined as "the ratio of normal stress to
the '\;rolumetric strain within the limit of elasiicity, i.e.,

Y=

L]

_ _ Normal stress
- Volumetric strain

Let us consider a spherical body of volume V and surface area A. Let a force F be
apphed normally on the entire surface of the body. Due to this let its volume decrease by

AV. |
l
|§So volumetric strain =— -AVV
Negatwe sign shows that the volume is decreasing when force is applied and normal
F 4
strc i Z
__FIA -FV
—AVIV™ AAV
FV
! = —
' K=—av

Thls is the required expression for the bulk modulus of elasticity.

1t has unit of Nm™2 in S.I. system and dyne;’cm in C.G.S. system. Gases have two
types of volume elasticity, they are

(1) Isothermal elasticity Ex=— V[jf;} = Pressure, P
]
i "I( 1} Adiabatic elasticity Eq=—V (ji]

=Yp

| " Cp

| where Y= —é'—

| v
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- 1
Compressibility = Bulk modulus

(c) Modulus of Rigidity (1)) : It is defined as the ratio of tangential stress to the
shearing strain, i.e.,

_ Tangential stress
"~ Shearing strain

Let the lower face of the cube be fixed and let a tangeﬁtial force be applied at the

upper face of area A as shown in the fig. 1 J‘F
Tangential stress = = and shearing strain = 0 i
angential stress =~ and shearing strain = TS
" ==t 2l I
il Lol il
_E
AD : :
This is the expression for modulus of rigidity. S I
(d) Poisson Ratio (6} : When two equal and opposite forces h 3‘
are applied along the length of a wire then the wire extends along F
Fig. 1

its length while contracts radially. Then

Longitudinal strain = i‘f

. Ar
Lateral strain = ~

where L is the initial length, AL is extension is initial radius. Ar is contraction in radius.
The ratio of the lateral strain to the longitudinal strain is called Poisson’s ratio
(©).
o= Lateral strain
Longitudinal strain

_ Arir
AL/L

() sign shows that the change in length and radius are opposite signs, Le., if one
decreases, the other increases.

o lies between — 1 and -12- but in practice o lies between 0 and %

If there is no change in volume of a wire on loading then its & will be —;-

() Elastic After-effect : It is found that some solids come back to their position
when the deforming force is removed while some solids take some time to do so. For
example, quartz, silver and gold return to their original position as soon as the deforming
force is removed but glass takes some time to do so. Hence, “This delay in recovering
back to the original condition on the removal of deforming force is called elastic after-
effect.”

(f) Elastic Fatigue : When a wire vibrates continuously for a long time, for example,
for some days, the rate of decay of the vibration is much greater than when the wire is
pressrd. The wire gets tired due to continuous vibrations. This is called elastic fatigue.

(g) Elastic Hysteresis : Due to elastic after-effect the strain in the body tends to lag

behind the stress. This lagging of strain behind the stress is cailed elastic hysteresis.




(h) Hooke’s Law : This law is the fundamental law of elasticity. According to this
law *“within the limits of elasticity the stress is proportional to the strain.”

| That is, Stress o< Strain

| S

. tress

: —— =constant=F
' Strain

! This is Hooke’s law. E is known as Modulus of Elasticity. This law is applicable
only when Strain is small.

. 3 3. RELATION AMONG ELASTIC CONSTANTS.

Let us consider a cube of side L each. Let the sides f
be parallel to x, ¥ and 7 axis. (Fig. 2)

i When extensional stress (P) is applied in any
direction then there will be extensicn in that direction and /
at the same time there will be contraction in the remaining
two'perpendicular directions. This means that extensional- e i
stress applied in x direction will produce the extension
along the x-axis and contraction along the y and z-axis. / X

i Now extension (longitudinal) and contraction / /0

(Iateiral) may be calculated as follows: e

17T

e

ti
i
' AL Fig. 2
' Longitudinal strain = T B

- Change in length (AL) = Longitudinal Strain x L ... {1) (original length)

Again, when extensional stress is applied in x direction :
J

. . _PL
extension along the x-axis = Y

. . PL
_contraction along the y-axis=¢ v
It
! . . PL
.and contraction along the z-axis = v

. When extensional stress is applied along y-direction :

Y

G PL
Y

i PL
;extensmn along the y-axis =—"
1

,contraction along the x-axis =

. . . oPL
and contraction along the z-axis =
When extensional stress is applied along z-axis :

! iéxtension along the z-axis = %

. . _GPL
contraction along the x-axis =
I

0 Y

|

and contraction along the y-axis = o ;’ L

and Y= Long. Stre.s.s-
Long.Strain

R
i
1 -
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or Long. Strain =-‘; e (2)

Putting in eq. (1)
Change in length = % x L o (3)

Similarly, contraction may be calculated as follows :

Lateral Strain = %

Change in length (AL) compression = Lateral strain X original length (L) @)

_ Lateral Strain

and ~ Long. Strain

Lateral Strain = ¢ X Long. Strain

Lateral Strain = ¢ X% [From (2)]

Putting in (4)
Change in Length (AL) (contraction) = ¢ X % x L ... (5)
Hence, Net extension along x-axis

_PL__PL__PL

y %y %y
PL

=-— —2
Y(l o)

Similarly, the same extension will be obtained along y and z-axis.
New side of the cube = original length + extension

PL
=L+ v {1-20)

3
The new volume = [L + % (1-2 G)]

3
=0 1+§ (1-20)]

=11 +3_YE (1-2 G)] (approx.)
(By Binomial theorem)
Original volume = L*
Change in volume = L° [1 + %‘,’i (1-2 c)] -

3pL3
== (1-20)

Change in volume
Initial volume

Volume Strain =

3
——"-y;,L (I —20) 1p
=-—T"'—'=—Y—(] - 20)

il




Normal Stress

. Therefore, Bulk Modulus (K) = Volume Strain

] o
_ 3P
5 (1-20)
R S
T3(1-20)
Y=3K (I - 20) ... (A)

-

f Now; again let us consider a cube of side L. Now extensioal stress is applied along
x-aplc_is and compression stress is applied along y and z-axis (Fig. 3).
i When extensional stress is applied along x-direction

N . . _PL
;i extension along the x-axis = v

contraction along the y-axis = 9%

and contraction along the z-axis =GTPL

When compressional stress is applied along y-direction !

contraction along the y-axis = 52 y

I

extension along the x-axis = —';:é P*

j and extenston along the z-axis = G—;L

Net extension along x-axis = % +G P—}f‘ Pt —»p
_PL (o) x

' Net compression along the y-axis = ¢ PL + £L ‘ l

P along He y-axs = Yy ¥ Fig. 3
= ﬁé (1+0)

ismce there is equal extension and compression, hence there wili be no change along
the z~ax1s

Change in length
Original length

PL

;Again, extensional strain =

Col B L Y
!Similarly, compressional strain
& (1+0)
g P SR P
L L Y

We know

extensional strain + compressional strain = Shear (8)

\i
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Lid £ _
?(l+c)+y(1+0)—e

%{—j (1+0)=9
P__ Y
8 2(1+0)
Y
""20+9)
Y=2n(1+0) ... (B)
A-gain, from (B)
%=(l + )
o= L1
Put in (A)
Y=3K (! -20)

el

This can also be written as

()

Theoretical limiting values of
From (A) and (B)
Y=2n(+0)
or Y=3K (1 -20) )
or 3K(1-20)=2n({l+0) -.(6)
Since K and 1 are positive quantities, therefore & may either be a positive or negative
quantity. If ¢ is positive, right hand side of equation (6) is positive and for the left hand,
side to be positive
1-262>0
1>20

U<‘1‘
2

If G is a negative quantity, left hand side of (6) is positive and for the right hand side
10 be positive.
1+6>0
a>-1

. . |
Thus theoretically ¢ must lie between 5 and - 1.




]1
!] But ¢ can not be negative. Since negative value of ¢ would mean that on being
extended, a body should aiso expand latemlly Since no substance behaves in this way,

Hf:![[lce, in practice & lies between 0 and 5'

« |3.4. ANGLE OF TWIST AND ANGLE OF SHEAR

| Consider a cylindrical rod of length { and radius r, clamped at
the upper end. This is twisted through an angle © at the lower end in
the| direction of arrow. As a result, the radius of each circular
cross-section of the cylinder rod is turned about its axis through an

angle 8. This angle 8 is called the angle of twist and is proportional l"

r O

to the distance of the cross- section from the clamped end, i.e.,
decreases towards the clamped end. This is an example of pure shear
because the twist produces a charge neither in length nor in the radius Q ,
of the cylindrical rod.

* Due to elasticity of the material a restoring couple is set up Fig. 4
1r151de the cylindrical rod which is equal and opposite to external
tW1§t1ng couple. A generating line AB parallel to the axis of the cylindrical rod is turned,
through an angle ¢, to a new position AB”. The angle ¢ is calied the angle of shear.

I It is clear from fig. (4) that the angle of shear is maximum for the outermost layer

and reduces to zero for the innermost larger, i.e., at the axis.

(a) Twisting couple on a cylindrical rod : Imagine
thecylindrical rod to be divided into a large number of
infinitesimally thin coaxial cylindrical shells and consider
one: such shell of radius x, thickness dx and length I (Fig.
5). ]Let a generating line AB on the surface of this thin
cylindrical shell be displaced into the position AB * when
the cylindrical rod is twisted. If ¢ be the angle through which
this thin spherical shell is sheared and 8, the corresponding
angle of twist then

I BR'=1!.¢ (arc=angle X radius)

So angle of shear ¢ = B‘?
also . BB'=x8
Thus, ¢—ﬂ o ()

I
1If F be the tangential force acting on the base of this thin elementary cylindrical shell
of. arTa 2nx . dx, producing a shear ¢ in it, then .

Tangential force
area

F )
H = onr dx - (1)

|
'[ff 7 be the modulus of rigidity of the material of the rod, then

Tangential stress =

[ _ Tangential stress
' shear ¢

_FP2mx. dx
T ox6

{From equations (i} and (ii)]

Properiies of Maiter
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or F=M.x2dr

The moment of this force about the axis OO0 * of the rod is
F.x= 2“[’,’9 B dx

This is equal to the couple required to twist the elementary shell through an angle
8. Therefore, the couple T required to twist total rod of radius r is obtained by integrating

the last expression between the limits x=0t0 x=r.

;
Thus, 't-—-j 2nn9.x3.dx
o I
,
_Znnﬁ[ﬁ]
i 4 0
_2nn® A
T 4
S i LA
B

This is the required expression, where 9 is in radians. This shows that the couple

required is proportional to the twist 8.
If C (say) be the couple to produce a twist of one radian, then

4.
_mr -
T ©=1

C is called the torsional rigidity or torsional constant of the wire. Since twisting couple
is numerically equal to the restoring couple, C is also called the ‘restoring couple per unit

twist’. Also, the couple required to twist the rod through 90° (ie., % radian) will be

4

K Ty n
1-C.2— 2 2
, et
AT

{b) Couple required to twist a hollow cylinder : We shall proceed exactly as in
earlier, only the limits of integration will be changed. Now for hollow cylinder limits are
x=r| to x = ry. Thus the couple required to twist the hollow cylinder through an angle ¢

ry 41"
=I 2r|:1|6x3dx=2n119 X
n | 141,

_2nmd nt-nt _Tcﬂ(m4-rl4) 9
o 4 - 21 '

Therefore, the couple required to twist the hollow cylinder through one radian is

nn (2t - nt

, = 21

where C is called the torsional constant or torsional rigidity of the given hotlow cylinder.




. 3.5. STATISTICAL METHOD OF DETERMINING MODULUS OF
i RIGIDITY

The method is due to Barton. The given rod is
rigidly clamped at one end A and hung vertically. A brass
cylinder is attached to the lower free end. The flexible
threads are wound around the cylinder such that they
leave it tangentially at the opposite ends of ‘a diameter
and then pass over to two frictionless pulleys P and P,.
‘The pans are attached to the ends of these threads, on
which weights may be placed. At a known distance from
the upper end, a pointer is fixed. When the wire is twisted,
the pointer moves over a circular scale § graduated in
degrees [Fig. (6)].

- Theory : Let a mass M be placed on each pan then
the threads will experience equal and opposite parallel
forces each being Mg. Thus, if D be the diameter of the Fig. 6
cylinder, the moment of the couple twisting the cylinder
— I}',IgD 1

! Twisting of the rod will develop a restoring couple, equal and opposite to twisting
couple m the rod. If C be restoring couple per unit twist and 8 be the twist in the rod at a
distance / from the fixed end then restoring couple for twist.9 = C 6.

At the equilibrium, twisting couple = restoring couple

Mg.D=Co

_MLB
=5

where r is the radius of the rod. If 8 be expressed in degrees, then

ot

: Mg . D_Efe 180

_|
Thus, _360.Mg.D .|

wrte

.. Method : (i) A series of weights is used and the twists are read on the scale, both for
load increasing and for load decreasing. To avoid error due to
eccentricity of the rod with respect to the scale, both ends of the
pointer are read and mean value of twist is calculated.

(ii) A graph (fig. 7) is plotted in Mg and corresponding
mean twist 6. This is a straight line whose slope gives Mg/ 6.

!._ (i) The length / is measured by a meter scale.

i (iv) The radius r is measured by screw guage at several
poir'}ts in two perpendicular directions and mean value is
calcylaled.

- (v) The diameter D of cylinder is measured by vemier callipers. Then by using the
previous deduced relation, 11 for the material of the rod can be calculated.

* 3.6. TORSIONAL OSCILLATIONS

| Let a body, say a heavy disc, be hung by a long and thin vertical wire whose upper
end is rigidly clamped (fig. 8).

— Mg

.....

=

Fig. 7

Properties of Matter

-t

Self-Instructional Material 71

E



J 72 Self-Instructional Material
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Let the body be given a slight rotation in the horizontal plane "‘“
by applying a couple. The wire is twisted and a restoring couple is
developed in it due to its elasticity. This restoring couple, if twisting
couple be removed, being unbalanced will produce an angular
acceleration in the wire in a direction opposite to that of the twist.
The body, therefore, returns to its mean position but due to
inertia it does not stop at mean position and now moves in the
opposite direction, twisting the wire. Due to this twist, again Fig. 8
restoring ccuple is set up in the wire which again arrests its motion
and makes it return. The whole phenomenon is then repeated. Thus the body oscillates in
the horizontal plane about the wire as axis. Such oscillations are called torsional oscillations
and the system is called a torsional pendulum.
Theory : If § be the angular twist or displacement any time ¢, then angular acceleration

d’ e
roduced = —.
P d

E
—

Let J be the M.L of the disc about the wire as axis, then torque applied to the wire

_ &8
dr
If C be the restoring couple per unit twist produced in the wire, then restoring couple
for twist 6=C86.
The equation of motion of the disc

‘e

I—+C8=0

d i

&0 C
o —_—

d¢ 1

4’0

or —+p29=0,

¢

which represents a simple harmonic motion of time period.

T=2—:=2n\/z - (D

C

To determine the modulus of rigidity : A regular body of known M.L, I} is placed
at the disc such that its centre of mass coincides with that of disc. The whole system i$
then set into torsional vibrations. Suppose time period comes out to be 7, then

T =2n \l(l—zﬁ} (D)

From equations (1) and (2), we get

aw (1 +1) ardl 4T

8=0

ni-T=—g c - C

4 I,

C=—F—0o"

(T2 =79
4 4t

nir | .
= (Putting value of C)
2 (@01 :




8nily 3)
N="73 "3 .o
| ?’4 [T 2 _ TZ] u
"; Thus, measuring the radius of wire r by a screw gauge, length / by metre scale, /,
from the mass and dimensions of the regular body, and then substituting the values of
l, ! 1,7, T and T, the value of 1, the modulus of rigidity, can be calculated.

+ 3.7. MAXWELL'S NEEDLE :
cylmdrlca! brass tube of length L, suspended by a steel wire,
under experiment, fastened at its middle. The other end of (g
M M
both ends. The hollow tube is just fitted with four brass _ -
cylinders, two solids S, S and two hollows H, H ; cach B 515 Bl B 1 [H BB
All these cylinders are. also of small radii. These Fig.9
cylinders are inserted in the hollow cylinder symmertically
and solid cylinders outside. A mirror M is attached to the wire for countting of vibrations
wnh lamp and scale arrangement.
in horizontal plane. Let first, solid cylinders be inside and hollow cylinders outside as in
fig. (9a) If the period of torsional vibration in the case be 77, then
where 71 - M.IL of the loaded tube with solid cylinders inside and hollow cylinders
outside, about

Maxwell’s needle is a modification of torsional pendulum. It consists of a hollow
the wire is attached to a fixed support. The tube is open at
having a length 1/4. @) (b)
so that either solicscylinders S, § are mside and hollow H, H outside or hollow ones inside
* Theory and Procedure : To start the experiment, the brass tube is set into oscillations
!
=2 ‘\/—' (D)
the suspension wire as axis.

C — restoring couple per unit twist of the wire.
* The solid and hollow cylinders are now interchanged in position as shown in fig. (9b)
and' if T, be the time period of torsional vibratign, then

Tr=2% \f: . (i)

where In = ML of the loaded tube with solid cylinders outside and hollow inside, about

‘the su3pen51on as axis.

From eq. (i) and (ii) ; we get

42 (- 1I)

T - = - ... (i)

N = myt
But 2l
where / and r are length and the radius of the wire under experiment, respectively. Thus,
relatron (iti) becomes

4r? (I - by
TE_72= ( . )
mr_
21 .
8';"”(1]—[2)
']"I:

T2-h A
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To calculate (f; - I5).

Let mg — mass of each of the solid cylinders

my - mass of each of the hollow cylinders.

