‘

MANGALAYATAN
UNIVERSITY

R s f Learn Today to Lead Tomorrow

Computer Graphics

MAL-6115

| l Edited By

Dr. Hibah Islahi

DIRECTORATE OF DISTANCE AND ONLINE EDUCATION

MANGALAYATAN
. UNIVERSITY |

frntroduction to Computer
Graphies and Graphic Systems

g P

UNIT I

INTRODUCTION TO Noes
COMPUTER GRAPHICS
AND GRAPHIC SYSTEMS

—_—————
——

_ =

STRUCTURE

r|il.{} Learning Objectives

'1.1 Overview of Computer Graphics
11.2 Development of Computer Graphics
]'."1 3 Classification of Computer Graphics
11.4 Basic Graphic Systems

11.5 Graphics Prirmnitives

1.6 Normalised Device Coordinates

1.7 Display File and its Structure

'1.8 The Display File Interpreter

1.9 Text Primitive |
lt._] 0 Line Style Primitive

lij I Polygon Primitive

1?‘]2 Polygon Representation

11;3 Entering Polygon in Display Fite

tli4 Algorithm

115 Graphical Input/Output Device

1.16 Graphics Tablet (Digitising Tablet, Digitiser}

1.17 Image Scanner

1.18 Continual Refresh Graphic Output/Display Devices
1.19 Why Phosphors are Used

1.20 Direct View Storage Tube

1.21 Raster and Random Display (Monitors)

1.22 LCD and LED

H 123 VGA and SVGA Monitors

1.24 Display Processor

1.25 Character Generation

11 » Summary

i Review Questions

1\ e Further Readings

1.0 LEARNING OBJECTIVES

After going through this unit, you should be able to:
* explain development of computer graphics
s describe basic graphic systems

¢ discuss about display processors and character generators.

Self-instructional Material 1

Computer Graphics

NOTES

2 Self-Instructional Material

1.1 OVERVIEW OF COMPUTER GRAPHICS

Introduction

Computer technology has progressed rapidly over the years. Starting from machine
languages. we are into the world of high Jevel languages like C, C++ and Java. Keeping
pace with these developments is the field of Computer Graphics.

Computer Graphics is the field of Computer Science in which we are interested in
generating objects and images using pixels (picture elements). It started with elementary
programs like point, line and circle generation. Earlier Graphics systems used
primitives to generate simple graphics. But with the development of interactive input
and output devices and the technology, it is possible virtually 10 design anything on the
computer system. Animation and cartoons have reached high quality with the use of
Advanced Graphics. The scene showing Titanic sinking in the sea was possible through
Graphics designing with'Maya. The movies like Spiderman, Superman. Hanuman etc.
have generated special effects using Computer Graphics.

Muitimedia. CAD and CAM have all been possible because of Computer Graphics.

According to computer terminelogy. computer program is the collection of algorithm
and data structure. In the same convention Computer Graphics has been defined as the
collection of data structure, graphic algorithms and any higher level language. We can
use any of the higher level language like C, C++, Java or any of the Graphics packages
like Maya, 3-D Max or Flash 1o generate graphics of our choice.

Simplest application of graphics is to piot a point {pixel) on the screen of any resolution
(VGA or SVGA)} orto plot a line or plot a circle. Algorithm are already defined and given
by the scientists/researchers and students are just required to impiement those
algorithins in the programming language of their choice.

Computer Graphics need a logical mind and mastery over a prograrmining language to
succeed. This field is becoming popular day by day and there are a larger number of
opportunities to be explored. There are different types of Computer Graphics like
Passive and Interactive Graphics.

Computer Graphic is the discipline of producing picture or images using'a computer
including modeling — creation, manipulation, and storage of geometric objects and
rendering - converting a scene to an image, or the process of transformations.
rasterization, shading, illumination. and animation of the image.

Computer Graphics has been widely used. such as graphics presentation, paint
systems, computer-aided design {CAD). image processing, simulation and virtual
reality, and entertainment. From the earliest text character images of a non-graphic
mainframe computers to the latest photographic quality images of a high resolution
personal computers. from vector displays to raster displays, from 2D inpui, to 3D input
and beyond, Computer Graphics has gone through its short. rapid changing history.

1.2 DEVELOPMENT OF COMPUTER GRAPHICS

2

PreHistory

The foundations of Computer Graphics can be traced to artistic and Mathematical
“inventions,” for example,

» Euclid (circa 300 - 250 BC) who's formuiation of geometry provides a basis for
Graphics cancepts,

. [P

Filippo Brunelleschi (1377 - 1446) architect, goldsmith. and sculptor who is

| noted for his use of perspective.

» Rene Descartés (1596 ~ 1650) who developed analytic geometry, in particular
coordinate systems which provide a foundation for describing the location and
shape of abjects in space.

» Gottfried Wilhelm Leibniz (1646 - 1716} and Issac Newton (1642 - 1727) who

co-invented calculus that allow us to describe dynamical systems.

+ James Joseph Sylvester (1814 ~ 1897) who invented matrix notation. A lot of graph-
ics can be done with matrices,

* Schoenberg who discovered splines, a fundamental type of curve.

]. Presper Mauchly {1919 - 1995) and John William Mauchly (1907 - 1980) who
build the ENIAC computer.

Early History

I w0uld like to date the history of Computer Graphics from the Whirtwind Project and
:he SAGE computer system, which were designed to support military preparedness.
The Whirhwind Project started as an effort to build a flight simulator and SAGE was to
pr?wde an air defense system in the United States to guard against the threat of a
m}glear attack. The SAGE workstation had a vector display and light pens that
operators would use pinpoint planes flying over regions of the United States. You can
seca SAGE workstation at the Boston Computer Museum. The display is a large radar
sc1een with a wire frame outline of the region being scanned. The light pens are like old
lar ge metal drills. A SAGE computer is on display on the corner of “Hollywood and
Vir‘l;'e" atIBM in Kingston New York.