If I be the M.1. of the brass tube about the suspension wire as axis and Iy, 7, be the
M.L of solid and hollow cylinders respectively about vertical axes passing through their
respective centre of mass, then by the theorem of parallel axes :

(a) MLL of the solid cylinder about the axis of wire

=1+ my (E]Z
f—L/2——p

(b) M.L of hollow cylinder about the axis of wire 4L/4»;

2
= Ih +m (%]
= H
8 7%
3L

(c) M. of hollow brass tube about the axis of wire —=—b

=1o ! Fig. 10
Hence, the M.L. of the oscillating system in the first

case will be

2

netos2 (2] Jo 2o 0

Similarly, with the reference to fig. 10, the M 1. of the oscillating system in the second

case is
I2=IO+2[Ih+mH[%J2]+2[IS+ms[%)z] %))

From eq. (v) and (vi), we have
2

L ..
(= L) =(ng—ms) .- (vii)
Substituting the value of (/{ — ) in (vi), we get
8wl (mg-myl?
T -1t 4

27 (m, — ringy) L2
T -1 r*

Thus, knowing alt the factors on right hand side of the above equation, modulus of

rigidity can be calculated. T4
el

Superiority over Torsional Pendulum : ° /

(i) The total weight of the suspended system remains unchanged throughout the
experiment. Hence the torsional constant C of the wire remains constant, as assumed in

the theory.
(ii) Instead of M.I., we require masses which can be known with more accuracy.

« 3.8. TERMS

(a) Beam : A bar of uniform cross-section whose length is much greater as compared

to the thickness is called a beam.
(b) Longitudinal Filaments : A rectangular beam may be supposed as made up of

a number of thin layers plane placed in contact parallel to one another.




Further, each layer may be considered to be a collection of thin fibres lying parallel
to the length of the beam. These fibres are called longitudinal filaments.

I' (c) Neutral Surface : When equal and opposite couples are applied at the ends of a
beam in a plane parallel to its length, the beam bends into circular arc. Fig. 11 shows the
v'emcal'sect.ion of such a b__e.am. Due to bending, t!]e Convex side
filaments lying on concave side are compressed while Neutral surface
those lying on the convex side are extended. There is,
however, a plane in the beam in which the filaments (l ‘L)
remain unchanged in length. This is called the neutral " Concave side
plane or neutral surface. It passes through the centres
of area of the cross-sections of the rod. In fig. 11 the
middle line represents the inter-section of the neutral
surface. It passes through the centres of area of the inter-section of the neutral surface by
the plane of the diagram.

(d) Plane of Bending : The plane in which the beam bends is called the plane of
bending. Obviously, it is the vertical plane when the beam is placed horizontally. It is the
plane parallel to the long axis of symmetry of the beam and passing through it and its
centre of curvature.

. {e) Neutral Axis : The line obtained by the inter-section of neutral surface and plane
of bending is called neutral axis. -

' (f) Bending Moment : When a beam is bent by external applied couple, an internal
restoring couple is developed at each cross-section of the beam due to its elasticity, In the
equilibrium state, the restoring couple is equal and opposite to the extemal couple. The
magnitude of this restoring couple is called the bending moment, and is obviously equal
to the external couple.

+ :3.9. COUPLE REQUIRED TO BEND A BEAM (BENDING MOMENT)

Fig. 12 represents the vertical section of a beam AB bent under the action of equal
and opposite couples 7, 7, at its ends. The Fa
arci.lNN represents the intersection of the
neutral surface by the plane of diagram.
The other arcs represent the filaments in
this place. N

~ Let the beam be divided into two
parts by a plane C and consider the
equilibrium of CB part. Because of kr, ‘:r_j
bending, the filaments of the beam above
the neutral surface are extended while
those below are compressed. The change in length of any filament is proportional to its
distance from the neutral surface. There are stresses corresponding to these strains on the
cross-sections of these filaments.

The portion of a filament in the part AC above the neutral surface exerts an extensional
force on its portion in the part CB. Similarly, the portion of a filameat in the part AC below
the%heutral surface exerts a compressional force on its portion in the part CB. The
mag'[nitudes of these intemal forces increase above and below the neutral surface as
indiijated by arrows. These forces form a system of anticlockwise couples. Their resultant
is the restoring couple acting at the section C. The magnitude of this couple is called the
bending moment. Obviously, it is exerted by the part AC over-the part CB. As the part
CB is in equilibrium, the antioclockwise restoring couple at C must be equal to the clockwise
external couple T at B. We shall now, calculate the magnitude of restoring couple.

Fig. 11

Fig. 12
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Figure 13 represents the part CB of the
bent beam and force acting over the section
C. Let it subtend an angle © at the curvature
of Q. Let R be the radius of curvature of the
neutral centre surface NN. Let us consider a
filament PQ at a distance Z above the neutral
surface. From the fig, it follows that
PO=(R%Z)6 and NN =R 0. Now, before
bending, the length of PQ was R 9, l.e., same
as-that of NN. Therefore the extension in the
filament PQ is (R+Z) 8- R0=2Z80. Hence
the extensional strain in this filament is

_ __Exiension
" Original length

If f be the force acting on the
cross-section of this filament and & be the
area of cross-section, then

Fig. 13

Stress = £
a

Hence Young’s modulus is given by

y= Suess _ fla
~ Strain ~ Z/1

f=1;‘3.z

The moment of this force about the neutral surface (Fig. 13) is
fz= 3;2 72
The sum of the moments of this force about the neutral surface (Fig. 13) is

fz=?‘z91

The sum of the moments of all the forces acting over the whole cross-section C is
the magnitude of the restoring couple or the bending moment. Therefore,

bending moment =% fZ

-xta 2

!
Yy 2 X
=5Z.2=71

where /= EaZz, a.quantity analogous to M.I. with the difference that mass is replaced
by area and is called geometrical M.I. of the cross-section about the natural surface.

Now we shall consider two types of cross-section :
(i) For a rectangular cross-section
I=ak* *

where a is area of cross-section




. 2 2
and X the radius of gyration = (b x d) f—z = %

|

I
wh]'rre b is breadth and d the width of rectangular beam.

- Therefore bending moment for this type of cross-section

i _vod
: T 12R
! (ii) For a circular cross-section
: 4
_ 2 A_m
I=ak?=nr? . 2= 4
.! where r is the radius of circular cross-section.
4
Therefore bending moment = Yagr

« 3.10. BEAM LOADED AT FREE END

Let us consider a thin, uniform and light y
beam of lenght /, clamped horizontally at one é
end'A' [Fig. 14] and loaded with a weight © at NN
the free end B. When loaded end B is depressed
downward compared to A, the beam undergoes
bending.

" The position of beam before bending is
shown by dotted boundary. Such a system is
called cantilever. Since the beam is light, the
whole depression may be taken as due to the load
W.

Let us take a section of the beam at C, distant x from A. Consider the equilibrium of
part;CB. Since the beam is fixed at A, the load W at B exerts an external torque tending to
rotate it clockwise, Its magnitude is obviously, W (! — x). This torque is balanced by an
anticlock-wise restoring couple supplied by the internal forces exerted by the part AC over
the section C. These forces are caused due to the elastic reaction against the extension of
filaments above the neutral surface and compression below the neutral surface. The
magnitude of the restoring torque is ¥ I/p where Y is Young’s modulus of the beam, 7 the
geometrical MLL of the section C about the neutral surface and p the radius of curvature
of the bent beam at C. At equilibrium, therefore,

Y7
I—-x)=— - (
w (I - x) (D

Fig. 14

T

|'Let y be the depression at the point C. Taking the end A as origin, let us draw X, Y-axes
as shown in the fig. Then (x, y) are the co-ordinates of the point C, and the radius of
curvature at this point is given by

Properiies of Matier
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If the depression be within elastic limit, the slope % of the tangent at the point

2
(x, y} will be very small and thus (%] can be neglected in comparison to unity, Then

|

s
de

Putting this value of R in (1), we get

dzy
o(-x=YI—
dx*
FrERY:
Integrating this, we get
dy_of, 2LV
dx_Yl(bE 2J+c1 o (2)

where C1 is the constant of integration. At the fixed end A of the beam, the tangent is

horizontal, i.e.,-at x =0, we have -3'{: 0. Therefore €| = 0. Hence

2
dy_ @, X
dx Y.’('LY ZJ' )
Integrating again, we get

ol e

where C; is again a constant of integration.

Again, at x=0, we have y=0, so that C = 0. Hence

At B (where x = [}, the depression y is maximum. Let it be equal to 8. Then, substituting
! and 6 for x and y, respectively in the last equation, we get

If the beam is of rectangular cross-section
bd’ )

12

where b is breadth and 4 is the thickness of the beam. Thus
3
4ot
If the beam is of circular cross-section of radius r, then
pnrt
4




4wP
3vnd

Equations (3) and (4} are the required expressions.

« 3.11. BEAM LOADED AT THE MIDDLE POINT

" Let AB be a beam of rectangular cross-section
resting symmetrically on two horizontal knife-edges
K and K, and loaded at its middle point D by a weight

th&@ﬁmm%mw&mﬂﬁﬁ%

. Thus, &= . (7)

. . . W :
reaction at each knife-edges is —- and acts vertically

2
upwards. The beam is bent as shown. The depression v
is maximum at the loaded point. . W
It is clear from fig. 15 that the tangent at D will Fig. 15

be horizontal. Hence each part DB, and DBy, may vy

be considered as an inverted cantilever of length
112, fixed at one end D and loaded by an upward
loadllé—v at the other. The elevation of the loaded end
of any cantilever will be the same as the depression
in the middle in the actual case (fig. 16). Thus the
problem is reduced to determine the elevation of p ;
B above D. Let us take a section at C distant x from H—-—x——mé-xu
‘0, and consider the equilibrium of the part CB.

: Fig, 16
i

Since the beam is fixed at D, the load % at B exerts a torque on CB tending to rotate in

anticlockwise. Its magnitude is clearly, -‘2‘—1 [é

restoring torque supplied by the internal forces exerted by part DC over the section C.
These intemnal forces arise due to elastic reaction against the extension of filaments on one
side of the neutral surface and compression on the other. The magnitude of the restoring
torque is

- x]. This torque is balanced by a clockwise

¥i
p
where Y = Young’s modulus of the material of the beam.

[ — geometrical moment of inertia of the section C about the neutral surface.
p — radius of curvature at C.

Therefore, at equilibrium

ofl_\_¥I
5(2— J— > L AD
If

Let us choose the co-ordinate axes X and ¥ as shown the origin being at D. If y be
the elevat:on at C with co-ordinates (x , y), the radius of curvature at C is given by
K 2 1312
X dx
p =

R
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2
If elevation y be small then %] can be neglected in comparison to one. Therefore

2
o dy_w(l_
a2 2YI[2

Integrating this, we get

where C) is the constant of integration.

At fixed point D, where x=( and % =0, Therefore C) =0. Hence

b _w(l 2
dx 2YI|2 2

Integrating again, we get
(L2 2, .
Yooz 2 76 TR

where C, is another constant of integration.

Again at D, we have x =0 and y = 0. Therefore C, =0. Hence

Q [sz—i} ) (2

a7 6
Now at the end B x=%andy=5(say)

The elevation § at B is thus obtained by substituting & for y and //2 for x in eqn. (2)
wil i P

7] PR a
If & and 4 be the width and thickness of the beam respectively, we have / =-b1—2—.

Therefore

3 3
5= Wi o= w1 L)
sy b8 40
T 12
This is the same as the depression at the middle point D of the beam in the actual
case.
« 3.12. DETERMINATION OF YOUNG’S MODULUS
We have
Wi
= .. (4
Ty @




Beam is placed symmetrically on two knife
edges K, and K, fixed at a distance { apart as shown
infig. 17. Ahanger with a hook is placed in the middle
of the beam. The load may be applied by suspending
weight from the hook. The depression produced is
measured by a spherometer placed in series with a
battery and a galvanometer G. The galvanometer
shows a deflection just as the central screw of
spherometer touches the hook. At this stage, the
reading of the spherometer is. noted. Now the beam
is loaded in equal steps and each time the screw is
adjusted to touch the hanger and the reading is noted.
The observation is repeated with decreasing load. The
distance I, between the knife edges is measured by metre scale.
The width b and the thickness d of the beam are measured by
vernier callipers and screw gauge respectively. Since d-is a small
quantity occurring in third power, it should be measured accurately
at several places and then mean value should be taken.

A’graph is plotted between the mean depression & and the
correspondmg load W. The slope of the straight line so obtained

|

gives — (Flg 18). Putting the value of - w ,I,band d we can

A

calcu_late the value of Young’s modulus ¥ from above expression.

o

Fig. 18

* STUDENT ACTIVITY

1. Define elasticity, perfectly elastic body and perfectly plastic body. -~

2. Define stress, strain and shear.

p 4

o
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3. Define modulus of elasticity.

P

r
——— .
J -
4. What is Hooke’s law ? .
f ]
~
: T ¥ =
5.  Which of the two-glass and rubber is more elastic and why ?
¢ !
W
- oo
6. What is meant by "plane of bending” ?
- = Ed ol 3 - g o T B 3 —- A
L T i, - A - — iy At i | e e . R k., —r
— A . ——m o Yt e— — e S L T
e F . R e ] ik, i . P —
7.  What is neutral axis ?
—— —— - FrEry —— b b T, —
Ty e by ) —— _— e ——




- i R e Y - LR L - =

8. ‘What is bendmg moment ? . 1 -

= s

i1 i

i i

. ¥

- A - o,
| .
e B ] L4 :!; *
2Fe i F PRl
2 - e ' ) -+

 3.13. SURFACE TENSION -

. “Surface tension is the property of the liguid by virtue of which the free surface of
llqu1d at rest tends to have minimum area and as such it behaves as if covered with a
stretched membrance. e - ! :

Measurement of Surface Tension : Imagine a line AB
drawn tangentially anywhere on the liquid surface. In this position
the force of surface tension acts at right angles to this line on both
its sides and also along the tangent to the liquid surface as shown
in the fig. The surface tension may aiso be defined as ““the force
acting per unit length is known as surface tension.”

Let F be the force acting on imaginary line of length I drawn
tangentially on the liquid surface at rest, hence surface tension T Fig. 19
by ;de_finiti_on is given by

r=£ ' -

IR 2k i i

¥ _’L E2 12 T -~ Fr

EH
um% -of surface tension is dyne/cm in C G S. system and Nm™! in 8.1 system. gt

e

+ The dimension formula of surface tension is [MT‘Z]. Surface tension is a scalar
quantity because it has no particular direction for a given liquid.

Examples of Surface Tension : : ‘ e =

{ (1) Rain drops are spherical in shape because each drop tends to acquire minimum
surface area due to surface tension and for a given volume the surface area of sphere is
minimum.

(2) When mercury is split on a clean glass plate then it forms globules. Tiny globules
are spherical due to surface tension because force of gravity is negligible while the bigger
globules get flattened from the middle but have round shape near the edges.

Hence the globule takes spherical shape due to surface tension but in case of big
mercury globule the force of gravity is large while centre of gravity of the big globule is
lowered due to its heavy welght Due to this, heavier big globule gets flattened from the
mlddle B

' (3) When a light iron needle is placed gently on the surface of water at rest then it
does. not prick the water surface and the needle floats on the surface of water. A slight
depression on the surface of water is observed just below the needle which shows that the
water surface behaves like a stretched membrance.

% E La ¥ = B £ ]
‘ e
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+ 3.14. SURFACE ENERGY

We know thiat the liqu\id behaves as though its surface were ™
covered with a skin under tension. Hence free surface of the liquid
is always under tension and tends to get the least surface. If the
area of the liquid surface is increased then work is done against
surface tension. This work is stored in the surface in the form of
potential energy.

For determination of surface energy consider a wire frame
ABCD with two parallel sides AD and BC at distance [ as shown
in the fig. 20, in which the wire AB is movable. Now dip the frame
in soap solution. Due to this a film is formed across it. Since this
film has a tendency to contract, so it pulls the wire AB inwards by a force _

F=Tx2

o - e - R s s ]

where T is surface tension.

Here [ is taken twice because the film has two surfaces. =
Now the side AB is moved to new position A’B’ by a smatl distance x by the force
F. In this position the work done by the external force is

W = force x distance-z\F'x x
=Tx2Uxx=TxA

where A = 2Ix. This is the total increase in area of the soap film on both front and back
side.
- W

SO ¥ T=*A-

I
* Hence the surface tension is equal to work done per unit area. Thus surface tension
can also be defined-in joule per square meter.
This work done is stored in the surface molecule in the form of potential energy.

Hence we can say that the potential energy per unit area of the molecules in the surface ;

is called surface energy. This potential energy of the film is transformed into kinetic energy,
of the scattered patticle. .

Here it is assumed that the temperature of the film remains constant when it is

stretched. But in fact the temperature falls slightly in the process. Therefore to keep the
temperature constant some heat must be supplied per unit change of area. Hence the total *
surface energy is given by

(E=rea] -

From abeve it is clear that the surface tension is equal to the mechanical part
(E-H) of the surface energy which is also called free surface energy.

+ 3.15. PRESSURE DIFFERENCE ACROSS A LIQUID SURFACE

(i) From the fig. 21, we conclude that when the free surface of the liquid is plane
then a molecule in the surface is attracted by other molecules equally in all directions.
Hence resultant force due to surface tension on a molecule in the surface is.zero as shown
in the fig. 21{a). H "

(ii) When the liquid surface is concave as shown in fig. 21 (b) then.the resultant force
due to surface tension on the surface will act outwards and hence it dlmlmshes the cohesion
pressure. Due to this the curved llquld surface tends to contract. In order 1o kecp the liquid

%oy,

L

where H is heat supplied.

e
'1:

-‘l.

‘.

.L:‘.‘.o

-

oy

T
L3
e

&




‘ i Fig. 21 t

surface in equilibrium, the pressure on the vapour side of the surface must be greater than
pressure on the liquid side. +
i ! (i'ii) In the case when liquid surface is convex fig. 21(c) then the resultant force on it
due fo surface tension acts inwards of the liquid and hence it increases the cohesion pressure.
In order to keep this surface in equilibrium the pressure on liquid side should be greater
than the pressure on the vapour side.
-:' The excess pressure can be obtained by the following formula

-

|
-

where T = surface tensmn, R} and R =Principal radii of curvature, -~

Now followmg cases may arise :
(i} For liquid drop : Since liquid drop i is sphencal $0 Ry =Ry =R, ie, radius of
spherc. 50 equation (1) reduces to

f1+1 2T '
R"R| R

(ii) Air bubble in the liqmd In thls case, there is only one free surface, so excess

pressure is  *

1 1 2T

P= T[R R] ‘? [';'R1=R2=R]
1

(iii) Soap bubble : A soap has two surfaces, so excess pressure is
1) 4T '
| p= ZT[R RJ R (] '
" (iv) Cylindrical film : For a cylindrical film Ry =R (radius of the cylinder) and
Ry = oo therefore

P=T

SO = % for a single surface

P= % for two surfaces.