Besides the being the age of the first vacuum tube computers. the 1940's was when the

{ (ranmstor was invented at Bell Labs (1947). In 1956, the first transistorized computer

was built at MIT.

The Age of Sutherland

In tl;le early 1960°s IBM, Sperry-Rand, Burroughs and a few other computer companies
ex1sltred The computers of the day had a few kilobytes of memory, no operating systems
o speak of and no graphical display monitors: The peripherats were Hollerith punch
cards line printers. and roli-paper piotters. The only programming languages
supgorted were assembler, FORTRAN. and Algol. Function graphs and "Snoopy”
calendars were about the only graphics done.

f

In 1963 Ivan Sutherland presented his paper Sketchpad at the Summer Joint Computer
Conference Sketchpad allowed interactive design on a vector graphics display monitor
with'a light pen input device. Most people mark this event as the origins of Computer
Gra};hlcs

The'?diddle to Late ‘60's

Saﬂﬁare and Algorithms

Jack Bresenham taught us how to draw lines on a raster device, He later extended this to
circle!s‘. Anti-aliased lines and curve drawing is a major topic in Computer Graphics.
Larry Roberts pointed out the usefulness of homogeneous coordinates, 4 x 4 matrices
and hidden line detection algorithms. Steve Coons introduced parametric surfaces and
developed early computer aided geometric design concepts. The éarlier work of Pierre
Bézier on parametric curves and surfaces also became public. Author Appel at IBM
developed hidden surface and shadow algorithms that were pre-cursors to ray tracing.

Introduction to Computer
Graphics and Graphic Systems

NOTES

Scif-Instructional Material 3

1]

Computer Graphics

NOTES

4 Seif-Instructional Material

The fast Fourier transform was discovered by Cooley and Tukey. This algorithm allows
us 1o better understand signals and is fundamental for developing antialiasing
techniques. It is also a precursor to wavelets,

Hardware and Technology

Doug Englebart invented the mouse at Xerox PARC. The Evans and Sutherland
Corporationand General Electric started building flight simulators with real-time raster
graphics. The floppy disk was invented at IBM and the microprocessor was invented at
Intel. The concept of a research network, the ARPANET, was developed.

The Early ‘70’s

The state of the art in computing was an 1BM 360 computer with about 64 KB of memory.
a Tektronix 4014 storage tube, or a vector display with a light pen (but these were very
expensive).

Software and Algorithms

Rendering (shading) were discovered by Gouraud and Phong at the University of Utah.
Phong also introduced a reflection maodel that included specular highlights. Keyframe
based animation for 3-D graphics was demonstrated. Xerox PARC devetoped a "paint”
program. Ed Catmull introduced parametric patch rendering, the z-buffer algorithm,
and texture mapping. BASIC, C. and Unix were developed at Dartmouth and Bell Labs.

Hardware and Technology

An Evans and Sutherland Picture System was the high-end graphics computer. lt was a
vector display with hardware support for clipping and perspective. Xerox PARC
introduced the Altos personal computer. and an 8 bit computer was invented at intel.

The Middle to Late ‘70’s

Software and Algorithms

Turned Whitted developed recursive ray tracing and it became the standard for
photorealism, living in a pristine world. Pascal was the programming language
everyone learned.

Hardware and Technology

The Apple I and [I computers became the first commercial successes for personal
computing. The DEC VAX computer was the mainframe (mini) computer of choice.
Arcade games such as Pong and Pac Mac became popular. Laser printers were invented
at Xerox PARC.

The Early ‘80’s

Hardware and Technology ;

The IBM PC was marketed in 1981 The Apple Macintosh siasted production in 1984,
and microprocessors began to take off, with the Intel x86 chipset. but these were stil}
toys. Computers with a mouse, bitmapped (raster} display. and Ethernet became the
standard in academic and Science and Engineering settings.

|
\1
I
The Middle to Late ‘80's

.goﬂ‘ware and Algorithms

Jim Blinn introduces blobby models and texture mapping concepts. Binary Space
Pamtlonmg (BSP) trees were introduced as a data structure, but not many realized how
theful they would become. Loren Carpenter started exploring fractals in computer
g}l‘aphics‘ Postscript was developed by John Warnock and Adobe was formed. Steve
(%I'ook introduced stochastic sampling to ray tracing. Paul Heckbert taught us to ray
trace. Character animation became the goal for animators. Radiosity was introduced by
thse Greenberg and folks at Cornell. Photoshop was marketed by Adobe. Videa arcade
games took off, many people/organizations started publishing on the desktop. UNIX
and X windows were the platforms of choice with programming in C and C++, but
MS-DOS was starting to rise.

Hardware and Technology

Sun workstations, with the Motorola 680x0 chipset became popular as advanced
workstallon a in the mid 80’s. The Video Graphics Array (VGA) card was invented at
IBM Siticon Graphics (5GI) workstations that supported real-time raster line drawing
dnd later polygons became the computer graphicists desired. The data glove. a precursor
to \Ifu‘tual reality. was invented at NASA. VLSI for special purpose graphics processors
am? parallel processing became hot research areas.

L
Th:e Early ‘90's

Thla Computer 1o have now was an SG1 workstation with at least 16 MB of meinory. at
24 b:t raster disptay with hardware support for Gouraud shading and z-buffering for
h:dden surface removal. Laser printers and single frame video recorders were standard.
UV]X X and Silicon Graphics GL were the operating systems, window sysiem and
quhcat]on Programming Interface {API) that Graphicist used. Shaded raster graphics
wete starting to be introduced in motion pictures. PCs started to get decent, but still they
cou{lld not support 3-D graphics, so most programmer’s wroie software for scan
conversion {rasterization) used the painter’'s algorithm for hidden surface removal, and
de\rgrloped “tricks” for real-time animation.

|
Software and Algorithms

Mos:ilic the first graphical Internet browser was written by xxx at the University of
Il]mms National Center for Scientific Applications (NCSA). MPEG standards for
comelessed video began to be promulgated. Dynamical systems (physically based
modelmg) that allowed animation with collisions. gravity, friction, and cause and
effects were introduced. Jn 1992 OpenGL became the standard for graphics APIs In
1993|1the World Wide Web took off. Surface subdivision algorithms were rediscovered.
Wavelels begin 10 be used in Computer Graphics.
1
Hardware and Technology

Hand held computers were invented at Hewlett-Packard about 1991, Zip drives were
uwented at lomega. The Intel 486 chipset allowed PC to get reasonable floating point
perfog‘mance In 1994, Silicon Graphics produced the Reality Engine: 1t bad hardware
for re:;i'rl—time texture mapping. The Ninetendo 64 game consocle hit the market providing
Reality Engine-like graphics for the masses of games players, Scanners were introduced.

Introduction 1o Computer
Graphics and Graphic Systems

NOTES

Self-Instructional Material 5

Comniputer Graphics

NOTES

6 Seil-Instructional Material

The Middie to Late ‘90’s

The PC market erupts and supercomputers begin to wane. Microsoft grows, Apple
collapses, but begins to come back. SGI collapses, and lots of new startups enter the
graphics field.

Software and Algorithms

linage based rendering became the area for research in photo-realistic graphics. Linux
and open source sofiware become popular.)

Hardware and Technology

PC graphics cards, for exampte 3dfx and NVIDIA, were introduced. Laptops were
introduced to the market. The Pentium chipset makes PCs almost as powerful as’
workstations. Motion capture, begun with the data glove, becomes a primary method for
generating animation sequences. 3-D video games becorme very popular: DOOM (which
uses BSP trees), Quake, Mario Brothers etc, Graphics effects in movies become pervasive:
Terminator 2, Jurassic Park, Toy Story, Titanic. Star Wars [. Virtual reality and the
Virtual Reality Meta (Markup) Language (VRML) become hot areas for research. PDA’s,
the Palm Pilot, and flat panel displays hit the market.

The ‘00's

Today most graphicists want an Intel PC with at least 256 MB of memory and a 19 GB
hard drive. Their display should have graphics board that supports real-time texture
mapping. A flatbed scanner. color laser printer, digital video camera, DVD, and MPEG
encoder/decoder are the peripherals one wants. The environment for program
developiment is most likely Windows and Linux, with Direct 3D and OpenGL, but Java
3D might become more important. Programs would typically be written in C++ or Java.

What will happen in the near future — difficult to say, but high definition TV (HDTV) is
poised to take off {after years of hype}. Ubiquitous, untethered. wireless computing
should become widespread. and audio and gestural input devices should replace some
of the functionality of the keybhoard and mouse.

You should expect 3-D modeling and video editing for the masses, computer vision for
robotic devices and capture facial expiessions. and realistic rendering of difficult things
like a human face, hair, and water. With any luck C++ will fall cut of favor.

Ethical Issues

Graphics has had a tremendous affect on society. Things that affect society often lead to
ethical and legal issues. For example. graphics are used in battles and their simulation,
medical diagnosis. crime re-enactment, cartoons and films. The ethical role played by a
Computer Graphicist in the use of graphics programs that may be used for these and
other purposes is discussed and analyzed in the notes on Ethics.

More History of Computer Graphics

In the 1950’s, output were via teletypes, line printer, and Cathode Ray Tube (CRT).
Using dark and light characters, a picture could be reproduced.

1950: Ben Laposky created the first graphic images, an Oscilloscope, generated by an
electronic (analog) machine. The image was produced by manipulating electronic
heams and recording them onto high-speed film,

1951: UNIVAC-I: the first general purpose commercial computer. crude hardcopy
devices, and line printer pictures.

1.
*.
1951 MIT - Whirlwind computer. the first to display real time video, and capable of
dzsplaymg real time text and graphic on a large oscilloscope screen.

In the 1960’s, beginnings of modern interactive graphics, outpui are vector graphics and
1|r|1teracuve graphics. One of the worst problems.was the cost and inaccessibility of
machines.

1960' William Fetter coins the Computer Graphics to describe new design methods.
1961 Steve Russel — Spacewars. first video/computer game
1963 Douglas Englebart - first mouse

Ivan Sutherland - Sketchpad, interactive CG system, a man-machine graphical

c?mmunl(:dtion system, it features:
|1 s pop-up menus
» constraint-based drawing

b
I
5
'e hierarchical modeling

i- utilized light pen for interaction

He formulated the ideas of using primitives, lines polygons, arcs, etc. and constraints on
them He developed the dragging, rubber banding and transforming algorithms: He
amroduced daia structures for storing. He is considered the founder of the Computer
Graphlcs

1964 William Fetter — first computer mode! of a human ﬁgur{,
19{|i5: Jack Bresenham - line-drawing algorithm

196:;8: Tektronix - aspecial CRT, the direct-view storage tube, with keyboard and mouse,
asimple computer interface for $15, 000, which made graphics affordable

t
Ivan Sutherland - first head-mounted display

il
1969: John Warnock — area subdivision algorithm, hidden-surface algorithms
Belllk'Labs - first frame buffer containing 3 bits per pixel

In the early 1970°s, output start using raster displays, graphics capability was still
falrly chunky.

1972 Nolan Kay Bushnell - Pong, video arcade game

1973 John Whitney. Jr. and Gary Demaos - “Westworld”, first film with computer
ar aphlcs

1974|; Edwin Catmuff -texture mapping and Z-buffer hidden-surface algorithm

Jamé:s Blinn - curved surfaces, refinement of texture mapping

Phorg;e Bui-Toung - specuiar highlighting

1975':;|rMartin Newell - famous CG teapot, using Bezier patches

Beno‘_i{t Mandelbrot - fractal /fractional dimension ,
lQ?ﬁ:ll.TlameS Blinn - environment mapping and bump mapping

1977: Steve Wozniak — Apple IL color graphics personal computer
lS?Q:’fRoy Trubshaw and Richard Bartle - MUD, a multi-user dungeon/Zork

i
In the 1980's output are huilt-in raster graphics, bitmap image and pixel. Personal
computers costs decrease drastically: trackball and mouse become the standard
interactive devices

1982: Steven Lisberger - "Tron”, first Disney movie which makes exiensive use of 3-D
Computer Graphics

Introduction to Computer
Graphics and Graphic Sysiems

NOTES

Self-Instructional Material 7

\

Computer Graphics

NOTES

8 Self-Instructional Material

Tom Brighman - “Morphing”, first film.sequence plays a female character which
deforms and transforms herself inic the shape of a lynx.