» 3.16. CAPILLARITY

f A tube with a fine and uniform bore is called a capillary tube and the phenomenon
of rise or fall of liquid in a capillary tube is called capillarity.
Examples of Capillarity :
' (i) The fine pores of a blotting paper act like a capillary tube. Ink rises in them leaving
the 'paper dry.
- (ii} A towel soaks water on account of capillary action. '
. (iii) The oil rises in the long narrow spaces between the threads of a wick because
they act as fine capillaries.

1 1 y
" pa T(—Rl .|.—R2J Sl) _
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-

) downwards along the tangents to the liquid

(iv) Ploughing of fields is essential for preserving moisture in the soil. By ploughing,
the fine capillaries in the soil are broken due which the water from within the soil does not
rise and evaporate off. -

+ 3.17. METHOD FOR RISE OF LIQUID IN A CAPILLARY TUBE

Let us consider a glass capillary tube of uniform bore which is dipped vertically in
a liquid fig. 22. This liquid rises in the tube and forms a concave meniscus as shown in
the fig. Since the surface tension tends to make
the area of the free-surface minimum. It acts

R Reost Reosg R ReosBx24r

meniscus at the point of contact. This force
{action) of surface tension acts along all the circle
of contacts which pulls the tube downwards.

At this instant another force (reaction)
begms to act on the liqmd mensicus in upward

downward while reaction pulls the liquid up and
the liquid goes on rising until the upward reaction - Lt
is balanced by the weight of the liquid.
. Let r be the radius of capillary tube, / the

height of liquid rise, p density of liquid, © be the anglc of contact, T be the surface tension
and R be the reaction, then

The reaction R has two components : £ oz T

(i) R cos 0 acting tangentially upward ™ \

(ii) R sin 9 acting perpendicular to the wall of the tube.

Here only R cos @ is responsible for the rising of the liguid in the tube. 5

Now, from the fig. the circumference of the circle =2 r

£ Total force (upward) =Rcos8Xx2mr E
Y va3e  =TcosOx2nr Ly ["R=T
Volume of the liquid in capillary tube =1 A h .

. Volume of liquid under the meniscus = volume of the cylinder
CDEF - volume of semisphere EFGE

1
Tl'.!‘z }'—'2"*3'1( —gﬂfa

. total volume of liquid in capillary =&t ” . h + e

3
P
. ) -/ [h: +3 .
/ %o %
Now, mass of the liquid that rises in tube = volume x density =~ ~~ =
2 @ 1 3 .,
m=1 rz h"‘ _;- p ¥ &xﬁ o
J -

» weight of this liquid =mg=n r2 [h + Jp 8's s

w

In equilibrium position we have 3
=t ‘Total upward force = weight of liguid that rises in the tube:

s

Tcos B x2rr= mz(h+ ]pg



ES . or— -t i

-— . -
_ N ", _2Tcos 0 °r " f
' AT S reg 3 P
= *I £ . ’ P
If the tube is very narrow tl'len;;- can be neglected hence _,_1
' ” ol po 2T cos® < . 5
: rpg . )
. This is the required expression. This is known as ascent formula. .
« STUDENT ACTIVITY - . “
9. "Explain why a small iron needle sinks in water while a large iron ship floats 7
: x i3
0 E *
¢ ¥ ! w3 >
¥ '
Ead i . i
10. Water on a clean glass surface tends to spread out while mercury on the same surface
4L
lends to form drops. Why ?
;4 i,'. -
£ 1 Fap o =
Iy
|-.
L7 :
L
11. " Why does oil spread over the surface of water ? *
i‘- :
-
” iR 31
-+ :: *
li N
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« 3.18. STREAM-LINED FLOW (STEADY FLOW)

“When a liquid flows steadily such that each particle passing through a certain
point follows exactly the same path and has the same velocity as its preceding particle
then this flow of liguid is known as stream-lined or steady flow™.

In such a flow the veloclty at every point within the liquid remains constant both in
magnitude and direction.

Let us consider a liquid passing through the glass
tube as shown in figure 23.

If the velocity of the liquid is small then all the
particles which come to P will have same speed and will.
move in same direction. As a particle goes from P to ; -
another point @ then its speed and direction may be
changed but all the particles reaching P will have the same speed at P and all particles
reaching at Q will have the same speed at Q and also if one particle passing through P has
gone through Q then all the particles passing through P go through Q. Such-a flow of fluid
is called a steady flow. - - - - —_-n

., In steady flow the velocity of fluid particles reaching a point is same at all times.
Thus each particle follows the same path as taken by a previous particle passing through
that point.

The path taken by a particle in flowing fluid is called its path of flow. If we draw a
tangent at any point on the path of flow then it gives the direction of motion of that particle
at that point._ In the case of steady flow, all the particles passing through a given point
follow the same path and hence we have a unique line of flow passing through a given
point. In this case the line of flow is also called a stream line. Thus the tangent to the
streamline at any point gives the direction of all the particles passing through that point.
From above it is clear that the two streamlines can not intersect each others if they cut then
they give two different directions of motion and this is against the streamlined flow.

« 3.19. PRINCIPLE OF CONTINUITY -

According to this principle, “When an incompressible, non-viscous fluid flows
steadily through a tube of non-uniform cross-section,
then the product of area of cross-section and the
velocity of flow is same at every point in the tube.”

Proof : Let us consider a tube of varying
cross-section  through which a  non-viscous
incompressible fluid of density p flows as shown in
figure 24. Let A and A; be the cross sectional areas of
the tube at the points P and Q and let v; amd v, be the
velocities of the liquid at P and Q, respectively.

™ Now mass of fluid entering the area A per second ~
= Area of cross-section X distance travelled X density

= m=A;Xvp - .. (1)

Similarly, the mass of fluid leaving the area.
o A, per second = Ay Uy p -0 T

my=Agnp | (2
Since m=mpy 50 A XV XPp=Ay XvpXp

Apvi=Aa vy, - — e ”




Av = constant
. . A i
This is the “equation of continuity”. It states that the speed of flow through a tube
is Iirnverseiy proportional to the cross-sectional area of the tube. w 2+ -

» '3.20. VISCOSITY

The property of a liquid by virtue of which a liquid resists the relative motion
between its different layers is called viscosity.
~ Consider a hqu1d flowing in a stream line over a fixed horizontal surface. The layer
in contact with fixed surface will be at rest while the velocity of other layers increases
umformly with their distance from the fixed surface, ie., greater the dlstance of a hquld
layer from the fixed surface, greater will'be its velocity.

In the ﬁg 25 o — >
(a) a portion of the i
liguid which at some  ® ~ > -
instant has the shape ~ T——1  —¥ i | .
pqrs becomes * ; 7 7 Fid—— rh
ch'an’ge’d ’to the shape . Y LA - t L !
p'q’r’s’ after a - -]
moment and this > (a) = | ’
change continuously : ¥ - )
increases. 'I‘wo ~e—— “'(} SL . uf o LT T
layers are . shown in - - - Fie 25 . — -
the fig. 25 (b) in PR L -

which the lower layer exerts a force F on the uppcr layer which tends to drag it in backward
direction while the upper layer which is faster exerts equal force F, on the lower layer

which tends to drag it in forward direction. Thus the viscous forces tend to destroy the-

relative motion between the layers and so stopping the flow of liquid. Hence if the liquid
is to be kept flowing then some external force must be applied to overcome the effect of
viscous forces. This property of a fluid to oppose relative motion between its layers is
called viscosity and the forces between its layers which opposes the relative motion between
them are known as the forces of viscosity. Thus viscosity may be considered as the intemnal
friction of a fluid in a motion. v i . oy
Coefficient of Viscosity : Consider two F._Qd"“
layers P and Q. The layer @ moving faster than = P — = >y’
P which tries to accelerate P and the layer P -
which is slower tries to retard Q. Thus two layers
tend to destroy their relative motion as if there
is the backward dragging force acting
tangentially on the layers. Therefore to mamtam
the flow of layer an external force equal and”
opposite to backward dragging force must be . R, /
applied. * *  Fig.26
According to Newton the force F depends

W e T Sl Tt et Y - - —

{ upon the followmg factor @ ~ N .

() e

Ql

v

£

v

v

e T - iom - ot

e

”‘ ()" T Fw=A (area of each layer)
(ii) Foc % (velocity gradient between the layers) s

¥
50 Fc»:ﬁxéE %

| )
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where 1 is constant and this constant is known as coefficient of viscosity of the liquid.
In this the negative sign shows that the direction F is opposite to the direction of velocity.
%

e

j - “av:
| If , A=l =lthenF=-n o[n==F] .

: %

Thus the coefficient of viscosity of a liquid is defined as “the coefficient of viscosity

is equal to the viscous force with negative sign when the velocity gradient between two
layers of unit area is unity.”

. Dimension of 1 is as follows : "? Lo . -
X
F [ML T2 ore—bedy -
NS Aavax T ey MET
. e [L _]r 1} L Eadal S
and unit of N is poise in'C.G.S. system or dyne cm2 sec. s

A

' In 8.1 system unit of 1} is Pascal-second or decaponse.
and the relation between decapoise and poise is

W T e

1 decaponse SINsm2=10 poise

 3.21. STREAMLINED, LAMINAR AND TURBULENT FLOW  ~~

The streamline flow of a liquid is that flow in which every particle of ‘the liquid
follows exactly the same path as its preceding particle and has the same velocity in
magnitude and direction as that of its preceding particle while crossing through that point.
Flow of liquid will be stream- lined 1f the velocity of liquid flow is iess than the critical
velocity of the liquid. " &

A flow of liquid in which it moves in the form of layers of different velocities which
do not mix with each other, is known as laminar flow. In this flow the velocity of liquid
is always less than the critical velocity of the liquid. In general, laminar flow is a streamline
{ flow. v o
| Flow of liquid will be turbulent if the velocity of liquid flow is greater than the
' critical velocity. In this flow the motion of the particles of the liquid is irregular.

t s 3.22. CRITICAL VELOCITY

’ ) The critical velocity is that velocity of liquid flow upto which its flow is
streamlined and above which its flow becomes turbulent. It is defined by v, and is given

Mechanics dv
|
|
]

by
. . vc:%

where & is Reynold’s number. 7 is the coefficient of viscosity, p is the density of the
. liquid and r is radius of the tube. a

« 3.23. REYNOLD’S NUMBER -

“It is a pure number which determines the nature of flow of liquid through a tube.”
According to Reynold the critical velocity is given by

i v=m

[
pr w
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% ki$ constant and it is known as Reynold number. s. Il v}

1 Ifthe value of Reynold number & is less than 2000 than the flow of liquid is streamline

and.if the value of & is greater than 3000 then the flow of liquid is turbulent. - 7
* 3.24. EFFECTS OF TEMPERATURE AND PRESSURE

* Viscosity of liquids affected by temperature and pressure as follows " *
~ (i) Effects of Temperature : On increasing in temperature, the viscosity of tiquid
decreases. The viscosity of liquid varies with temperature by the expression

[ M=o A1 + 0t Br) .

where 1s and 1o are the coefficient of wscosnty at ¢t °C and 0°C respectwely and o and
P are constants.

* But viscosity of all gases increases with increase in temperature by the relation
e VT This result is obtained from kinetic theory of gases.
(i) Effects of Pressure : With increase in pressure, the viscosity of liquids increases
but viscosity of water decreases while the viscosity of. gases remains unchanged.

« 3.25. PRACTICAL USES OF THE KNOWLEDGE OF VISCOSITY

There are some important uses of knowledge of viscosity, they are:
(i) The knowledge of viscosity and its variation with temperature heips us to select
a suitable lubricant for a given machine. &
- (i) The knowledge of viscosity of some organic liquids such as proteins, cellulose
etc. helps us in determining their shape and molecular weight. '
(iti) At railway terminals, the liquids of high viscosity are used as buffers.
i; (iv) Motion of some instruments is damped by using the viscosity. of air or liquid.
ll (v) The knowledge of viscosity helped Millikan in determining charge on an electron.

'(vi) The phenomenon of viscosity plays an important role in the circulation of blood

through arteries and veins of human body.

« 3.26. FLOW OF LIQUID THROUGH A A CAPILLARY TUBE
(POISEUILLE’S FORMULA)

"Poiseuille obtain the expression for the rate of flow of a liquid through a horizontal
capillary tube and concluded that the volume V of the liquid flowing per second through
a capillary tube depends upon following factors :  --

E (i) Ve P (Pressure difference), (i) Vo< (radius), (iii) Voc— (length), so on

combmmg these factors we get ~ r R | "

b ..P }4J ,

R . : .
where glsa constant of proportionality.

This equation is known “*as f
Poiseuille’s equation and it is true for ©
the steady flow of liquid through a ¢
horizontal capillary tube. i

Proof : Let us consider a horizontal
tube of length { and radius ‘r" as shown
in the fig. 27. Let a constant pressure
difference (P) is applied between its ends

—
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on a liquid to maintain the flow of liquid. The velocity of the liquid flowing in the tube is
maximum along the axis and zero at the walls of the cube. Let v be the velocity of the
layer at a distance » from the axis of the tube. At each point of this layer the velocity.
gradient perpendicular to the direction of flow is — dv/dr. Here — ve sign shows that v
decreases as r increases. v Sl .

According to Newton’s Hypothesis the viscous force due to the layer at a distance
r on the cylmdcr = coefficient of viscosity X surface area of the layer x vetocity gradient

=n(2nr0(~§;] ! )
iy

/| and the force which tends to accelerate this liquid cylinder

o

."' - § n
! = pressure difference x area of the cross-section 3 ~*

Fy=P@?) | (2
From (1) and (2) 1 -
k. ¥ -
' F1=F, . (since no acceleration of the liquid)
. - pal= —n(2w0d L o .
a__ P
dr 21l
On integrating we get
vz [Tlea .. (3)
1 * E4 211! 2 - s 1

where A is the constant of integration whose value can be obtainted by boundary
conditions, ie,

atr=a, v=0so0by (3) 2!
- - P (&) ! -
0==2n 2}” e T o
4o P (2 -~
20l 2 1 i
Putting this value in (3) :
v=-""—(a2 ) (@

This is the equation of parabola. From this equation it is clear I +a

that it is independent of the length ! of the tube because % is the

pressure drop per unit length and has the same value at each point r O v
along the length of the tube. l

If a graph is plotted between v and r then a curve of parabolic v _g
shape is obtained. In this position we say that the flow has a Fig. 28
parabolic velocity profile.

Now the volume of the liquid ﬂowmg per second i 1s

TE Deleen, gl T e et

dV = velocity X cross-—sectlonal area of the cylinder of radius r

TdV=v(2 nrdr)=—(az—r2)21trdr [by (4)]

€ e l
A

The volume of the liquid ﬂowmg per second through whole tube i 1s




|
i = P T (2 :
l‘ V.__r{;4n£(a —r2)21trdr- m_[o(ﬂﬁ?'“’%)d"
“‘ - . =ﬂ[¥ﬁ_ﬁ£=ﬂ i .
¥ L 2ni|C 2 4 8sni |
o L1 E L
i nPat |
h V= sni |. b

This is required expression. This is known as Poiseuille’s formula.

(a) Limitations and Corrections to Poiseuille’s Formula : The limitations of
Poiseuille’s formula are as follows : i

(i) This ‘formula applies only to streamline flow through the tube. The flow is said to
be stteamllne when the velocity of flow is less than the critical velocity. Since the critical
velocity of the liquid is inversely proportional to the radius of the tube, so this flow will
tend to become turbulent if tubes are of wide bore. Thus, Poiseuille’s formula is valid for
narrow tubes. only. t 7 &

(ii)’ The formula breaks down if the liquid lavers in contact with the walls are not
stat:onaly For this the pressure difference across the capillary should be kept low so that
llquxd ﬂows very slowly through the tube. -

{ (m) The Poiseuille’s formula holds good only so long as the tube is horizontal and
escaping fluid has negligible kinetic energy.
" {iv) Poiseuille’s formula is not valid for gases.
. {(b) Corrections : .

(i) The flow has been assumed to be steady and uniform throughout the length of
» tube. But in practice we see that the flow of liquid is slightly accelerated at the entrance
by takmg the effective length of the tube which is (I +1.64 ) in place of I where ‘a’ is the
radius of the tube.

P (ii) It is further assumed that the applied pressure difference between the ends of the
~ flow tube is entirely used in over-coming viscous resistance but in fact a part of it is used
~.in imparting kinetic energy to the fluid leaving the tube. For removing thisuifficulty the effec-

tive pressure difference between the ends of the tube should be taken as

% '
P25

where p is the density of the liquid.
4

e

¥

» 3.27. ROTATION VISCOMETER

" “This is a device which is used to determine the viscosity of &
highly viscous liquids and of gases also.

Construction : The actual form of apparatus is shown in
the legure 29. It consists of two coaxial metal cylinders. The inper
cylinder is suspended inside the outer cylinder by a
phosphor-bronze suspension wire and the outer cylinder is | |Z3ZfZzzzz=z:=:
clamped. The space between two cylinders is filled with

} expenmental liquid. A small mirror M is comnected with
3 phosphor-bronze wire. The outer cylinder is rotated with a ©1
* constant angular velocity by an electric motor and number of

N mtduons is recorded on an automatic counter. Fig 29

15
"':::::'?I::::::
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Theory : When the outer cylinder is set in rotation
with a certain angular velocity then the layers of liquid
which is in contact with outer cylinder also rotates with the
same velocity whereas the layer in contact with the inner "‘ \

cylinder is at rest. Due to this a relative motion is set up o

| between the different layers of the liquid and the viscous
| forces are produced.

Let us consider the cross-sections of two cylinders.

| Let Ry and R; be their radii and let outer cylinder be moving -
‘| with the angular velocity @, (fig. 30). Let us consider an Fig. 30
| imaginary coaxial cylinder of radius r and length . Let ®

be the angular velocity of the surface of this cylinder. In this position the linear vel0c1ty

: gradlent at distance r from the centre will be

o}
. i(r-co)—ao '-|-'-rﬂ ¢ LD
dr¥ VT dr ;o

» : o .

If the liquid had no viscosity then it would have rotated like a rigid body with a

| constant angular velocity @; so % -
red x d‘ ¥ k1 7
—(rop=0
iU Vet

F . v

hnd B . . L
2 5 the velocity gradient due to viscosity effects.”

Now, from Newton’s hypothesis, the tangential viscous force F at the surface of
imaginary cylinder exerted by the liquid outside it is:given by -

the term r

F = viscosity x surface area x velocity gradient

Rl
dwy) g — H
F-n(2nrl){r o )
and torque is T=Fr -
} =n@2nrl d—m'—z‘ L 2:
T-TI( Tt‘rill) r d.r r= nn dr ) P "'( A
* This torque is constant throughout the liquid.
by (2) 21&:11:‘(:1'(.0]=‘|:5:3£
" ' ¥
On integrating o _ L
{1 . S
2nn!m1=~—[—~]_+m
2
2
where A is the constant of integration. F
Since at r=R; ®; = 0 then we get ™
£
T 1
v Al == — r
2R,
T 1 11
21!1'“0)1 -t
2 2 2 Rlz
4 S '
For outer cylinder put r=Ryand 0y =,
E .




1 T 1 11 «
. 2anio,y= 2R22+32R12 - _
o4 = "
£7 I N S - '
13 e 2 R12 R22 -
1 H ]
_ 2p.2
S "t=4nnie, ﬂ- A *.0)
v oo o ' (R _RI)

- b
i ThlS torque is balanced by the restoring torque in the suspension. Let ¢ be the steady
angular deflection of the inner cylinder and C be the restoring torque per angle twist in the
suspension.

The restoring torque for the twist = C ¢ "o
Hence by (3) ¢
{ PR Rlz R22 1
~t=d4nnlwy ————=C
l R R

. e R’ - R & @
‘ 41 Iy R\2 RY2 ) 3

This is expression for viscosity, . [

End correction : It is found that a torque is also exerted on the bottom of the inner
cylinder by the liquid between the bottom and the base of the rotating cylinder. This effect
can be eliminated by using two different lengths /; and % of the liquid covering the inner
cylmdcr In this position T and 1, are the torques exerted on the inner cylinder in the two
cases. Then

2p2
So, T =4nn o %w(ﬁpcm ... (5)
Ry = Ry%)
=4nnh *-—R;ZR222¢+T(B)=C¢2 )
(Ry” —Ry)

where T (B)‘}s the torque of bottom. On solving these egns. (5) and (6) we get

_CW1-®) R -R?)
dn - RERZ  + o

. {7}

The value of C is obtained by the following formulae

T=2n\/—é— and T' =27 ‘ic"—

where T is time period when the inner cylinder alone is set into torsional oscillations
about the wire ; 7" is the time period when an angular metallic disc of known moment
of inertia is placed centrally on the cylinder and 7 and 7’ are the moment of inertia of
the inner cylinder and angular disc about the wire respectively.

. 1
From above C = __4__51:_21_
(T?-1)
on putting this value in (7), 1) can be calculated. e

1

|
|
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+ 3.28. STOKE'S LAW Y

., When a small spherical body moves through a viscous medium at rest then the layers
of the body touching the medium are dragged along with it. But the layer of the medium
(liquid) away from the body are at rest. Due to this, a relative motion is produced between
the different layers of the medium.

Hence, a viscous force begins to act, which opposes the motion of the body. This
viscous force increases with the velocity of the body and finally becomes equal to force
driving the body. The body then falls witha constant velocny whxch is known as terminal
velocity.

Stoke found that the viscous force F acting on a small spherical body is given by

F=6mnnrv

This is known as “Stoke’s Law of Viscosity”.
where r is the radius of body, v is the terminal velocity and 1) is the coefficient of wscosuy

This law can be derived dlmcnsmnally in the following way. i
Let F=Kn*Wr ~- .. (A)
’-4.

where K is dimensionless constant. =
On writing the dimensions L

[MLT 2] = [En?‘f’ 1 [LT”']” L
¢ MTZ]_[MGL_a+f+cTa b] ' . H

On comparing f

and “a+b+c=1 A

—1l+b+c=1 VP [ra=1)
b+c=2 v ()
and d -a-b=-2
~1-b==-2
"
Put this value in.(1) we get =™ w
On putting the value of a, b and ¢ in (A) we get } d
F=Knrv b ;
Experimentally the value of X was foundtobe 6 wie,
F=6nnrv

This law is valid only when the sphere is small in
size, it moves with terminal velocity and the fluid is-iFsZizcizzziziocoizzizl:
perfectly homogenous. ' o

Terminal velocity : Let us consider a small sphere
of radius ~ and density p, falling freely from rest under
gravity through a liquid of density ¢ and coefficient of

velocity v then the following forces act on it.
(i) downward force due to gravity = weight of the
body




4
i _3nﬂpg

;(ii) upward thrust due to buoyancy

Egnﬁcg

H
i
i!(iii): viscous force=6xM rv

The resultant downward driving force
- - 1
?

“ ——EPPS—"” °3=*“'j(p °)8

when the sphere attains constant velocity then this driving force is equal to viscous force,
ie.,

I‘! o 4 3
Ruts (p—G)g=67l:T]rt
2 p-o) [
— P

This is the required expression for terminal velocity.

Importance of Stoke’s Law :
Some important applications of Stoke’s law are as follows :
(i) This law is used in the determination of elecrtric charge with the help of Millikan’s
experiment.
g (ii} This law accounts for the formatlon of clouds.
"(iii) This law gives, why the speed of rain drops is less than the speed of body falling
freely with a constant velocity from the height of clouds.

+ SUMMARY

+  Property of the body to regain its original form, on the removal of the deforming force,
is called elasticity of the body.

«  Modulus of elasticity or coefficient of elasticity of a body is defined as the ratio of the
stress to the corresponding strain produced, within the elastic limit.

*  Young’s Modulus of Elasticity is defined as “within the limit of elasticity the ratio of
normal stress to longitudinal strain.

»  Bulk Modulus of Elasticity is defined as "the ratio of normal stress to the volumetric
strain within the limit of elasticity

+  Modulus of Rig'dity is defined as the ratio of tangential stress to the shearing strain.

s The ratio of the lateral strain to the longitudinal strain is called Poisson’s ratio ().

* Hooke’s Law states that ““within the limits of elastlcny the stress is proportional to the

strain.”
* Angle of Twist (8) is the angle by which the radius of each cizcular cross section of
the cylinder rod is tumed about its axis. "

« The angle of shear (¢} is the angle formed by the line generated paraliel to he axis of
the cylindrical root as a result of restoring couple.

. Surface tension is the property of the liquid by virtue of which the free surface of liquid

at rest tends to have minimum area and as such it behaves as if covered with a stretched
membrance

. The potential energy per unit area of the molecules in the surface is called surface
f;nergy -

= Atube with a fine and uniform bore is called a capillary tube and the phenomenon of
rise or-fall of liquid in a capillary tube is called capillarity.
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The ascent formula is used for determining the rise of liquid in a capillary tube. It is

. 2T cos 8
givenby h=——"".

rpg

Principle of Continuity states that “When an incompressible, non-viscous fluid.flows
steadily through a tube of mon-uniform cross-section, then the product of area of
cross-section and the velocity of flow is same at every point in the tube.”
The property of a liguid by virtue of which a liquid resists the relative motion between
its different layers is called viscosity.
Reynold’s number “It is a pure number which determines the nature of flow of liquid

through a tube.”
4

The equation V.= % fan is known as Poiseuille’s equation and it is true for the steady

flow of liquid through a horizontal capillary tube.
“Stoke’s Law of Viscosity” F=6 n 1 r v, where r is the radius of body, v is the terminal

* velocity and 1 is the coefficient of viscosity.

STUDENT ACTIVITY

12. Water flows faster than honey. Why 7

13. A bigger rain drop falls faster than smaller one. Why ?

14. What is an ideal liquid ?




z*

« TEST YOURSELF . -
1. | Deduce the relaion among the elastic constants Y, K, and ©.
2. it Define angle of twist and angle of shear. Dedue the expression for the couple required
;) to twist a uniform cylinder.
3.  What is Maxwell’s needle ? Describe and explain how Maxwell’s needle can be used
~ to determine the modulus of rigidity of the material of wire.
4. A uniform beam is clamped horizontally at one end and loaded at the other. Calculate
| the depression at the free end.
5.1} Define surface tension. Write its SI units and dimensions. Give some. important
examples.
6. What is surface energy of a liquid ? Obtain the relation between surface tension and
; surface energy.
7.1 What is capillarity 7 Give practical examples of caillarity.
8.' Describe the method of finding the surface tnsion of water, using capillary rise method.
9. Explain streamlined flow. State and prove the principle of continuity in the flow of
i liquids.
10. Derive Poisenseuille’s formula for the viscosity of a liquid flowing through a narrow
. tube.
ll;j Describe with necessary theory, the rotation viscometer method of determining the
It coefficient of viscosity of a fluid:
12." Derive Stoke's formula for the velocity of a small sphere falling through a viscous
liquid, using dimension method. Hence obtain the expression for the terminal velocity.
13. Dimensional formula for modulus of elasticity is : _
@ MLT?] () MLTT @ IMLTPTTY () ML
14, Energy per unit volume in a stretched wire is :
: (a) % x load X strain (b) load x strain
. (¢} stress X strain d % X stress X strain
15|. The Young's modulus of a wire is numerically equal to the stress which will :
' (a) not change the length of wire
1 (b) double the length of wire
~ (c) increase the length by 50%
- (d) change the area of cross-section of wire to half
16. The Poisson ratio can not have the value :
. (ay0.7 002 () 0.1
17. What is the relation between Y, B and 1 for isotopic material ? :
3BY 9BY
@M=+ On=2p.v
_ _9BY _ 981
- @On=%"y @ Y=35 0
18. Poisson’s ratio is equal to :
@) Lateral Strain b) Longitudinal Strain
: Longitudinal Strain Lateral Strain
*{ (c) Longitudinal Strain X Lateral Strain
"' (d) None of these - ]
19. On increasing temperature, the value of Young’s modulus : *
|- (a) decreases {b) increases
~ (¢) remains constant (d) has no effect
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20.

21.

22,

23.

24.

25,

If T'is the surface tension of soap solution the amount of work done in blowing a soap
bubble form a diameter D to diameter 2D is :

(@)2nD*T (b)4nD*T ©6nD*T (d)8nD* T

A capillary tube of radius R is immersed in water and water rises in it to a height H.
Mass of water in capillary tube is M. If the radius of the tube is doubled, mass of

water that will rise in capillary will be : .

@M oM GE O

The terminal velocity v of a spherical ball of radius r falling through a viscous liquid
vaties with r such that :

V
(a) = constant (b) vr= a constant
2 v
{c) vr" = constant (d) ? = constant

An ice cube containing a glass ball is floating on the surface of water contained in a
trough. The whole of the ice melts, the level of water in the trough :

(a) rises (b) falls

(c) remains unchanged (d) first falls and then rises

A spherical liquid drop of radius R is divided into eight equal droplets. If surface
tension is 7, then work done in the process will be :

() 2R R’T () 3mR°T (c) 4n R*T (d) 2r RT?
The cause of viscosity of liquid is : :

(a) diffusion (b) adhesive force

{c) gravitational force (d) cohesive force

ANSWERS

13. (b) 14.(d) 15.(b) 16.(a) 17.(d) 18.(a) 19.(a) 20.(c) 21.(a) 22.(d)
23.(b) 24.(c) 25.(d)
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3t ' - RELATIVITY /
' Frame of Reference -
Michelson-Morley Experiment
Basic Postulates of Special Theory of Relativity
Gralilean or Newtonian Transformations
Lorentz Transformation Equations of Relativity
Length Contraction
Time Dilation @
Simultaneity {Time is relative)
Equivalence of Mass and Energy
Relativistic Relation between Energy and Momentum
Relativistic Law of Addition of Velocities
Relativity of Mass
D Summary
Q Test Yourself 2
. LEARNING OBJECTIVES

After going through this unit you will leamn :
e Michelson-Morley experiment to detect th ralative motion between earth and ether,
.| ® Special theory of relativity, its postulates and the equations of redativity,
® Various relations such as those of time, energy, velocity, etc. as per the theory of
relativity,

4.1. FRAME OF REFERENCE

A co-ordinate system relative to which the position and motion of an object are
spec:ﬁed is called a frame of reference, for example, aeroplane, train, car, earth etc,

There are two types of frames of reference.

(a) Inertial frame : The non-accelerated frames are known as inertial frames or we

.can say that the frames in which Newton's laws hold good are called inertial frames. All

inertial frames are equally valid. There is no universal frame of reference that can be used
everywhere and no absolute motion is possible.

(b) Non-inertial frames : The accelerated frames are called non-inertial frames.

* 4.2, MICHELSON-MORLEY EXPERIMENT

According to Huygen's theory, light motion is a wave motion. But for the propagation
of wave, a medium is required. For this he imagined an imaginary (hypothetical) medium,
called ether and this ether is transparent, highly elastic and filled in all space. Now the
quesnon arises whether the ether remains stationary in space or it is in motion. If it'is
stanonary then there must be relative motion between a body (Earth) and Ether. Thus,
to .detect the relative motion between earth and ether many experiments were
performed and one of famous experiments is Michelson-Morley experiment. -

' They used a device known as interferometer which is based on the interference of
light. The experiment is shown in figure 1. § is the monochromatic source of light. P is a
semi-silvered plate held at 45°. M| and M, are two fully silvered mirrors; placed at

Relativiry

e

a.
]
.* 7
-
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| recombine at P and then enter into the

perpendicularly each other and at equal
distance [ from the plate P. T is the
telescope in which the fringes are to be
seen.

Working : Light from the source . £
§ falls on the plate P. It is divided into ] "2V || S i
two beams (1) and (2). The beam (1) 8§ c 1
travels to the mirror M) and is reflected
back. The beam (2) travels towards. M2
and is reflected back. These two beams

telescope T in which interference fringes
are observed.

If the interferometer (earth) is at
rest in ether then the two beams would take the same time to return to P. But in fact the
earth, i.e., interferometer is moving in ether (space) with a velocity v (speed of carth in its
orbit). The interferometer is so adjusted that it is always moving in the direction of incident
beam of light and ether is assumed to be stationary. In this position the time taken by the
beams (1) and (2) on their journeys is not equal.

Let ¢ be the speed of light then velocity of light beam (2) towards the mirror M, is

=Cc-V . -
. N { = t
_Time taken in this journey = — L. R
—~  Velocity of light beam (2) after reflection from the mirror M, -
=c+v
Time taken in this journey = —
cHV
. [ !
Total time taken T = + - -
€c—v C+Vy
- 2lc -
="y 2
(¢ =v%)
T = 2e ' *
=7 4y
. Ali-x
c? ) 1
¢ aY! . :
21 v
nj=—|t--3 - -
\ ¢ z &
- { 2 -
Tl =% j | +"li'
¢

Since the interferometer is moving with velocity v so it will cover a distance vt-in
time 1. Hence the new position of the mirrors M) and M2 will be A" and M and the new
position of the plate. P will be P’, where M) M) "= vt. In this position the beam (1) will
follow the path P M) " instead of PM { where PM) = ¢t and is shown by dotted line.

= In triangle PM," C
PM{'=ct, PC=M M| '=vt, CM{"=P M =!

(c)? = (v)? + (1

i




: — 1/2
\ I SN | P4
;‘ - '\}(czf— vz-) c c2 )

"total time (T5) taken by the beam (1) to travel the whole path P M; " P’ then

Vi N 2
j 1 . 2 12 T
1 Tz\=2't=2 I—v—z_ s
C o<
2 v2 . . .
{ T, =11+ | neglecting the higher terms. *
' ¢ 2¢ .
Time difference between the two beams ™ * S
‘ AT=Ty-T» * * ~
; It 2 % . 2‘ =
ar=2 | L | B | .o
S el ) erlr 2c?
1 F i 2. =
ar=2. Y
L c 2
2
AT= %
c 3 N
¢ *' Path difference = speed x time difference i -
| e ‘
i iy -
] { P

" 1f the apparatus is rotated through 90° then the
New path difference

f Michelson and Morley used /= 11 meter, ¢ =3 X 10® mysec v = 3 x 10* meter/sec and
A= L? x 1077 meter (approx.)

n { 2
1 = _!L i ;j
g P
2 .2
Total path difference = [—‘;— - %
Ia o
1 ) _2nt B
Li No. of fringes shifted due to this path difference -
J _ path difference
" ~ wavelength of lightused  # -
i - 2t -
i A
i

{ Expected fringe shift = 2 ;
-C

__2ax11x3x 104
(3 x108%% (6 x'1077) M

t =04
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~ Thus a shift of 0.4 of a fringe width was expected. But no fringe shift was observed.
The experiment was repeated at different times and various seasons of the year, at different
places but no shifting was observed. This shows that this experiment gives a negative result.
The negative result suggests that the velocity of light is constant in all directions.

Thus, the relative motion between earth and ether could not be detected.

Explanation of the Negative Results : Many theories were given to explain the
negative or null results of the Michelson-Morley experiment. The important ones are :

(i) Ether drag hypothesis : According to it, the moving earth drags the ether with
it, hence there is no relative motion between the two so that no_shift is observed. This
explanation was not accepted for two reasons :

(a) It is against the observed phenomenon of aberration of light from stars.

{b) Fizeau experimental observation of particle dragging of light waves by a moving
body, was explained on the basis of electromagnetic theory, without considering the
ether-drag hypothesis. .

(i) Fitzgerald-Lorentz contraction hypothesis : According to this hypothesis, all
material bodies moving through the ether are contracted in length along the direction of
motion by the factor V1 - v_z This coniraction in the interferometer arm prevents the shift

c
of the fringes. Rayleigh had shown that such a contraction is expected to provide double
refraction, which was never observed. This explanation was also rejected.

(iii) Light velocity hypothesis : According to this hypothesis, the velocity of light
from a moving source is the vector sum of its natural velocity and the velocity of source.
This explanation was also rejected because it is against the velocity of light and some
astronomical evidences.