John Walkner and Dan Drake - AutoCAD

1983: Jaron Lanier - “DataGlove”, a virtual reality film features a glove instalied with
switches and sensors to detect hand motion

1984: Wavefron tech. ~ Polhemus, first 3D graphics software

1985: Pixar Animation Studios - "Luxa Jr.”, 1889, " Tin toy”

NES - Nintendo home game system

1987: IBM - VGA. Vidéo Graphics Array introduced

1989: Video Electronics Standards Association (VESA) - SVGA, Super VGA formed

Inthe 1990’s. since the introduction of VGA and SVGA, personal computer could easily
display photo-realistic images and movies. 31 image renderings are become the main
advances and it stimulated cinematic graphics applications.

1990: Hanrahan and Lawson - Renderman

1991: Disney and Pixar - "Beauty and the Beast”, CGl was widely used, Renderiman
systems provides fast, accurate and high quality digital computer effects

1992: Silicen Graphics — OpenGL specification
1993: University of lilinois — Mosaic, first graphic Web browser
Steven Spielberg - “Jurassic Park™ a successful CG fiction film

1995: Buena Vista Pictures - “Toy Story”, first full-length, computer-generated, feature
film

NVIDIA Corporation - GeForce 256, GeForce3(2001)
2003: 1D Software — Doom graphics engine

1.3 CLASSIFICATION OF COMPUTER GRAPHICS

This is also calted types of Computer Graphics. Computer Graphics has been classified
into two categories according to the application domain and requirements. They are
Passive and Interactive Computer Graphics.

1. Passive Computer Graphics: This is also called Off-line graphics. Once the
graphics program is developed, the user has no control over the display even
if he wishes 10 change the display. Development takes place independently in
Off-line mode, Example of Passive Graphics can be compared to static web page
(Using HTML) where user has no control over the contents on the monitor. The
screen will be static with no marquees flying on the screen or no advertisements
changing or no color change on mouse movements elc.

The displays are generally calligraphic in nature and are printed by line print-
ers, plotters etc.

2. Interactive Computer Graphics: This is also called On-line graphics. User can
dynamically control the display on the monitor. Displays are controlled by
mouse. trackball, Joystick etc. This is termed as Interactive Computer Graphics
(ICG) because the user can interact with the machirie as per his requirements.
ICG is the case in which user can dynarmically control the picture contents,
formats, sizes or the color an the display surface by means of interaction devices
such as keyboards, light pen, mouse etc.

|
!

Cartoons, special effects in movies (remember Dinosaurs of Jurassic Park), video
games and dynamic web sites(Using dynamic HTML) are all making use of ICG.

ICG affects our lives in a number of indirect ways. For exampie

1 ()

(fsf]ﬂ
(iv}

\\

Flight simulators helps us fo train the pilots of our airplanes. These pilots spend
a lot of time for their training not in a real aircraft but on the ground at the
controls of a flight simulator. Flight simulator has many advantages over real
aircraft for training purposes including safety, fuel saving and ability to famil-
iarize the trainee with different aspects and te¢hnology of aircrafi.

Architects can explore alternative solutions to design problem with Interactive
Graphics. Design programs like CAD help designers, engineers, draftsmen etc.
to complete the tasks associated with hand drafting of designs easily and more
efficiently.

Micraprocessor based video-game processors attached to home TV's.

Cartoons, Animation and special effects in movies and TV serials are all possible
with the use of computer graphics.

1.4

i

BASIC GRAPHIC SYSTEMS

lml}eractiw, Computer Graphics consists of three components namely digital memory
buffer TV menitor and display controlier, Using these components, we are able 1o see
the,oulput on the screen in form of pixels{picture elements). Following is the explanation
of these components:

l

4

: Digital Memory Buffer: This is the place where images or pictures are stored

as an array (matrix of 0 and 1. 0 represents darkness and 1 represents image
or picture). This is also called Frame Buffer. In today's terms, frame buffer is
called V-RAM (Video RAM) and it helps to store the ithage in bit form. It helps
to increase the speed of graphics (Sometimes we watch movies on our Computer
system and the movie run slowly. System engineer is then called for. He comes
and fits in V-RAM({in Mega bytes) into our system and the movie runs perfectly).
TV Monitor: Monitor helps us to view the display and they make use of CRT
technology (Cathode Ray Tube) will be discussed in Output devices. Raster scan
and random scan monitors are also discussed in graphics devices section.

Display Controller: It is an interface between Digital Memory Buffer and TV
ivionitor, 1ts job is to pass the contents of Frame buffer 16 the monitor. This
passing has to be fast for steady display on the monitor (depending on the
‘material of the system}. The image must be passed repeatedly to the monitor to

rnamtam a steady picture on the screen. The display controller reads each
1successwe byte of data from the FB memory and converts 0's and 1's into
'%:orrespondmg video signal. This signal is then fed 1o the TV monitor to produce
a black and white picture on the screen. In today's terms, display controller is
recogmzed as display card and one of ocur choices can be VGA card with a
Tresolunon of 640 x 480. (Display controllers are also capable of displaying
image in colors and will be discussed in colored display section).

Sreveral graphics systems have been designed this way.

l 100 .11

FB |—{ DISPLAY CONTROLLER
10 ... 1

l‘ Fig. 1.1 Frame buffer (bit Patiern of 0 and 1)

Introduction to Computer
Graphics and Graphic Systems

NOTES

Self-Instructional Material 9

Computer Graphics

NOTES

10 Self-Instructional Material

Throughout the book certain questions will again and again be asked or encountered
and they are very important to be discussed right now. The questions are like:

1. How to display straight iines and curved lines?

2. Why speed is important for graphics displays?

3. How pictures are made to grow or shrink on the screen?

4. What happens if the picture is too large to fit in the screen?

5. Can we directly draw on screen?

6. How is analog form of data converted into digital form so that the computer

system can understand it?

My Professor would ask these questions regularly in class and once these questions
were clear to us, graphics became an easy subject for us,

Ans 1. Straight lines can be drawn using algorithms that have to be implemented in any
programiming language. There are two methods of drawing lines (as we will study later)
DDA (Digital Differential Analyzer) and Bresenham’s line algorithms. These algorithms
have been used to generate lines.

Curves can be drawn by breaking them into several straight lines. Then the algorithm of
straight line drawing can be applied to these straight lines. Curves can also be generated
if function of the curve is known or curve fitting techniques are also used to generate
CUrVEs.

.
Ans 2. Speed is important because we are talking of Interactive graphics and in this type
of graphics, specd of transfer of entire picture contents from FB 1o monitor must very fast
Also we need fast responses in [CG so speed is important. A slow graphics system will
not be acceptable even to a smali child who would want his cartoons to be at the best
possible speed. A powerful processor can do the trick aided with additional V-RAM in
the system.

Ans 3. Pictures can be made to grow and shrink according to our needs using
Mathematical techniques like

» Coordinate Geomeiry

s Matrix method

¢ Trigonometric functions
Using these techniques, various 2-D or 3-D transformations are possible. They are:

1. Changing the scale (scaling to magnify or shrink)

2. Shifting the position (translating to move to new position on the screen)

3. Rotation (rotating the object by some angle)
These transforinations are achieved through equations implemeénted in algorithms and
hardware. Transformation like shearing and reflection are also important in Computer
Graphics.

Programs for scaling,. translation and rotation are given in this book.

Ans 4, It sometimes happens that image is too large for the screen. We will siudy the
concepts of Clipping and Windowing in this regard. Clipping is the process in which
the big whole picture is chopped into small portions and only a portion inside the
window is displayed. Clipping divide the picture into visibie and invisible parts and
rejects invisible parts and dispiays them.

We will study Cohen Sutherland and Sutheriand Flodgeman algorithms for Clipping of
lines and polygons respectively.

Ans 5. Yes, we can direcity draw on screen. Haven't we seen cricket live coverage and
seen Geoffrey Boycott or Sunil Gavasker or Ravi Shastri drawing directly on the screen
Iwhen they mark the fielder or the trajectory of the ball. Devices like light pen. mouse,
stablets etc. helps us to draw on the screen directly.

[LLight pen, mouse or 1ablets will be covered later in Interactive devices.

Ans 6. Analog to digital conversion has to be performed since the computer is a discrete
digital device, while most data in the world outside the computer is continuous. The
"data must be therefore converted to enable the computer to use it. The conversion of

contmuous analog data 1o discrete data is called analog to digital conversion or simply
' A/D conversion.

The computer graphics programmer must have some knowledge of A/D conversion
:because many graphics input devices are analog devices and A/D conversion can affect
the accuracy of data collected even while exhibiting a high degree of degree of precision.
Typically, A/D conversion is performed either by hardware devices incorporated in the
‘computer’s input circuitry or by means of firmware that directly interfaces with
‘omputer’s input circuitry.

7;1 5 GRAPHICS PRIMITIVES

Rega[diess of the differences in display devices, most graphic systems offer a similar set
ofgraph:c primitive commands (although the form and syntax may differ from sysiem to
system), The first primitive command is that for drawing a line segment. These primiitives
Ia:re widely used in GKS and CORE graphics packages. While a segment may be specified
Py its two endpoints, it is often the case that the segments drawn will be connected end
to end. Primitive commands were very important when Random scan was being in

g,raphlcs systems but now in Raster scan devices, primitives are no longer used.
[

il_
i
it

! Fig. 1.2

LE,INEABS {X.Y) is called an absolute line command because the actual coordinates of
the final positions are passed. Most of the graphics packages offer this line primitive.
E}'_ven in C language, definition of this primitive has been picked up. Lineto(x, y) in
C:language refers to LINEABS(x, y) only. This command is used to pass the final
c'lqordinates of the point.

EI\JEREL {DX. DY) is called relative line command because in this command we only
mdlcate how far to move from the current pOSltIO[I

(x. v}

Pen position (absoluie line) Dx —=' {Relative line)

Fig. 1.3

We have two more commands MOVEARBS (X, Y) and MOVEREL (DX. DY) and we can
construct a tine drawing by series of these conunands. If these commands are located in
a function then cach time a function is called, an image of the object is produced. if

Introduction to Computer
Graphics and Graphic Systems

NOTES

Self-Instructional Material 11

Compurer Graphics

NOTES

12 Self-Instructional Material

absolute commands are used then the house wiil always be located at the same position
on the screen,

As discussed above, C language supports the following functions lineto {}
For cxampie lineto(1, 1) draws a line from current pen position to (1, 1).

In C language, there are built -in functions like :

linerel {Int x, Int y)

moverel {Int x, Int y)

setlinestyle {)

And their definitions have been taken from Graphics primitives.

Graphics primitive commands are stored in Display file. Display file is a file storing all
primitive commands and when this file is interpreted. visual image is displayed on the
screen. We need to study normalized coordinates, display file and interpreter for a better
understanding of the system. '

1.6 NORMALISED DEVICE COORDINATES

Different display devices may have different screen sizes as measured in pixels. If we
wish our program to be device independent. we should specify coordinates in some
units other than pixel and use the interpreter to convert the coordinates to the
appropriate pixel for the particular display we are using,

Device independent units are called normalized device coordinaies.