* 4.3. BASIC POSTULATES OF SPECIAL THEORY OF RELATIVITY

In 1905 Einstein presented his famous theory of relativity. It is based upon two
postulates :

Postulate 1 : The laws of physics are the same in all inertial frames of reference.
It is also known as principle of relativity : This means that if any physical quantity like
kinetic energy, angular momentum etc., is conserved in one inertial frame then it would be
conserved in all the inertial frames. Similarly, if it is not conserved in one inertial frame
then it would not be conserved in any other inertial frame.

“According to this postulate, there is only relative motion and no absolute motion,
Le., it 13 impossible to find absolute motion. In other words, we can say that there is no

-] universal frame of reference relative to which motion of other frames could be detected.

104 Seif-Instructional Material

Postulate I1 : The speed of light in free space (c) has the same value in all inertial
frames of reference, i.e., the speed of light is constant.

* 4.4. GALILEAN OR NEWTONIAN TRANSFORMATIONS

Galilean (transformations (equations) can be Y Y
applied only for smaller velocities, not for high
velocities, i.e., comparable to the velocity of light (¢).

Let us consider two frames S and S moving in x
direction, Let S’ be moving with velocity v relative to
S.

PXxyzt
x.y.z,1)

To obtain transformation equations, let us consider
two inertial frames S and S’ as shown in the fig. 2. Let
S’ be moving with velocity v relative to S-along the 2z #Z
direction of x—axis, Let us consider that at an instant Fig.2




the origin O and O’ of two frames. Suppose a pulse of light is generated at ¢ =0 at the Relarivity

origin 0. It will spread into the space and consider the situation when pulse reaches at P,
Observers at O and O " measure co-ordinates of P as {(x,y,z,#) and (x",y’,z3,1")
respectively. When pulse is observed by an observer in § then

Velocity of light =—— -

distance
t time

2 2142
_ Pyt A

t
l P+yt+2=27 .. (1)
and when the pulse is observed in §* we have
. x24y?ez?=c? % . . (2)
According to Galilean transformation -
x'=x-w
y'=y
2 =z .
t'=t R
These equations are known as Galilean transformation (eq_uations).
Putting these values in (2)

,1c'2+y'2+z"'=a:2t'2

-t + 0 + (=2 (&*
x2—2.rvt+v2!2+_}'2+z2=62r2
which is not same as equation (1),

This shows clearly that Galilean transformation equations are not valid for very high
velocities, i.e., velocities comparable to the velocity of light and this is the violation of I
postulate.

" Again, if we measure the speed of light in x direction in the § frame to be ¢, then
from the frame S’ it will be ¢ "= ¢ — v. This is the violation of Il postulate.

. :4'.5. LORENTZ TRANSFORMATION EQUATIONS OF RELATIVITY

. These equations were obtained by Lorentz and these equations relate the co-ordinates
of 'any system into another, when we deal with particles like electrons, protons, mesons |
etc., which move with velocities comparable with ¢. These equations are known as *‘Lorentz
Transformation Equations”.

. From the frame § and 8’ it is clear that

x e (x—vt)

or. x'=yx-—v) . (D)
wl}i'gre ¥ is a factor which does not depend upon either x or ¢ (it may depend upon v)
Similarly, x=y(x'+vt") i e (2)
* Putting the value of (1) in (2) R
' x=Y[y(x— v} +vr] S

X ’
—=¥x—yvr+ vt
¥ b

1

}
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_X
. vr-7+'yvt-'pr
=y|S+vi-v
5o
i X _¥
t_w+yr "
re Y71
t'=vt v[l YZJ e ()

Similarly, t=vyt’ +Yv—x[l - ;15} = __(6)

The value of y can be calculated from II postulate. Let-a-light pulse be sent at the
origin O attime t=¢t"=0and x=x"=0, i.e,, when O and O “coincide then light pulse in
frame §, x = ct and light pulse in frame §"x"=ct” T

Putting these values in (1) and (2) i

ct'=yt{c—-v).
ct=yt'{c+v)
On multiplying
() . (ct)) = At (c=v)(c+v)

e’ =P (=)

2.
=1 .c l—v—2
c

1
r=
2
)
Putting in (1) and (2) '
, x—wt
x' =
’ C2 - - o
x +vt’ ¥ »
= / (a)
Y \.
1__ ke
2
. 1 I
Again from r=
[
|
=t
2
2
1_, 2
T2




Put in (3) and (4)

and f=— .0

1 Since the motion is in x direction therefore y and z components will be unaffected.
Th?'_:t is

i y'=y - .- ... (©)

z'=z2 4 o Ad)

_ Equaiions (a), (b), {c) and (d) are known as Lorentz transformation equations.

! If v < < < ¢ then Lorentz transformation equations reduce to Galilean (Newtonion or
Classical) equations, i.e., Lorentz trnasformation are applicable only when velocities are
very large.-

+ 4,6. LENGTH CONTRACTION
When a body moves with very high speed v relative to an observer then it appears

toﬁbe contracted by a factor \}l—v—z in, the direction of motion only. (not in
' [

perpendicular direction). This concept is known as length contraction and this shows clearly
that length is not absolute but relative,

If Ly is the proper length (actual length) and L is apparent length (improper length)
then

! d .
. L=rNi- ;2-“
i e L<ly &
| This means that L is decreased to Ly by a factor N1- v? .
li Proof : Let us consider two frames of reference moving in X direction, let S be
m!dvmg with velocity v relative to S. '

Let a rod be placed in S and let it be in rest. Let x * and x5 * be the co-ordinates of :

thé ends of the rod, the length Lg of the rod in 5 is given by
- “Ly=xy - x” - : - (1)

- —ar

T
4

H . ¥
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X —vt

t’l\.)lt

b

Now let an observer in § measure the length of the rod when S is in motion. If x|

and x; are the co-ordinates of the ends of the rod, then length of the rod L for him is given
by

@
Using Lorentz transformation T
o From ~—
X —vt , Xp—vi
X '=——— and Xy = -
1’2 v2
N1 - - l-—
c &
Putting in (1)
Xy — vt x| —vt
- T 3
Vi - > Vi-2
¢ ¢
_ X
Vi 2
C2
L
o= _\/_T
Vv
-2
v
L= I—— ie, L<
LoN1-% ,L<Lg
This shows clearly the L appears to be contracted by the factor V1 — This

>
- L
contraction is known as Lorentz-Fitzgerald contraction.

when v =c then L =0. This means that a rod moving with the speed of light will
appear as reduced to a point to a stationary observer.

If the rod is placed perpendicular to the motion of reference frame, i.e., along y“ or
z” direction, then no contraction in its length along thesé directions is observed. This is
due to invariance in Lorentz transformations for these co-ordinates, i.e., y=y andz=z".
Thus a moving square appears as rectangle with a shorter side along its motion

(x—axis) and a circle appears as ellipse with minor axis along its motion as shown in the
following figure.

/r=o

In a frame in
which they are
stationary

In a frame in
which they are
moving

........

4.7. TIME DILATION

The word dilate means “‘enlarge beyond normal size”. Time is atso not absolute but




relative. It is found that a moving clock in the spacecraft appears to tick at a slower rate
than the stationary one on the ground, as seen by an observer on the ground.
.Thus, if a clock moves with very high speed v relative to an observer then it
appears to be slowed down or time interval is increased (dilated) by a factor
1.

1-— \
‘,2

+ In other words we can say that the tick-tick of a moving clock are slower than a
clock at rest. This concept is known as ‘time dilation’.

Consider a clock placed at point x” in the movmg frame 5 * and an observer in S’
feels that the clock gives two ticks at time ¢~ and ¢, * then the time interval between the
t;cks is

; , o= '~ tl

10 is the time interval calculated in the frame in which the clock is at rest. Now let
t; and t; be the time of two ticks measured in frame S which is moving with velocity v
relatjve to.S.

“The time interval appears to him as b,
t=ph =1

Now we have Lorentz transformations

S0

Relativity

Self-Instructional Material 1uy




a

}- Mechanics
:} t-

—_———— -

110 Self-Instructional Material

From this equation it is clear that the stationary observer in § feels the time interval

1
to be lengthened by a fact - This ph is kn Time Dilation.
0 engthened by a aci or m phenomenon is known as Ti i

+
o2
Thus in a moving frame the stationary clock measures longer time than in the case
of stationary frame. In other words we can say that a moving clock appears to be slowed
down to a stationary observer.
If v=c then we get r=eo. This means that when a clock moves with the speed of

light then it will appear to be completely stopped to stationary observer.
+ 4.8. SIMULTANEITY (TIME IS RELATIVE) |

According to classical mechanics or Newtonian mechanics if two evenls are
simultaneous in one inertial frame then they are also simultaneous in all inertial frame. But
according to relativity or Einstein simultaneity is only a relative concept, ie., two
simultaneous events occurring at two different places for an observer in § will not be
simultaneous for another observer in §°. In other words we can say that simultaneity is
not absolute, it is relative.

The simultaneity of two events means their occurrence at exactly the same time. Let
us see whether two events occurring simultaneously in a stationary frame § a\lso appear to
be so in a reference frame S ’, moving relative to it with velocity v in the direction of x.

Let two clocks located at x =0 and x = /. A flash bulb is located in between as shown

in fig. 4. Clock starts on receiving flash of light. Flash takes é time, equal for both clocks

so that clocks are exactly synchrahised.

Clock-| S v Clock-l]
x=0 x=H2 x=f
Fig. 4

If stationary frame of reference, the observer records two events, one the receipt of

a light signal by clock-Tatx=0,# = 2—2 and second the receipt of a light signal by clock-11

l . : : . .
at xo=1 1 =2 But an observer in moving frame of reference S/, i.e, for a moving
observer clock-I receives its signals at

vV
=i~ X i

e ¢ _ 2 8 _ _ 1
Ho= Vl_._-vi —-Jl_ﬁ [anI—O,fl-zc]
2 Z

with clock—II receives its signal at

{
lasxy=1l 1= 2 ]




| 2

~ Thus 1, ' < ) " and clock-II appears to receive its signal earlier than clock-I so that
clo«i;ks do not start at the same time whereas these were so for statipnary observer in frame
S. "'Il’his means that the two events that are simultaneous in one reference frame are not
simultaneous in another frame moving with respect to first, unless the two events occur at
theJSame point in space. (xa =x, so that 1, =11 ")

Relativity

?f The famous relation between mass and energy was given by Einstein. It'is expressed

as
" E=mc
where E is total energy of a moving body, m is its effective mass and ¢ is the velocity
of light
1 Now let us prove it.
Let a force F be applied on a particle of mass m then the force F is given by
. F =Rate of change of momentum
e *
: F= .—‘1 (mv) -
&
= dav dm g
F=m, it +v 7 .
Work done = Force x displacement ; g
=F.dx n
Work done = Change in kinetic energy
et v . dm
Chfnge in kinetic energy = [m " +v gt de

Since, v= %

.. Change in Kinetic energy
dK = mvdv +V* dm ()
We have, the realistic mass is given by

} . v'&“" I3 my

& -V
! m? &~ m? v =mg? 2
On differentiating we get
& . 2mdm—v* 2mdm - m* 2vdv=0
Edm—vidm—myvdv=0
mv dv+v* dm=c* dm

Putting this value in equation (1) we get
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dK = c* dm e

On integrating
m
fax=[" & dm=c* on-mo)
mp *

K=c? (m—m) .. 3)
Since the total energy E possessed by a moving body is made up of the kinetic energy
and energy stored up as internal energy, ie.,
E=J~.’+mo::2=(m—mo)c2+mrzoc2

my ¢? is known as rest mass energy.

E=mcz—moc2+m{)c2

2

E=mc

This is Einstein’s mass energy relation. This shows clearly that a system with total
energy E has associated with it-a mass Eic?, or any mass m has energy mc?.

Examples : There are large number of examples which verify this relation
(E = mc?).

(1) Compton Effect : Compton found that when a light ray is incident on an electron
with elastic collision between a photon and electron, then the scattered photon moves in
the new direction and the electron recoils with a velocity comparable to the velocity of
light. Compton determined the value for the wavelength shift by using conservation of
energy and momentum. This value agreed with the experimental result.

(2) Fine Structure of Spectral Lines : Fine structure of spectral lines is explained
by Sommerfeld, on the basis of relativistic variation of mass. The good agreement of his

theory with experiment provides another verification of mass-energy relation.

+ 4.10. RELATIVISTIC RELATION BETWEEN ENERGY AND
MOMENTUM

In classical mechanics a particle must have rest mass in order to have energy and
momentum but in relativistic mechanics this requirement does not hold. In this position
the total energy is given by

&
E=mc2
2 2.4
moc” - mo“'¢
E=——— or =25 (D)
-\, v2 v
1-= I-=
I 4
where mg 1s rest mass.
and momentum is
o v
po 0V
Vl___
02
movc
Pc=
7
62
222
mg- v ¢
Pr=— . (2)
Y
62




i Substituting eqn. (2) from egn. (1) we get

2 .4
ma* e |1 ——
 midoniia "5

~ AR I
; C2' .CZ
= mg? ¢*
’e Ez=m02c4+P262

. '_ 4.11. RELATIVISTIC LAW OF ADDITION OF VELOCITIES

. According to special relativity postulates the
speed of light ¢ in free space has the same value
for.all observers due to their relative motion. This

F
“— dt—
= ix =

S Y Y §
F 3

b

law tells us that velocities can not be added
diréctly as in classical meclanics because
velocities must be added in a manner consistent
with Lorentz transformation.

Suppose there are two frames of reference
SandS§’ (fig. 5), frame § ' is moving with velocity
v relative to S along x—axis. An observer in §
measures the velocity of the body as

: dx

Tdt

where dx is the distance moved by the body in time dr.
while to an observer in § *-the distance is dx” and time interval is d’ then

Vv L (1)

,_dx’
§ V - dr *
{} We have Lorentz transformation
. A
.' x’-LW— and t'——éz
{ \’ 1 — Yy Vi v_z
L ¢t ¢
e
* On differentiating we get
'1 dt -%x‘
:! e dx — vdt ddi’ = (:2
|' ) v
! I - LA 1—-—
:| 02 CZ
"i dx—vdt  dx—vdt
} '5 dt — vax
il et Y1-73 2
s R
; c? dr
v dx
v 1——%
- &2 dt

T

- (2)

Relativity
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dx ,_ Y
From (1) V_dt S0 V_l_ﬁ

02

This is the relativistic addition of velocities V and v.
If V' = ¢, that is, if light is emitted in the moving frame §’ in its direction of motion
relative to S, an observer in frame S will measure the speed
Vi4+v
Ve=———
Viv
1+

\ CZ

c+v _c(i:+v)_c -
ve  c+v
1+—=

2

Thus both observers measure the same value for the velocity of light is vacuum is constant

and independent of the frame of reference.
From above expression it is clear that if any velocity v is added relativistically to

the velocity of light ¢ then again velocity of light is obtained.
« 4.12. RELATIVITY OF MASS

[

If a body of rest mass, m,, moves with very ::: ?:
high speed v relative to an observer then its mass s g
1 v
m appears to be increased by factor v -’
v O-b 4O
Q_ 1-%. oo
e AB
That is
o
m=
v
l o —
2
where myg is the rest mass of the body. Fig. 6

This is the relativistic mass of the body.

Proof : Let us consider two frames of reference S and S’ (fig. 6), S * is moving with
velocity v relative to S. Let two particles A and B of mass m; and m) be moving with the
velocity v’ and — v’ in the frame § " approach each other.

The velocities of the particles seen by an observer from the frame S will be

= o)

and uy=—t 1Y (2

when particles collide then they are momentarily at rest with respect to the frame § but
as seen from S they are still moving with velocity v. Since the total momentum of the
particles is conserved so -

miup+myuy =(mp+my)v
j!




1 v o+v —-v +v
m R ) ;= lmptmy)v
Vv v
P+ 12
&2 ¢
! v +v v 4w
| mj =V |=my|v— .
1+v Vv 1'_V vV
! & e
‘ v,_v’vz AR
m_o_ & ¢
] v,_v'vz AR
. ? c?
’ vy
vy A
} l+— 2 [1+3 2
" P m
L o || =
"y vy my v’y
'z -3
c c
From eqn. (1) we have
2
| vty
| u©= ;
v v
I+—2
C
2 ,
i H —1 1{ v+
T T —1IT 7 N
o2 pe PR
62

r Cz 1 i 2

2

2y (7T -2

i vy c B
Similarly, |[1+—5| = 5
I < -
‘Putting these values in eqn. (3) we get
i

!

.. (3)

Ré!anjvfiy
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{4

If the particle B is moving with zero velocity in frame § before collision then

vy =0 and m = my (rest mass}) so

ng
mp =
|
1-— -
2
Since both particles are exactly identical so replacing m; by m and u; by v we get
g
m= 5
-5
C

This is the desired result.

Now the following results are obtained.

(i) mass of the particle m depends upon the velocity v.

(i1) when v — ¢, m — o this means that no particle can have the velocity equal to or

greater than the velocity of light.

(iii) when v < < ¢ then m = mg. This means that at ordinary velocities the difference

between m and i is very small.

SUMMARY

t

A co-ordinate system reflative to which the position and motion of an object are specified
is called a frame of reference .

The non-accelerated frames are known as inertial frames or we can say that the frames
in which Newton’s laws hold good are called inertial frames.

The accelerated frames are called non-inertial frames.

The negative result of the Michelson Morley experlment suggested that the velocity
of light is constant in all directions.

Basic Postulates of special theory of relativity :

(1) The laws of physics are the same in all inertial frames of reference. It is also known
as principle of relativity.

(2) The speed of light in free space (¢) has the same value in all inertial frames of
reference, i.e., the speed of light is constant.

Lorentz transformation equations of relativity are :

Vi , m
1~ t'+
2 2
x4+ vt’ [
Dx'd=———andx=——"x (i}t'=———and t=—"
! v—f iz VNN
o2 2
@ity y'=y (iv) 2" =z
The length contraction or the Lorentz-Fitzgerald contraction is given by the factor
V
1-—.
-2

The relation E = moc2 is known as rest mass energy.




 The law of relativistic addition of velocities states that if any velocity v is added Relativity
retatwustlcally to the velocity of light ¢ then again velocity of light is obtained.