{0. 1) {1t. 1)

{0, 0) (1. 0)
Fig. 1.4

Screen measure | unit wide, 1 unit height

1.7 DISPLAY FILE AND ITS STRUCTURE

Each display file command contains two constituents:
1. Operation code (OPCODE) which indicates what kind of command il is
(Example Line, move)
2. Operands which are the coordinates of a point (x, y).
Display is made up of a series of these instructions.
One possible method for storing these instructions is to use three separate arrays : one

for operation code (DF - OP), one for x coordinate (DF - X) and one for y coordinate
(DF - Y}

MOVE and LINE are iwo possible instructions we have already used. et us define an
QPCODE of 1 to mean a move command and an OPCODE of 2 to mean LINE command.
Then a command to move to X = 0.2 and X = 0.8 would lock like (1, 0.2, 0.8). The
staiements
DF-0P|2] = I:
DF-X[2]=0.2;

)

=il

prerep—————

DF-Y|2]=
will store this instruction in second display file position,

DF-OP DF-X DF-Y
1 0.2 0.8

'ﬁ 8 THE DISPLAY FILE INTERPRETER

Lme and Move commands store their information in display file. We then use
mformatmn in the file to create the image. The display file will contain the necessary
mformat:on to construcl the picture. Saving instructions such as these usually takes
less storage than saving the picture itseif.

X User i .
!'t Program Eiléplay (__* Interpreter
bi

Fig. 1.5

1 & 1

i

Graphic file interpreter serves an interface between our graphic program and the
display device. Interpreter may be thought of as a machine which executes these

.y . . " .
Il';lSlI‘UC[lDI'IS. The result is a visual image.

'
’|
{

O~

ltl Fig. 1.6

There are many more Graphics primitive commands other than Line and Move. They
are Text, Linestyle and polygon primitives,
1

|
1.9 TEXT PRIMITIVE

{
Another primitive operation is that of text output. Most graphic displays involve textual

as'we]l as graphical output data, labels (giving scale values etc.), instructions,
commands. values, messages and so on may be presented with the image.

The primitive command involved here is the output of a character or a string of
characters The character themselves may be drawn by either the dot matrix or the stroke
m(,thod Their patterns are copied from memory into frame buffer or created by special
character generation hardware. :

Ex‘?'il‘ext ('My first graphic program’) would cutput this on screen.

b
1. 10 LINE STYLE PRIMITIVE

!Manty display devices offer a selection of line style. Lines may be continuous or they may

be dashed or dotted. One may be able 10 select the color of the line or its intensity oy
thsckncss itis desirable to be able to change the line style in the middle of the display
process We therefore need a display file command for changing line style. When the
interpreter encounters such a command. the line style is changed and all subsequent
lines are drawn in this new style.

Forexample, SETLINESTYLE (2) would give us broken line
SETLINESTYLE (0) would give us solid line.

Introduction to Computer
Graphics and Graphic Systemns

NOTES

Self-Instructional Material 13

Computer Graphics

NOTES

14 Self-Instructional Material

Other options are

0. Solid line

| Dotted line
2. Broken line
3

Dashed line

1.11 POLYGON PRIMITIVE

So far discussion has dealt with only the lines. The worid might seem rather dull if it
were made out of straight lines. How interesting is the world of patterns, colors and
shading. Unfortunately, much of ihe early graphics dealt with line drawings only. This
was because the available devices (DVST, Plotiers etc.) were line drawing devices.
Raster display can display solid patterns and objects with no greater effort than that
involved in showing their outlines, Coloring and shading is possible with raster
technology.

We introduce new graphic primitive, the Polygon. We shall discuss what polygons are
and how to represent them?

Woe wish to be able to represent a surface. One basic surface primitive is a polygon, a
many sided figure. A polygon may be represented as a number of line segments
connected end to end to form a closed figure. The line segiments that make up the
polygon boundary are called sides or edges. The endpoints of the sides are called the
polygon’s vertices, The simplest polygon is the triangle. having three sides and three
vertex points.

Polygon can be divided into two classes: Concave and Convex. A Convex polygonisa
polygon such that for any two points inside the polygon, all points on the line segmem
connecting them are also inside the Polygon. A concave polygon is the one which is not
convex. A triangle is always convex and so are the shapes shown below.

/NS> [/

Fig. 1.7

Some concave polygon shapes are shown below:

> =)

Fig. 1.8

1.12 POLYGON REPRESENTATION

If we want to add polygons to our graphics system, we must first decide how 1o represent
them.

Some graphics, devices have polygon drawing primitive to directly draw polygon shape.
There is trapezoid primitive also and a polygon can be drawn as a seriés of trapezoids.

1'&
|

B\Iow the question is what should a polygon look like in a display file?

We introduce a new command into the display file. This new command will tell us how
many sides are in the polygon so that we'll know how many of the line commands are
pall of the polygon. Upon interpretation this new command will act like a move 10
tt:orreclly position the pen for drawing the first side.

LLet’s talk about the Operation code 3 ar greater. We can use these codes to indicate
polygons. The value of the operation code will indicate the number of sides in a polygon.
The Xand Y variables of the polygon will be the coordinates of the point where the first

S|de to be drawn begins. Polygons are closed figures so it will also be the final end point
of the last side to be drawn.

et’s work out an example of a polygon given below and look at its display file

{0.3.0,8)
{0,1,0,5) (0,6,0,4)
[
I[{0,2,0,2) {8.5,0,2)
! Fig. 1.9
Tlge display file for the given polygon is
DF-OP DF-X DF-Y
5 0.2 0.2
| 2 05 0.2
1 2 0.6 0.4
[2 03 0.6
[2 0.1 0.5
! 2 02 0.2

1.13 ENTERING POLYGON IN DISPLAY FILE

When we say entering polygons we mean algorithms for entering polygons inte display
f;]eilnformauon required to be specified in polygon case is number of sides and the
coordinates of vertex points of a polygon to be drawn. Arrays are used to pass the
coo’rdma[es of all vertices to the routine.

Foliowmg is the algorithm for entering the polygon into the display file using absolute
commands.

{
E
[1.14 ALGORITHM

A]g!)fmhm PolyAbs for entry of an absolute polygon into the display file Variables AB,
AC Arear rays containing vertices.

]G]L}bal variables penX, penY the current pen position.

iLocal variable | for stepping Ehrough the polygon sides.

Start

(

if N < 3 then give error ‘Polygon size error’

Introduction to Computer
Graphics and Graphic Systems

NOTES

Self-Instructional Material 15

Compunter Graphics

NOTES

16 Self-Instructional Material

/ /*Enter polygon instructions

penX = AB|N];

penY = AC[N];

/7 *Enter information in display file

Display-file-enter(N);

/ /*Enter the instructions for the sides

Forl=11toNdo Lineabs{ABII|.AC|I|);

Return,

End;

} -

Similarly programs can be developed using relative line commands to represent
polygons, C language has got functions to support the use of absolute and relative line
commands.

CORE and GKS Graphics Systemns are some of the market prevalent products and
support these primitives eperations.

Graphics Kernel

The Graphical Kernel System (GKS) was the first ISO standard for low level computer
graphics, introduced in 1977. GKS provides a set of low-level drawing features for two-
dimensional line and vector graphics. The calis are designed io be portable across
different programming languages, graphics devices and uses, so that applications
written to use GKS will be readily portable io many platforms and devices.

A main developer and promoter of the GKS was professor José Luis Encarnagao,
formerly director of the Fraunhofer Institute for Computer Graphics (IGD} in Darmstadt,
Germany.

1.15 GRAPHICAL INPUT/OUTPUT DEVICE

Graphical Interactive Input Devices

Data has to be passed on 1o the computer system se that it can be processed and
presented ta the user in some formal. Same is the case with Computer graphics. Data has
to be entered into the system via some input device (Keyboard. mouse, light pen etc.) so
that it can be manipulated by the programs and images presented to the user on some
outpui device (Monitor or printer).

Any device that allows information from outside the computer to be communicated to
the computer is considered an input device. Sorme common graphical input devices are:

ALPHANUMERIC KEYBOARDS: This is an input device. A standard known as ASCII
has been developed to allow computer 1o encode keyboard characters. Whatever we key
in is translated by the keyboard translation program in a machine readable form so that
it can be understood by the system.

TRACK BALLS: A track ball uses a hard sphere to control cursor movement. The ball
can be rotated by hand in any direction. The trackball translates the sphere’s direction
and speed of rotation into a digital signal used to control the cursor.

(©)

Fig. 1.10

JPYSTICK [tis the most important input device used to play video games. A joystick
usesa lever to control the position and speed with which the joystick is moved. This gets
h;anslaled into digital signalis that are sent to the computer to control the cursor

movement.

LD

Fig. 1.11

\
|
!
|
l
|
f

MOUSE DOUG ENGELBART developed mouse as an alternative to keyboard in 1960's.

Mouse has three buttons. When user presses one of the buttons, the mouse marks the
plaa. on the screen. 1t has a bail that is pressed against he mouse pad.

Fig. 1.12

Thﬁjoystick, trackball, mouse etc. are transducers that convert a graphic system user’s

maovements into changes in voltage. Transducer is a device that converts energy from
oné form to other.

LIGHT PEN: It is a pointing device that can be used to choose a dispiayed menu option.
The pen consists of a photocell placed in a smail tube. Light pen is very useful in
graphics. The user ata CAD termina! can draw directly on the screen with the light pen.

CRT

Light Pen

Fig. 1.13

|
|
|

1.16 GRAPHICS TABLET (DIGITISING TABLET, DIGITISER)

The graphics tablet is a pressure sensitive, flat electronic board which takes input from

Introduction to Computer
Graphics and Graphic Systems

NOTES

apen or puck. The board or tablet is usually fairly large (35cm x 35¢m +) and is very high

Self-Instructional Material 17

Computer Graphics

NOTES

I8 Setf-Instructional Material

resolution. It is much like drawing on a piece of paper except that the drawing appears
on the computer screen rather than on the tablet. The position of the pen or puck is
detected by the computer and the x-y coordinates transmitted to the screen. Some models
are capable of making wider or narrower lines depending on whether greater or tesser
force is applied to the pen. More advanced models also often have macro buttons and
other buttons that duplicate menu bar commands.

This device is usefu! for people who don’t know how to type or for artists etc. who want
to draw as they would on paper. Drawings can be placed on the tablet and then traced
onto the screen. Digitizers, are based on the principle of an electric or magnetic field that
is generated through one component (the pen) and detected through the other component
(the tablet). There are several types:

1. Touch-sensitive — consists of a pen and a touch sensitive surface using a matrix
of wires in the tablet
2. Sonic digitizers — sound impulses detected by two microphone sensors on the
tablet
3. Light-detector digitizer — detects interruptions in a matrix of light beams
4. Magnetic-field sensors — detects changes in the magnetic field.
Digitizer or digitizing tablets are flat boards that have a grid of interconnecting wires
just below the surface. They also have either an electronic ipen’ or 'puck’ that can be
moved round the surface. The pen stylus is more natural. but the puck offer the
advantage of having upto four or more buttons that can be programmed to perform
certain tasks. The electronic circuitry of the digitizing tablet can tell exactly where you
are holding the pen inrelation to the rest of the board by transmitting pulses between the
pen and the wired grid.

The computer then translates the location of the pen on the board into numerical
coordinates that represents x and y values on the screen. The x value represents the
horizomtal position and the y vatue represents the vertical position. The resolution
tablets range from 1000 to 10000 lines per inch, giving very accurate position to the
computer. Both the puck or pen stylus has butions that can be pressed 10 indicate a
particelar command to the compuier.

What makes tablets popular as pointing devices is the absolute positioning of the
cursor. With a tablet, there is a direct relationship to the movement on screen, so we can
place the puck or pen on the fower right corner of the tablet, the cursor appears on the
lower right corner of the screen. The only disadvantage to digitizing tablets is the desktop
space they require. Also they cannot be used to tracing natural pictures into the computers.