« TEST YOURSELF -

1. Describe Michelson-Morley experiment. How were its negative results interpreted ?
2. What are the basic postulates of special theory of relativity ? Deduce Lorentz
: "transformation equations from *hern
3. Obtain mass energy relation £ = mc? and P2plam it.
4. Derive the relativistic relation E = mgc + between energy and momentum.
' 5. :Obtain an expression for the relativistic law of addition of velocities.
6. , A body moving with velocity v has mass . Show that
mg
! e
V2 3
I-3
A

7. Write short notes on :

|
|
‘ iwhere my is the rest mass of the body and c is the speed of light.
(a) Length contraction (b) Time dilation
(c) Simultaneity (d) Frame of reference
8. jCalculate the velocity of a particie when its rest mass energy is double of its K.E. _
[Ans. 0.866 c] __
9. Calculate the speed of a particle of rest mass 3.33 x 10~ 27 gram whose energy 15 2 f
MeV._ . T [Ans. 1.047 x 108 ms™ 3|
0:‘,* The energy of massless particles (mg="0) is given by :
; (@) E=Pc (b) E= h_v (YE=hRA (d) none of these
11. Mass of moving pholon is equal to :
E E E
‘ @~ by 5 (C) = (d) none of these i
| 12.) *A star is receding from the earth. This w1l! give rise to :
| . (a) red shift  (b) blue shift (c) both shifts (d) no shift
‘ 13. {The speed of light in vacuum in two inertial system :
(a) is same

(b) is different
] (c) depends upon the direction of propagation of source and observer

(d) depends upon the relative velocity between the source and the observer
14. A particle of zero rest travels with speed :.

I {a) greater than light (b) less than light
;.(c) equal to light (d) none of these
‘ 15. 1 One atomic mass unit is equivalent to-:
i i(a) 931 joule (b) 931 MeV €)231ev (d) none of these
. 16. ; One joule of energy is equivalent to :
@ 0.0 x107 kg (b) 0.1 x10" kg
(©0.1x 101 kg (d) none of these
¢ b
| 1{ ANSWERS

10. (@) 11 (¢) 12. (a) 13.(a) 14.(c) 15.(b) 16. ().
} ([
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UNIT

D

OSCILLATIONS

- STRUCTURE .

Simple Harmonic Oscillation

Simple Harmonic Motion

Equation of Motion of a Simple Harmonic Oscillator

Energy of Particle Executing Simple Harmonic Motion

Time-average of Kinetic Energy and Potential Energy

Potential Energy Curve and Small Oscillations in one Dimensional Potential Well
Pericd of Oscillation of a Mass Suspended by a Spring

Frequency of Mass Connected with two Springs in Horizontal Position
Simple Pendulum

Compound Pandulum

Torsion Pendulum

0 Student Activity

Compaosition of two S.H.M.’s of Equal Pericds

Lissajou’s Figures

Compaosition of Two Rectangular 5.H.M.'s in Frequney Ratio 2 : 1
Lissajou’s Figuras Producd by Tuning Forks of Fraquency 100 and 200 cps
Resultant of Two Rectangular Simple Hormonic Motions
Demonstration of Lissajou's Figures

Determination of Unknown Frequency by Lissajous' Figures
Composition of Two Simple Harmonic Motions

0 Summary

o Student Activity

a Test Yourself

LEARNING OBJECTIVES

After going through this unit you will learn ;
e Oscillations and Hamonic motions of a body.
e Motion of different types of pendulum i.e., simple, compound, torsion.
o Energy stored in body while in Harmonic motion,

e rve traced by the padicle while in Hanmoni

« 5.1. SIMPLE HARMONIC OSCILLATIONS

(a) Periodic Motion : The motion of a body is said to be periodic motion if its
motion is repeated identically after a fixed interval of time and this fixed interval of
time is known as period of motion.

Examples : (i) The revolution of earth around the sun is an example of periodic
motion. Its period of revolution is one year.

(ii) The rotation of earth about its polar axis is a periodic motion whose period of
rotation is one day.

(ini) The revolution of moon around the earth is also an example of periodic motion
whose period of motion is 27.3 days.

(b) Oscillatory Motion : When a body moves to and fro repeatedly about iis
mean position in a definite interval of time then this motion is known as oscillatory
or vibratory motion.




Thus we can say that a periodic and bounded motion of a body about a fixed point
is called an oscillatory motion. The oscillatory motion can be expressed in terms of sine
and cosine functions or their combinations. Due to this, the oscillatory motion is also
called harmonic motion.

Examples : (i) The motion of the pendulum of a walt clock is an example of oscillatory
motion.

(ii) When the bob of simple pendulum is displaced from its mean position and left to
itself then the motion of bob is known as oscillatory motion.

{¢) Time Period : In periodic motion the time taken by the body in one period
is known as time period. It is denoted by 7 and S.1. unit of T is second.

(d) Frequency : The number of periodic motions made by the body in one second is
known as frequency. Its S.I. unit is hertz. Thus the frequency is the reciprocal of the periodic
time.

Frequency = m

Phase : Phase of an oscillatory particle at any instant is a physical quantity which
completely expresses the position and direction of motion of the particle at that instant with
respect to its mean position.

» 5.2. SIMPLE HARMONIC MOTION

When a particle moves to and fro repeatedly about its mean position under a restoring
force, which is always directed towards the mean position and whose magnitude at any
instant is directly proportional to the displacement of the particle from the mean position
at that instant, this motion of the particle is known as simple harmeonic motion. i.e.

restoring force (F) o< - (displacement)

F=—kx

where & is constant and this constant is known as force constant.

Here negative sign shows that the restoring force is always directed towards the mean
position.

Characteristics of Simple Harmonic Motion

(i) Displacement : The distance of the particle from the mean position at any
instant, is known as displacement of the particle at that instant.

(ii) Amplitude : The maximum displacement of the particle from mean position
is known as amplitude of motion.

(iii} Velocity : In simple harmonic motion the velocity of the particle at any instant
is equal to the rate of change of displacement at that instant.

The displacement of the particle at time ¢ is given by Y
y=asine»> o A
? d I N
-~ velocity v i :
l dt xt 0 L] x

d .
=1 {a sin 1)

[ vV=aCcos ¥*
=a® V1 —sin? ot Fig 1.
2
[ =g l—‘y—2
41

v=m\‘a§—y:

This is the expression for the velocity of the particle at any instant.

Oscillations
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(iv) Acceleration : The acceleration of a particle in simple harmonic motion at
any instant is equal to the rate of change of velocity at that instant i .e.

acceleration (o) ='%

a= % (aw cos wi)

=—0)2asin wt

O‘.=,—(!)2y

This is the expression for acceleration. This is the condition of S.H.M.

At mean position y=0 i 6=0]
ie. o =min
At extreme position y = g [ §=907]
g=-w'al| ie max. f

Thus, from above it is clear that acceleration and velocity are not uniform in the whole
motion. The maximum value of velocity is known as velocity amplitade in S.HM and
the maximum value of acceleration is called acceleration amplitude.

(v) Time Period : The time taken by a particle in simple harmonic motion to
complete one period is known as time period.

We know =
acceleration o= mz‘y (neglecting negative sign)
" / o
W= \—=
}l
] , 2r-
ot od, - T==—
ime peri " .
or T=2x ‘\/ L ' |
a [
L] |
or T=2m displacement

acceleration

and frequency is given by

L

11 / acceleration
T 2m " displacement

* 5.3. EQUATION OF MOTION OF A SIMPLE HARMONIC

OSCILLATOR
A particle execuiing simple harmonic motion is known as F
harmonic oscillator. Consider a particle of mass m executing - -—
simple harmonic motion along a straight line (fig. 2). — S

Let x be the displacement of the particle from mean position
O at any time ¢, then from the basic condition of simple harmonic
motion, the restoring force £ is proportional to the displacement x with negative sign i.e.,

Fig. 2

Foo—x
F=—ix .- (D




where k is constant and this constant is known as force constant. The equation of motion
can:be obtained by Newton’s second law. i.e.

| d*x
: df
. From eq. (1), F=—kx . ~
" Therefore - " -
] 2
d“x
—Ikx — m ——r—
11 dr 4
; d’ &
: —_— =X
' dr mn
i Puttine & = w2
Putting = ®~, then we get
2
| o o
d
This is the differential equation of simple harmonic oscillator.
Let the solution of equation (2) be
x=Ce™ e (®
where C and « are constants
From equation (3),
ax _ .
; o Cote
2
and 93__2{ = CoZ ¢
dt
|Putting these values in equation (2), we get . "
[ Ca?e®+0? Ce™=0
{
; Ce™ (o + 0% =0
as | Ce™ 0
i o+ @2 =0
a=+V(-w?) =*in

where i is imaginary number, i = V(- 1). Thus two solutions of equation (2) are possible.

Therefore
x=Ce' and x = Ce™ '
_ The general solution will be
| x= e + Cye N CY
whéfe C; and C; are constants.
l ’From equation (4),

x=C] [cos o + i sin @] + Co [cos Wt — { sin @]

= (C} + C3) cos &t + (iC) — iCy) sin wf

g
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Let "Ci+Cy=asing
and i(C1—Cy)=acos ¢

where a and ¢ are constants.
Therefore

x =a sin ¢ cos W + cos ¢ sin ¢

x=asin(mr+¢)\

This is the required solution of equation (2). This equation gives displacement of
particle executing simple harmonic motion at any time ?.
(a) Velocity : We have

x=a sin (o + §)

Differentiating with respect fo time f, we get

v=%=acos (wr+¢). ©

= a1 - sin? (¢ +4)
= 0 V(@ - a* sin? (o + 0))
v=0Va? - 2

This is the expression for the velocity at any. displacement x.
(b) Period : We have,

ok
m
k
W= \}—
H1
2 m
T—m—Z p

This is the expression for the time period.
(c) Frequency :

_ L[k
“2n Ym

This is the expression for frequency.

(d) Ymportance of S.H.M : The imporiance of S.H.M. in physics is due to the
following reasons :

(i) The physical problems in mechanics, optics, electricity and in atomic and molecular
physics in which the force is directly proportional to its displacement from some equilibrium
position the resulting motion is represented by the simple harmonic model.

(ii) The complicated periodic motions occuring in physical problems can also be
represented by the combination of a number of simpie harmonic motions having frequencies
which are multiples of the complicated motion. The vibrations of atoms in solids, the
electrical and acoustical oscillations in a cavity can be analysed in this manner.




Oscillations

» 5.4. ENERGY OF A PARTICLE EXECUTING SIMPLE HARMONIC
' MOTION

When a particle oscillates about its mean position then it has potential energy as well
as kinetic energy. The potential energy is due to displacement from the mean position and
kinetic energy is due to its velocity. These energiés vary during oscillation while the total
energy of the particle remains conserved.

" {a) Potential Energy : Let us consider a particle of mass m executing S.HM. Let
xlbe its displacement from the mean position at any time *¢". In this position force F acting
on the particle is given by

F=—kx (D
where £ is the force constant. In terms of potential energy, the force is given by
du
F=="kx
so from eq. (1)
.l ay _
= kx . (2)

On integrating eq. (2), we get
= % k?+C e (3)

where C is constant of integration.
Now at x=0, /=0, then C=0

s? by eg. (3)
U= % kx? . (4)
But for simple harmonic motion, we have
x=gsin (0t +¢) .. (5)
virhere w? =£ From egs. (4) and (5), we get

1
2
This is the expression for the potential energy of the particle at any time *f".

From this expression it is clear that when sin® (cor + ¢)= 1, then V is maximum.
(b} Kinetic Energy : Kinetic energy of the particle at any time ‘¢ is

ka? sin® (ot + o)

| KE.=3m? .. (6)
|
| We have

x=asin (& + ¢}

c}ifferentialing with respect to ‘¢,

we get
' X
| v= it = (a cos (W + ¢)
so by eq. (6) '
! KE = —:12- m?
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=L 1 [a cos (oor + N -

2
-% w? & cos? (wr + ¢)

KE. —Eluizcos2 (@t +0) D

This is the expression for kinetic energy. F[rom this expression it is clear mat when cos
then kinetic energy will be maximum which is = kA?,
Total energy of the particle is given by
E=PE +KE.

= % ka® sin® (wf + ¢) + % ka? cos? (ot +6)

E= % ka? [sin” (ot + ) + cos? (@r + ¢)]

1.2
E= > ka
But & = @%m and @ = 2rx
where 7 is the frequency.

_1,2
E—zka

1 2 2
E—2(0 ma

E= -;— (2nn)2ma’
, E = 2n°md

This is the expression for the total energy of the oscillating particle.
From this expression we see that total energy is proportional to the square of the

amplitude (a?) and also inversely proportional to the square-of-the time period (7%)

S )

(¢} Since x=a sin (Wt + §)

v—%—macos (ot +b)

+ \[ﬁ\! [ = &2 sin® (@ + 0)]
ok

]
H

m
Total energy of the particle is
E=KE +P.E.

1 2.1
—2mv +2kx2

1 1
=§k(a2—x2)+§kx2

1,2
—zka

When the displacement is one half of the amplitude i.e. x=9-, then we get

2

-

2




1., 1.(1 Y
(U)af2="‘kx +§k(5aj

2
=éka2
='}IE
and (K)a;z=-%k(a2—x2)
e
=%Iq:a2 h
| =%E. :

Thus, the potential energy is one fourth and the kinetic energy is three fourths of the
total energy.
© Now let x be the displacement at which the energy is half potential and half kinetic
energy i.e.

| u
.i,.

L

I
N
M

r | —

U | %

1
2

E

|
g'l~>
If
O] FE N

x= a

2

* 5.5. TIME-AVERAGE OF KINETIC ENERGY AND POTENTIAL
ENERGY

The kinetic energy of a particle of mass m executing S.H.M. under a force constant
k is given by

, K=—1—mv2=lm(é£]2

2 2

' = % m?a? cos? (o + 9), where w? =—:—;

The time-average of the kinetic energy over a period T of the motion is
2t 2
'[ cos” (wrf + ¢) dt

T
J' K dt
= o] l ) 0
{ Ke—p—=gmo'a W
ma’a? me 1 - sin? (@t + )
— 5 dt
O

Zniw Infw
I dt+I cos2(mr+¢)dt}
0 0

]

e
(3]
RS
—

b

A
| S—
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The potential energy of the particle is
=%k€=%mﬁn¥am+@

The time-average of the potential energy over a period T of the motion is

T )
j Udt % kazj sin® (ot + d)
o0 _ 0
I o 2w
_koa® [ | —cos 2 (@t +6) &
T o4m 0 2
2 2w 2n/to
=MU’ dt-—I cosz(mr+¢)a’r]
8r 0 0
= —kmz [ n +0 :I
T8 Lo
1
_Hhﬁ

— 1
Hence, the time-average kinetic energy X is equal to the time average potential energy

U and each is equal to % ka?.

Now the position-average of the kinetic and potential energy is obtained as follows.
The kinetic energy is

2
=%m[j—fj =%k(a2—x2)

The position-average over the displacement from x=0tox=a is

_ b 2
K= =
a a
Lk 2 X
2a[“x 3
=L g
=3 ka
the potential energy is
I
U_ikﬁ
The position-average over the displacement from x=0tox=gis® ¥ .
Tt ;
a : ’
— 0 Udx ] [E AL
U= a o
a 5\.' 1 :1 LB o
Li{” 2ax SN .
2 J
B a b TRY !




ol g

5]

ka

= ] =

]Hence, the position-average kinetic energy (%kaz) is not equal to the

position-average potential energy (é ka? }

« 5.6. POTENTIAL ENERGY CURVE AND SMALL OSCILLATIONS IN
ONE DISMENSIONAL POTENTIAL WELL

The curve which gives the variation of the potential energy of a particle with its
position is_known as potential energy curve. The potential energy curve of a particle is
moving in one dimension against its distance from the origin along the/line of its motion.

-In this position the force on the particle is given by

Few dV(x)
T dx

From this expression it is clear that it V(x) decreases with increasing x, then the slope
Yy D

%’ﬂ is negative and hence F is positive. On the

other hand, if V(x) increases with increase of x,
dv(x)
dx
F is towards the negative x-axis. In this position
the particle at any point experiences a force
which tends to bring it in the region of lower

potential energy.

Positions of Equilibrium : From fig. 3 we
%1 is zero at points A, B, C
and D and hence the force acting on the particle at these points will be zero. In this position
the particle remains in a state of equilibrium.

Positions of Unstable Equilibrium : In the fig. at points B and D) the potential energy
Is maximum and slope is zero. Due to this the force acting on the particle is zero. If we

then the slope is positive and hence the force V&)

see that the slope

displace the particle on either side, then the force F= % acts on the particle which tends

to dfi'spiace the particle further away from equitibrium position. Hence the positions at
which the potential energy is maximum are the positions of unstable equilibrium,
Pasitions of Stable Equilibrium : The points at which the potential energy of the
particle is minimum are the positions of stable equilibrium. From fig. 3 the points
A and C are the states of stable equibibrium.
Bounded Region : Potential Well : The particle can be displaced from x; only if its
total energy £ is more than the minimum potential energy at x,. As the particle moves, its

potential energy goes'on changing but it can never be more than E, because the kinetic’

energy K can not be negative. Thus, if the total energy E corresponds to the horizontal line
drawn on the potential energy curve then particle must remain confined between the points
x1 and x2. Thus, the particle oscillates between points P and Q with a certain period.
In this position the points P and  are known as turning poeints for the given particle.
The motion of the particle is confined to region between points P and Q. This region
is c?ﬂed bounded region or potential well.

Oscillations
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Nature of Small Oscillations in one Dimensional Potential Well : At point xg, the
potential energy function U{x) can be expanded into Taylor's series

dU d2UY (x-xg)?
U(x)=Uo+[zlo(x—xo)+(dx2]xo 2TU F oo,

where L, (% )vo are the values at the points x = x0. If xg is a point of stable equilibrium,

dU du
then . is zero and ? - is a positive quantity. Therefore, putting C2, C3 ........

for (& d3—U ) we have
Vg2 b\ 3

C, Cy
UGx) = Up+ 5+ (x - x0)? oy G50

If we shift the origin to .rg. then we can put x in place of x — xp, then we get
Ulx) = U0+ ,t2 +—3x3 Tt

For small oscillations, the term containin x> and hi her can be ignored. Then
g g g

Ulx) = Uy +%

From this equation it is clear that the particle oscillates in parabolic region. Thus, for
small-amplitade oscillations the potential well is parabolic.

adl(x)
dx

Cy . (1)

F=-
From equation (1), we get

d 1
F='E[U0+Ec2x2i|

F=-C2x

This is the characteristic of S.H.M. Thus, for small oscillations, the motion in a
potential well is simple harmonic.

* 5.7. PERIOD OF OSCILLATION OF A MASS SUSPENDED BY A.
SPRING

Let us consider a
weightless spring of length /,
hanging vertically as shown in,
fig. 4 when a weight of mass m
is attached to its lower end then
its length increases by x’. In this
position the spring exerts a
restoring vertical force F on the
mass m.

Now from Hooke’s law

Fig. 4.

Fee it e (D)

where & is constant and this constant is known as force constant of the spring. In
equation (1)’ the negative sign shows that the direction is opposite to the expansion in

length of the spring. Th3 force due to mass m is mg acting downward.

|




Since there is no acceleration in the body so net force should be zero i.e.

:l

” F+mg=0

H —kx'+mg=0 {from eq. (1}]
4 x'=%‘g .. (2

when the body is displaced by small distance and left, then the body starts to vibrate
about its mean position. Let x be the displacement from its equilibrium position. In this
position the tolat increment in the length of the spring is (x" + x).

Again, from Hooke’s law

}1 Fl=—k(x¥+x
! F’=—k[ﬁk&+xJ [from eq. (2)}
F'=—-mg-kx e (3D
Therefore, total force is given by
; F’'=F"+mg
il F"=(-mg—kx)+mg [From eq. (3)]
F"=—kx e @)
From Newton's second law force F” will be equal to the product of mass m and
. dix . p
acceleration — i.e.
dr?
2
i _“E " _— m E__x - kx
dr
P dx_ k. w® x
P e = — —_—
| ¢ m
2
jl Ly,
w o

k
where m2 =—
"

This equation shows that the motion of spring is simple harmonic.
In this position the time period is given by

T=2—£—2n\/%_

| . 1 5.8. FREQUENCY OF MASS CONNECTED WITH TWO SPRINGS IN
- HORIZONTAL POSITION

When the mass-m oscillates, then at any instant one
| splfing is stretched and the other is compressed and
| vice-versa. Figs5.
| . Let x be the displacement of mass m from its mean

= poligition then

:
!
i
i

m—r =—kix—kyx

Oscitlations

¢

[From eq. (4)]
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k| +k
where @° =
m
This shows that, the motion is simple harmonic.

The time period is given by

_n
Q]

m
T=2n Vkl + kz

~ _l.\lk]+k2
T om

* ‘5.9, SIMPLE PENDULUM

When a heavy particle is suspended by an inextensible, weightless and flexible
string from a rigid support, then this system is known as simple pendulum.

Let us consider a particle of mass m which is suspended by “§
an inextensible, weightless and flexible string of length [.

Let a pendulum be displaced from its mean position and
allowed to oscillate as shown in fig. 6.

Let at time ‘f" the particle be at point P. In this position the
force acting on the particle vertically downward is mg.

Now resolving mg-info two components

(1) Force along the string = mg cos & mg

(2) Force perpendicular to the string = mg sin 9

Let the tension in the string be T which is balanced by the
component mg cos 0.

ie. N T=mgcosB

and frequency is given by

Hence — mg sin © is the only force which acts on the oscillating particle
F=—mgsin0 - - AD

Here the negative sign shows that the acceleration is directed towards the mean
position.

'-‘.

3 5
sin®=0- Lo + 9— .............
r 3!
If © s very small then sin 8 = 6. .
50 by eq. (1). y )
F=—mg@ ) (2
The displacemen\t is .
x=10 .
2y d% .
acceleration — = {— A
¢ dr




2 .
Force = o &0 T [ F=mal ...(3)
P ,
“From eqns. (2) and (3), we get
d%o
{ ml——=—mpg 6
? dr* 5
d%9 g K
_. — +29=0 . o (4)
' a1 '

This is the expression for the equation of motion of simple pendulum which is similar
to the eq. of simple harmonic motion {.e.,

2 1
2 L aty=0 ()
. o .
From eqns. (4) and (3)
2_ 8 .
®=5
s .
w="\2
{ 2n

| Time period

' This is the expression for the time period of simple pendulum.

« 5.10. COMPOUND PENDULUM

" When a rigid body which is capable of oscillating freely in
a vertical plane about a fixed axis, passing through the body but
not through its centre of gravity then the system is called
compound pendulum and this fixed point is known as point of
suspension
Let us consider a rigid body of mass m. Let G be the centre of
gravity of the body and S be the point of suspension. When this rigid
body-is displaced from its mean position, then SG makes an angle
9 wi:t.h the vertical.
"The force acting vertically downwards
=mg ) !
and restoring moment of this force
=—mglsing
This restoring moment produces angular acceleration in-the pendulum. i
Let / be the moment of inertia of the pendulum about an axis passing through § and

1

\ 2

perpendicular to its length. In this position the angular acceleration is %?6

| dr_ e
S0 i I—5=—mglsinB -

| dr? .

o2
where [ 479 is the torque. i

Tl -

RS ;‘||'

 Here negative sign shows_that the force is c.ITg‘éctégl,towdrds"'the mean position.

b

Osciz'larr‘ml:

iy
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If 6 is very small than sin 6 =6

d%9
I——=—-mgl 0
at d
da’e_ _mgl
L __ [+
at !

d’e  mgl
LA L
a1

This is the equation of motion of compound pendulum. Thus, motion of compound
pendulum is simple harmonic.

Here @’ = Lﬂ—f{ =S W= %gi
=~ Time period
T= 2R
®

From theorem cf parallel axes the moment of inertia of the pendulum about an axis
passing through S and perpendicular to its plane

= mk* + mf?

=m @2+ B

where k is the radius of gyration about an axis passing through the centre of gravity G
of p&ndulum.
2
S0 49 + (_[g—z )G =0
a? \i*+i
2__lg
W =
K2+ P
w=Nlglh" +

#

Time period T= 2n
W
(2412
T=21 k“+F
lg

Lt
T=2x N ———0m
g

Here (% +1 J is called the equivalent length of simple pendulum.

* 5.11. TORSION PENDULUM

When one end of a very thin and long wire is clamped to a rigid support and
the other end is attached to the centre of a heavy disc or sphere, then this arrangement
is known as torsion pendulum.

If the disc ts turned through an angle 8 then the wire is also twisted through the same
angle 6. In this position the restoring torsional couple (— ¢8) begins to act which tends to




bring the pendulum to its initial position, where c is the torsional constant or couple per
unit twist. L

 Thus torsional couple T=— ¢ e (1)

Wire

é'Let I be the moment of inertia of the disc about the wire
) 2
as the axis. Here % is the angular acceleration and the couple

2
due to the acceleration is given by Id—e. This couple is

dr

balanced by the restoring torsional couple. Thus,

. d%e
I—=-cB
| dr
de
I—+c0=0 R
” dr*
d* ¢
— +78=0
| at 1
2
or E a8 +©26=0
dr?
where @* =<,
1
'iThis equation represents the simple harmonic motion where period is-given by
_2n
— o

T=2r\{
[y

From mechanics of materials, ‘c’ in case of wire is given by

P A T
|
where r = radius of the wire

1= length of the wire
1 = modulus of rigidity
+ STUDENT ACTIVITY
1. What is the importance of S.HM. ?

2. ‘What do you mean by restoring force ?

Oscillations

Self-Instructional Matrial 133




A
-
- Mechanics

134 Self-instructional Material

| . i .

« 5.12. COMPOSITION OF TWO S.H.M’'S. OF EQUAL PERIODS

Let the equations of two simple harmonic motions of equal frequencies are given by.

x| =ap sin (o + ¢) 1D

and X3 = ag sin (0 + ;) . (2)
The resultant displacement is given by

x=x)+x

x=aj sin (0 + @) + ay sin (@f + §7)

or x=ay (sin ¢ cos & + cos Wt sin §;)

+ ay (sin W cos ¢; + cos e sin §;)

= sin @ (g cos ¢; + ay cos §j) + cos Wt {a; sin §; + a; sin O3}

Let a;cosdy+aycosdp=Rcosb ) ... (3)

and ay sin §; +ay sin ¢, = R sin 6 ' )

Therefore
X =sin ®t (R cos 8) cos wt (R sin §)
x =R sin (&t +8)

This equation represents simple harmonic motion. Hence the resuitant motion of the
particle is simple harmonic.
Now squaring and adding equations (3} and (4), we get

at + a5 +2a; a; (Cos Oy . cos O + sin ¢ . sin &) = R?

or a%+a%+2a1a2 cos (B —¢2)=R2

s0 the resultant amplitude

R =lat +a5 +2a1a) cos (§; - ¢)] e (8)

Dividing equation (4) by (3), we get

ap sin 91 + a3 sin ¢o
tan 6=
- a;cos ¢y +a;cos Py

.This is the expression for phase 6.

Here there may be two cases.

(i) Maximum Amplitude : When ¢| — ¢, =2nm where n=0, 1,2, ...... , then from
equation (5), we get

R= \!a% + a% + 2aya, cos (2nm)

\ =\’a%+a%+2a1a2 =\’(a1 +(,12)2

R=a1+a2

(iiy Minimum Amplitade : When ¢; — ¢ = (2n + 1)t where x=0, 1, 2 then from
equation (5), we get

R =\l[a% + a% +2a1az2 cos (2n+ 1) w]

=‘l(&%+a%—2a|a2) [ cosZr+1)mn=-1]

ar—




, ~Va - a?
5 :

If a) = a, then we get' "
R=_a|-a2=0
R=0 : .

This means that when two simple harmonic motiong\ of same amplitude, same time
period but of opposite phase act at a point then particlq_s_\*zlxix}regt.

» 5.13. LISSAJOU’S FIGURES i r"frﬂf ¥

When a particle is acted upon by two mutually perpendlcular simple harmonic
motions simultaneously then due to the effect of these rﬁ‘ohon&the particle traces a
curve, These curves are known as Lissajou’s Ii‘:guresi ,- o :

These curves may be circle, ellipse, parabola, stralght line'etc. It depends upon the
amplitudes, frequencies and phase difference between then!1 ;3:

When Frequencies (Time Periods) are equal and Amplitudes are different : Let
us consider two simple harmonic motions in Xand ¥~ directions acting on a pamcle

e e et

simultaneously. Then equations are P
v x = asin (0 +¢) ()

and 7 % . ﬂ%;f y = b sin ¢ IR ¢/
where @ and b akre the amplitudes and ¢ is the phase difference.
- Fromegq. (1)

! £~ sin (@ + §)

4}
E §=sin ®t cos $ + cos o sin §
From eq. (2), sin o =ﬁ

i
and cos =1 —sin? ar = 1 —';;i

‘ §=‘;§cos¢+ V[l—-{‘;—z)sintb
of £—-!%cos.q)-—- \‘(-l—%}sinqn

a
ii Squaring on both sides, we get

2y 2
}—+i§cosz¢-%cos¢=[ bz) in? ¢
or: x2+L —Qcosqa—sm )] 3
aZ b2 a

. This equation represents the general equation of an ellipse, which-is situated between
a rectangle of arms 2¢ and 25.
Now the following cases may asise
Case I : When ¢=0", thencos ¢ = 1, and sin ¢ = 0, From equation {3), we get

V. Oscillations
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X ﬁ Zxy cos0°=1]
25 ab°°50 =0 T sin0°=0
2 L,
2 AV, g
& b 3%
i
or y= b x
a Fig. 9.(a)
This is the equation of straight line, fig. 9 (a).
n_ 1 . T
Case II : When ¢ = n/4, then cos 4 = sing from eq. (3), we get
_ b= /4
_{2_+ﬁ mCOSE‘—SmZE "
@t p* ab 4 4 //
2 ¥ 2xy 1
AR [
a b Fig. 9.0}

This is the equation of oblique ellipse
as shown in the fig. 9 (b).
Case I : When ¢ = E then cos ¢ =0 and sin ¢ = 1 then from eq. (3), we get

xz y___ b=ri2

This equation represents the ellipse whose axes are along the — 2
coordinate axis as shown in the fig. 9 (c). \ ;

Fig. 9.(c)
Case IV : When ¢=—- R then cos ¢= _T so by eq: (3), we get
¢ = 3nfd
sind = W H
2.7 2o 1 i
2 2 ab "2 !
Fig. 9.(d
This is the equation of oblique ellipse as shown in fig. 9 (d). &2
Case V : When ¢ = =, then cos ¢ = — | and sin ¢ = 0; from eq. (3)
2.7, 2y _g
2 B $p=x
X _X 2
[; + b ] =0 --------- .~ T
-t X Fig. 9.(¢}
y 2 g. 9.

This is the equation of straight line as shown in fig. 9 (e).

Frequencies ‘Nearly’ Equal : If the frequencies of the two simple harmonic motions
are exactly equal, the Lissajou’s figures remain perfectly steady. If the frequencies are
nearly equal (not exactly) the phase difference ¢ between the two motions will not remain
steady but it will change slowly i.e. starting from ¢ =0 to 1/2 and again 2. to m, again
from 7 to 2. We know at ¢ =0, straight line is obtained, at ¢ =m/4, oblique ellipse is
obtained, at ¢ = w2 ellipse is obtained and so on. This means that in one motion (0 to 27)
all the possible forms of Lissajou’s figure are obtained.




The frequency of this complete motion (cycle) is equal to the difference in the

frequencies of the component motions.

Thus, “if the frequencies are nearly equal (not exactly) then all the possible forms

of Lissajous’ figures will be obtained.”

+ 5.14. COMPOSITION OF TWO RECTANGULAR S.H.M.’s IN

FREQUENCY RATIO 2: 1.

and

or

or

ar

or

or |

| Let the simple harmonic motions of frequencies in the ratio 2 : 1 be given by
x=asin 2ar+¢) (D
y=bsin ot ...(2)
From equation (1), we get

|

4 i = gin 2t cos ¢ + cos 2t . sin §
X . . .
;=2 sin@tcosrcosp+(1-2 sin? o¢) sin ¢
From equation (2) sin w¢ = %
2

b2

)l §=:%bz Q(l—%}cos(p-&-(lﬂgg)sinqz

297 '. 2
0 el

: Squaring on both sides, we get

2 A AN
(1-4—1] sm2¢—2-z—(l——l;%]squ:—!;%(l—g]cosqu

iz Ty

3 and coscm=\ll—sin2cor= 1L

4 2
£+sin2¢+%sin2¢—%sin2¢-%sin¢

R
2 4
; +4—x%sin¢=‘—1§cosz¢—%cosz¢
2 2 2x . Z_iﬁ .2 )
?+sm q>——a—sm¢+ I (sin® ¢ + cos“9)

[ 42
- % (sin®d + cos®e) + % sin¢=0
__ a

4 2 :
X o 4 At
(a sm¢]z+b4 b2+abzsm¢ 0
2 20 2
X_ B (Y 145 |=
[a Sln¢)+b2 (bz 1+asm¢J 0 .. (3

“ This is the general equation of the path of the particie. This is the equation of a curve

having two loops as shown in the fig.

{

|
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Now following cases may arises, D TS
Case I : When ¢ =0, then sin ¢ =0, from eq. (iii), we get N o
ee— 5
2 —"’—2[ J 0 XX
2 s | ; L.
This equation represents the English digit 8 type figure : D
which is symmetrical about both axes, as shown in the fig. 10(a). = =
YF
Case II': When ¢ = /4, sm Tthen from equation (3), Fig. 10.(a)
we get Y §=nsa
1 r,_ —) E .
x_ 1LY 24 !
(a 72_)+ [bz L ] \)
X : X
This is the equation of curve having two loops as shown in :
the fig. 10 (b). .
Case 111 : When ¢ = % sin %: 1, from equation (3), we get H """ '
Yf
' Fig. 10.(b)
x_, Y, a2 ; |
(" -1 + ( -1+= ]: 0
a b* \ b2 Y
ANG

p— o —

|

or yz =— b— (x - a) Y’
2a Fig. 10.(c}
This is the equation of parabola as shown in the fig. 10 (c). )
Case IV : When ¢ = 2 and sin i 72—,_from equation (3) < i
x, LY, &(¥ x ) X £ x
a”Vz‘Jz*az [_bz P 4N
This is the equation of a curve having two loops as shown’ x f
in fig. 10(d). . v $ =3n/d
Case V : When ¢ = x. In this position the path of the particle Fig. 10.(d)
is similar to that in the cas 1rIc
Case VI : When ¢ = then from equation (3), we get
. 2,2 Y
241 +% L-1-2 =0
b a /g
a bT b\ 2 l :
* L
2N
or [[£+l)—zxz-:|z;_0 Y
Lia b . Lrig 104e)




bz
y2='2—a(x+a)

)
!
| This is the equation of parabola as shown in the fig. .10 (e).
If there is a small change in the frequency ratio 2 : 1, then Lissajou’s figure changes
slowly and all the forms of figures will be obtained slowly.

« 5.15. LISSAJOU’S FIGURES PRODUCED BY TUNING FORKS OF
FREQUENCIES 100 AND 200 cps

1 Let the equation of motion produced by.two tuning forks be

_ x=asin ©f (D
and- y = a sin 20t + ¢) . (@)
where a is the amplitude of each tuning forks, @ is the frequency and ¢ is the initial

phase difference.
From equation (2)

':; = sin 20 . cos ¢ + cos 2m¢ sin §
1

]f =2$inmt.cos'0)r.cos¢+('l—2Sin2&)r)sin¢
’ 3
?Froméqn.(l), sinmt:iandcoswt: 1-52—
a
y_ 24 2 [ _E_]-
soE = a (1 az)cos¢+ 1 3 sin ¢
(22 Ve[ 2
or . [l 2 ]sm¢ » 1 2 cos

i
Taking square on both sides, we get

2 2 . 2
_}’__'_['1___2’5?2) sin2¢—%(l'—£xz—)5in¢=4—xz-2'[] —x—z)coszd)

2

a a a
2 4
or Lz...-ljsinchﬁ-%.—i%z—_—gfsinq)-{-ﬂ%xzsin(b:O
a a a a
2 .
Y_ @2 (2 v\
or (a s,lnq>)+‘a;1 [az 1+asm¢} 0 .. (3)

This is the general equation of a curve having two loops.

Y
L
g Now following cases may arise : X’—\‘ X
Case I : When ¢ = O then sin ¢ = 0 and equation (3) reduces E '

to L
| — b —
Il .Lz + f"__.. [ﬁ 1 )_ 0 Fig. 11.(a)
27 2l .27 )T
a a d

This equation represents the curve similar to English figure 8 as shown in the fig.
11(a).

H Case 11 : When ¢ = r/4, then sin § = qlf and from equation (3), we get

Oscillations

Selﬂ!nsiructional Material 139 )



Mechanics

140 Self-Instructional Material

[

y_ LY, 4202 )
(a 72- Jz + a2 a2 1+ > 0
This is the equation of the curve having two loops as shown X

in the fig 11. (b).
Case III : When ¢ =n/2, then sin ¢ =1 so by, (3), we get ~ Kommo-

e

+ap
2_ . YJ
("—’—1] +4—A22—(-x§-,1+~2)=,0 » Fig. 11(b)
a & \La a
. Y
¥y 2 4t a4l ¥y ! PR M '
or [a—lj+?+?[a—lJ:0 i/‘\i
52 X— ; ‘x
Y 2 E |
or [[a—lj+a2 :r_o 3 Z _________ \3
v “+ap
[44 '
or ,12=—-2—(y—a) Fig. 114¢)

This is the equation of parabola as shown in the fig. 11 (c).
Frequencies 100 and 201 (Nearly 1 : 2)

We know that, if the frequencies of the two component wibrations are exactly in the

ratio 1 : 2 (as 100 and 200), the path of resultant vibration remains steady. In this position,
. I

although the phase difference between the two components changes, but after each 100
~zcond it attains its initial value. But if the ratio is nearly 1 : 2 (as 100 and 2010). then it
causes its own variation in the phase difference ¢. During each second, one component
completes one full vibration more than double of the other and assumes ail values between
0 and 2xr. Due to this, the resultant vibration describes a continuously changing path passing
through all the terms.

* 5.16. RESULTANTANT OF TWO RECTANGULAR SIMPLE
HARMONIC MOTIONS WHOSE AMPLITUDES AS WELL AS
PERIODS ARE IN THE RATIO 1 : 2 AND PHASE
DIFFERENCE IS 90°

Let us suppose that a particle be subjected to two simple harmonic motions of periods
as well as amplitudes in the ratio 1 : 2, and acting along the axes of x and y respectively.
Eset the x-motion lead over the y-motion by 90" in phase. The equations of these motions

would be
xX=a sin(2mr+£)
T2
and v =2a sin ¥, . (2)
where a and 2a are the amplitudes, and 20 and @ the frequencies respectively.
The equation of the resultant path of the particle is obtained Y
by eliminating ¢ between egs. (1) and (2). T
Eq. (1) gives 2[.5 \
2 n 1
a—snn(2m1‘+2) X S X
= cos 2wt = | ~ 2 sin” o, i
From eq. (2), 3
sin @f = y/2a. Fig. 12,




. X Y
] "
- ¥ =2a(a-x)

This is the equation of a parabola as shown in fig. 12.
Now, consider the case when the y-motion leads over the x-motion by /2. Now the
equations of motions will be

x=asin 20 e (3
and| y=2asin[mr+§) (@)
From eq. (3), we have
\ X
; = 2Zsift f cOSs o)

= \’(l — cos? ) cos 0.

Putting for cos @t in the last eq., we get o
[ 2]z P
a 4a2 2a i l
! 2 2 oA *
or ﬁ =Y [1-X |
s & o 4a® '
or 12+y2{-3——1)=0 Y’
4 Fig 13.
This equation represents the curve of ‘8’ as shown in fig. 13. .
+ 5.17. DEMONSTRATION OF LISSAJOU’S FIGURES

| (i) Optical Method : Two electrically maintained tuning forks £ and Fy are placed
such'that the vibrations of one take place in a vertical plane and those of the other in a
horizontal plane. A thin strip of mica carrying mirror is fastened to the side of one prong

of ‘each of the forks as at

1 i 3 | i M, .
M, ind M,. Light from a source 3% Y
{convergent by a lens) falls on the . | xm
mirror M. This light reflected from M, o7 X
M, strikes the mirror M, from where \{Fl ;
itis reﬂected on to the screen O. The F, Y
p051t10n of the lens is adjusted so that Fig. 14.

1mage is produced on the screen.

Now, if the vertical fork F alone is in vibration, the spot of light on the screen executes
a \emca! S.H.M. so rapidly that only a bright vertical line is observed. If both the forks
v:brate simultaneously, the two rectangular vibrations of the spot of light are compounded
and ;_he spot describes the path of the resultant motion.

]I‘_(ii) Blackburn’s Pendulum : It is a mechanical device to demonstrate the Lissajou’s
ﬁgurés. It consists of a string with its two ends attached to a rigid beam at two points
Mand N, fig. 15. The string is cut at its centre and the ends so formed are attached to a
heavy funnel C. The exit tube of the funnel is very thin so that when it is filied with sand,

Oscillations
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a fine stream falls on the ground. A clip B brings the two strings
together, which can be slipped on the string.

It is equivalent to two pendula. If the funnel is vibrated in the
plane, the effective length of the pendulum will be BC and AC when 1
it is vibrated perpendicular to the plane of paper. If the funnel is pulled
out slantwise and released, it moves under the action of two S.H.M.'s
atright angles. A stream of sand escapes from the funnel which traces
a Lissajou’s figure on the ground.

Let BC=1 and AC=1,. The periods of the two S.H.M.’s are

given by Fig. 5.

o >

and T2=2n\%_

T

ALY
Changing the position of the clip B, the effective lengthis of the pendula, {;.and /;
change and we get different ratios of the periods.
ho1 T

==, wcget—-=l.

It L 4 T, 2

The sand traces a curve having two loops. Similarly different types may be obtained.

(iii) Cathode Ray Oscilloscope (C.R.0Q.) It is an instrument for plotting varying
physical quantity potential difference, sound pressure, heart beat-against another-current,
displacement, time. It is so called because it traces the desired wave-form with a beam of
clectrons, and beams of electrons were originally. called cathode rays.

Principle : It makes use of two properties of electrons namely

(a} An electron beam is deflected in magnetic and electric field.

(b) When fast moving electrons strike the glass screen coated with zinc sulphide, they
produce fluorescence. : '

Construction : C.R.O. is essentially an electrostatic instrument. It consists of a highly
evacuated glass tube, one end of which opens out to form a screen S which is coated

electrons. These are then attracted by the cylinders A;, A, and A3 which have increasing
positive potentials with respect to the filament. Many of the electrons shoot through the
cylinders and strike the screen “I\l Ar A
S to produce fluorescence ina [~ G ofhoodios
green spot. On their way to
screen, the electrons pass — e
through two pairs of metal o B .'I“'
| 1

e A P e A

_ Brightness ime-base

Working . If an AC. Fig. 16.

voltage is applied only to
X X; plates, the spot would be simply drawn out into a horizontal line. If the voltage is
applied'only to ¥} ¥, plates, the spot would be drawn out into a vertical line. If the voltage
is applied between X; X, and ¥ Y, both, the spot traces out the Lissajous’, figures. The

Fluo: wscent
SCICEN

wave form of the A.C. voltage can also be traced.

~

internally with zinc suiphide. A hot cathode filament C at the other end of the tube, emits

e Al . mAL e e



Uses : It is used in television, Radar and the only instrument used in wireless and
electronics to study the A.C. voltage, comparison of frequency and to measure the phase.

. 5.18. DETERMINATION OF UNKNOWN FREQUENCY BY o

LISSAJOU’S FIGURES '

The Lissajous’ -figures provide an important method of comparing the forks
frequencies of two tuning forks. These are arranged to produce Lissajou’s figures which
are carefully studied.

(1) When the frequencies of two forks are in a whole number ratio.
(m)/fny = 1,2, 3, ...). Let the frequenciess of the two forks be ny and #;. In this case a steady
figure is obtained, (say fig. 17). ‘

The fork of frequency n; is vibrating along the X-axis (say) and q
the fork of frequency n, along the Y-axis. If the complete figure is

traced in ¢ second; then in ¢ second the number of vibrations along X’ \?X

the X-axis will be ny#, while the nur-her along the Y-axis will be ¢
1

nal.

A vibrating point passes through any point in its path twice in Y
one complete vibration, therefo.e during rn;¢ vibrattons along the Fig. 17.
X-axis, the figure will cut the Y-axis 2n ¢ times. Similarly, vibrations
will ¢ut the X-axis 2ny¢ times. Thus

number of times Py, the figure cuts the Y-axis  2niz  ny
number of times P., the figure cuts the X-axis ~ 2nyt  ny’

Py ™ frequency of X-vibrations
p. ny frequency of Y-vibrations

If the number p, and p, are counted, the ratio of the frequencies of the two tuning
forks is obtained.

. From fig. 17, Py=06,py=2.
| m_-6_3

|

Therefore, the ratio of the frequencies is 3 : 1.

(2) When the Frequencies are Nearly Equal : Suppose the frequency of one fork:
is'n] and that of the other is n2, such that n) is only slightly different from »3. In this case
the motion of the higher frequency fork continuously gocs ahead of the other. The Lissajou’s
figure;.will gradually change, assuming in turn the form of a straight line, ellipse or circle.
Suppose the complete cycle is traced in ¢ second. During ¢ second the higher fork has made
one vibration more than that of the lower. But the number of vibrations made by the forks
in 7 second are n)f and nat.

i~ ny=1
or ny~ny =1t
or n =nyx /L.

I
+ 5.19. COMPOSITION OF TWO SIMPLE HARMONIC MOTIONS
" HAVING SLIGHTLY DIFFERENT FREQUENICES

li
Given that
! X|'=a sin @y -
1 1 Xy = a sin Wyt

|
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R

After superposition
X=x]+x3

x=ga(sin 0y +sinay)

S ) )
—2asm[ 2 ]t.c_‘os{ 5 ]r

W) — t o +1' .
=[2acosuTab-)—]sin[lT@2)t ™.
F ’

%
(o —(0:4)r
2

W+ t ) '
=A sin(lfmz) , where A =2acos

This equation represents a periodic motion not the simple harmonic. Its amplitude is
given by
(@ —at
2
(m — o)t

or A=2gcos 2n—2~— ‘ [ @=2mn)

Thus, the resultant amplitude of motion varies periodically between 0 and £ 2¢ as a
cosine function.
Amplitude A will be maximum if

n—hn
cosZn‘( 12 2}=¢1

A=2acos

M1 —n2 .
or 2n 2 = mm, where m=0,1,2,3.........

t= n
ny—ny
1 2 3
’ ny —nz’ ny —nz’ ny—ns

Hence, the time interval beiween two consecutive maxima is,

wx mmng
Amplitude A will be minimum when
1 — I
cosZn( L= Jt-——() X
2
(-n)t (1
or 2n > —[m+ 3 b ;
where m=0, 1,2, 3.... 1
.. |
2
or = |
fiy —ny !
1 3 5

r=2'(i'31—”2)’2(":"i’iz)’fl(ﬂi—l'lz)' """"""" r

Hence, the time interval between two consecutive minima is also, .
ny—n



SUMMARY i

-

| 1 The motion of a body is said to be periodic motion if its motion is repeated identically o

! after a fixed interval of time and this fixed inteival of time is known as period of
" motion.
When a body moves to and fro repeatedly about its mean position in a definite interval
.of time then this motion is known as oscillatory or vibratory motion.
fWhen a parucle moves to wnd fro repeatedly about its mean position under a restormg
“force, which is always directed towards the mean posmon and whose magnitude at any
. instant is directly proportional to the displacement of the part:cle from the mean position
fat that instant, thts motion of the particle is known as simple harmonic motion.
_Equations of motion for a snmple harmonic oscillator are :
(1) Displacement (x) = a sin (¢ +¢) S

(11) Velocity (v)=w Va? - 2
{(iii) Time period (7) =2n \}% - R -

:_(.iv) Frequency (f) = —l- \] % — o

Energy of a particle executmg 51mple harmonic motion.

“ U=—Ka sin? (ot +¢) 2

KE. = % Ka? cos? (wr + §)

Total energy (E) = 212n? ma® - /
When a heavy particle is suspended by an mextenmble weightless and flexible string
from a rigid support, then this system is known as simple pendutum,
When a rigid body which is capable of oscillating freely in a vertical plane about a
fixed axis, passing through the body but not through its centre of gravity then the system
is called compound pendulum and this fixed ‘point is known as point of suspension

k
=+t
The time period T of a compound pendulum is given by T=2n !g — .

When one end of a very thin and long wire is clamped to a rigid support and the other
end is attached to the centre of a heavy disc or sphere, then this arrangement is known
as torsion pendulum.

'I‘he time period 7 of a Torsion Pendulum is given by 7= 21|: \f !

When 2 pamcle is acted upon by two mutually perpendicular simple harmonic motions
simultaneously then due to the effect of these motions the patticle traces a curve. These
curves are known as Lissajou’s Figures.

iF s It

-
)
-
-
-
-
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+ STUDENT ACTIVITY

1. What.are the factors on which the shape of Lissajou’s figures depends ? "
nl.‘*‘ EF - - .
o . ) 3
FLY - # ¥ “ ! 2
3 -
- Lo
I
4 F -
LA Ik aad g -
. F
2. What are the uses of Lissajous’ figures ? 3

» TEST YOURSELF

%

1. Explain the terms : o
{a) Periodic motion (b} Oscillatory motion
(¢) Time period {d) Frequency ) {e) Phase

2. State and explain simple harmonic motion. Give its characteristics and ¢xplain the

terms related to it.
3. Obtain the equatlon of motion of a simple harmomc oscillator and solve it. Obtain the
expressions for.its velocity, period and frequncy.
4. Derive an express;on for the energy of a body executing S.H.M. and show that it is
proportional to the square of the amplitude of motion;
What do you understand by a potenttal well ?
Find an expression for period of osc1l}atlon of a mass m connected with a massless

vertical spring.

S n




7. Explain simple pendulum and obtain an expression for its time period. - Oscillasions
8. What is a compound pendulum ? Show that its motion is sm1ple harmonic and obtain

#

jits period. o
9. |Explam torsional pendulum and obtain the expression for its time period. P
10. iTwo S.HM.’s are imposed on a particle in same direction with same time period.
‘Obtain the expressions for the resultant amplitude and phase. :

11. ‘What are Lissajou’s figures 7 Calculate the resultant of two SHM.’s of equal tlme
period when they act at right angles to each other.
12. -Calculate the resultant of two S.H.M.'s at nght angles to each other having periods in

the ratio 1-:-2. :
13/ The necessary and sufficient condition for s:mple harmonic motion is :
(a) constant acceleration T

. (b) constant time period
(c) restoring force directly proportional to displacement
(c) restoring acceleration directly proportional to displacement.
14. The work done by a simple pendulum in one complete oscillation is :
(@) zero 5 (b} equal to E;
(E) equal to Fx (d) equal to v,
15. A particle is moving such that its acceleration is represented by the equation
~J a=— bx, where x is its displacement from mean position and b Is a constant. Its time

L™

pcnod will be :
2n 2n AR f
(d) 2mVb . b b (c) b d 2
16. The totai energy of a particle executing simple harmonic monon is directly proprotional
10 : :

(a) the square of amplitude of motion
(b) the amplitude of motion
(c) the frequency of oscillator
(d) the displacement from mean position.
17. A particle is executing simple harmonic motion with frequency f. Its energy will
oscillate with a frequency :
(a).2f (b) 4f ©f (d) fr2.
18. The time-period and amplitude of a particle executing simple harmonic motion are 6
second and 3 cm respectively. Its maximum velocity in cm/sec will be :

@) 12‘— (b) (©) 2n (d) 3m.

19. 'I‘hc_::. potential energy of an osciilating simple pendulum is maximum at :
(a) ‘mean position (b) extreme position
{c) ‘at the mid point on the right of mean position
(d) at the mid point on the left of mean position.
20. The time periodof a simple pendulum in a stationary train is T This train is accelerated
with an acceleration ‘a’, then its time period will :

(a) decrease (b) increase .
(c) become infinite (d) remain unchanged.

l 21. The [physical quantity conserved in simple harmonic motion is :
(a) po{enual energy (b) kinetic energy

¥ (c) time period (d) total energy.

| 22. The phase difference between two waves of frequencies » and 2n is 47. The Lissajou’s,
ﬁgure resulting from the superposition of these waves will be:

L (a) é‘.lrcle Ab) ellipse

(c) figure of 8 (d) straight line. —— :
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£ 124  The amplitudes, frequencies and phase of two mutually perpendicular simple harmonic ,

8. The ratlo of frequencies of-forks will be ‘ v ; P
, (a) 2: o () I : ' ¢
S () approxnmately 2:1 d) approxnmatley 1:1. HE

S
¥
L

23. The Lissajou’s figure obtained by two forks changes from a parabola to the figure of

“motions are same. The resultant vibration obtained from the- superposition. of: these

“will be ; . W . -:-y.g q g 1

(a) parabola - (b) straight line * (c) ellipse @ crrcle R
25. Two waves are given as x =4 sin 50.¢ and y = cos 25 wt. The Llssajou s, figure

obtained from the superposition of these waves will be ‘* " -,.,'_\“ - .
(a) figure of 8 (b) parabola y i
(c) circle - (d) elli tpse. - _J; R

26. Two mutually perpendicular simple harl1 ﬁw motions havingisame amplitudes and
frequencies superimpose to produce Llssajou s, figures is the form of a circle. The .

phase difference between the two is ¥ \ % Lo &
@ 0 (b) 180 (c) 45 {Q L @0 !
27, The ratio of frequencies of two forks is 2. The phase dlfference between two

perpendicular sound waves emitted by themi {IIS zero. The shape of Llssajou s obtained "<

willbe a: » . i : ¥
() circle (b) ellipse (c) straight line  (d) figure of 8. — .
28. Which Lissajou’s figure is represented by‘l'héjfollowing equation i r'f; .
- r 'gm ¥ ¥ [ -
_Ii + 2__ - 1!‘.._1-; < o :
2 e : P (
. (P e 1
(a) oblique ellipse () parabola )
(¢c) straight ellipse (d) c1rcle N L

' :rf j
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