TOUCH SCREEN/PANELS: These are devices which allow the user 1o directly activate
data by touching the screen. Touch is a more intuitive interface for users who are not
familiar with computers. In public applications, users have little training in the
technology and are simpily instructed to ‘touch your selection.” This has wide, user
appeal. They have many applications in museums, shops, restaurants, street maps etc.
as touch systems are best used for selection of pre-programmed information.

Itis also possible to buy touch screen monitors and touch-screen add-on kits for PCs -
useful for young children and the physically handicapped people. Touch sensitive
screen can work in severat ways:

1. The finger can interrupt a light beam

2. The pad can detect changes in capacitance,
A different GUI is needed - bigger and perhaps needs to be made more iconic. The
drawbacks are that moving the arm may become tiring if they are used for a long time,
the screen may become dirty and when the hand is being used to select part of the screen

'(?ther parts may be obscured. The advaniages are an intuitive interface, flexibility in the
[ilnformaticm provided, an ability 10 include graphics, signs and symbols and usually a
r[ugged and reliable interface.

1As the name implies, touch panels allow displayed objects or screen positions to be
5elu:ted with the touch of a finger. A typical application of touch panels is for the
selectmn of processing options that are implemented with graphical icons. Some
sys{ems such as the plasma panels are designed with touch screens. Other systems can
be adapted for touch input by fitting a transparent device with a touch sensing
mechamsm over the video monitor screen. Touch input can be recorded using optical,
elec{mal or acoustical methods. Optical touch panels employ a line of infrared
nghL Emitting Diodes (LEDs) along one vertical edge and aiong one horizontial edge of
the frame. The opposite vertical and horizontal edges contain light detectors: These
detectors are used to record which beams are interrupted when the panel is touched.
The 1wo crossing beams that are interrupted identify the horizontal and vertical
coordmatos of the screen position selected.

Posmons can be selected with an accuracy of about 1/4 inch. With closely spaced LEDs,
lt is possible to draw twe horizontat or two vertical beams simultaneously. In this case,
ag average position between the two interrupted beams is recorded. The LEDs operate
at infrared frequencies, so that the light is not visible to a user.

An elecirical touch panel is constructed with two transparent plates separated by a
small distance. One of the plates is coated with a conducting material, and the other
p]}a[e is coated with a resistive material. When the outer plate is louched, it is fed into
contar_t with the inner plate. This contact cracks a voltage drop across the massive plate
that is converted to the coordinate values of the selected screen position. In acoustical
touch panels, high-frequency sound waves are generated in the horizontal and vertical
dl%"]e,cuons across a glass plate. Touching the screen causes part of each wave to be
rellecied from the finger to the emitters. The screen position at the point of contact is
calculated {rom a measurement of the time interval between the transmission of each
we;:ve and its reflection to the emitter.

i

1.17 IMAGE SCANNER

I : : .
Th:le most common device used to input images into a computer is a scanner. Scanners
are_similar to copy machines, except they store the image electronically instead of
trdnsferrmg it into another piece of paper. There are many different type of scanners

1]
fronT] hand held units that look like a mouse to drum scanners that can fill a entire room.

Mosl scanners expose the image to a bright light. Then electronic receptors called
(,hixrged Coupled Device (CCD) sensors pick up that light and convert it to electronic
pu]ses Those pulses get transiated to the numbers. There are black and white as well as
color scanners, The reseolution of scanners ranges from 100 dpi to 2000 dpi and beyond.

Vmce Systems

_Speech recognizers are used in some graphics workstations as input devices to accept

VO]CE commands. The voice system input can be used to initiate graphics operations or
to emer data. These systems operate by maiching an input against a predefined
dlctlonary of words and phrase called the vocabulary of the system.

A dictionary (vocabulary) is set up for a particular operator by having the operator
speak the command words to be used into the system. Each word is spoken several times
and the sysiem analyzes the word and establishes a frequency pattern for that word in
the dictionary along with the corresponding function to be performed.

Intreduction to Computer
Graphics and Graphic Systems

NOTES

Self-instructional Material 19

Computer Graphics

NOTES

20 Seif-instructional Material

Later, when a voice command is given, the system searches the dictionary for a
frequency-pattern match. Voice input is typically spoken into a microphone mounied
on a headset. The microphone is designed to minimize input of other background
sounds. If a different operator is to use the system, the dictionary must be reestablished
with that operator’s voice patierns. Voice systems have some advantage over other
input devices, since the attention of the operator does not have to be switched from one
devige to another to enter a command.

The biggest disadvantage is that voice systems are user-dependent while the need is for
systemns that ave not user-dependent. For example, if one of the employee working on the
voice system leaves the company then that system will have to be either bought again or
programmed again which is a big bottleneck in the way.

1.18 CONTINUAL REFRESH GRAPHIC QUTPUT/DISPLAY DEVICES

Cathode Ray Tube (CRT)

The quality of displayed image is very important in most applications of computer
graphics. CRT was the only available device which was capable of converting
computer's electrical signals into variable images at high speeds.

~ pefiecting syste™

& Control grid

Phosphor

-Accelerating I
system

Fig. 1.14
The face of the CRT is more or less flat and is coated on the inside with phosphor which

glows when electron beam strikes it.

A beam of electrons i.e., cathode rays is emitted by electron gun and passes through
focusing and deflection system that directs the beam on a specified point on the
phosphor coated screen.

CRT is best suited for inicractive Computer Graphics.

1.19 WHY PHOSPHORS ARE USED

The phosphors used in a graphic display are normally chosen for color characteristics and
persistence. Generally, persistence measured as the time for the brightness todrop to 1/10of
it initial values. should last about 100 msec or tess, allowing refresh at 30 hertz rates.

The phosphors should also possess a no. of other attributes: Smatl grain size for added
resolution, high efficiency in terms of electric energy converted to light and resistance to
burning under prolonged excitation. There are many different phosphors which have been
produced to improve performance using various compounds of Zine, Cadmium and ealcium.

1.20 DIRECT VIEW STORAGE TUBE

Some devices were developed where refreshing is not important. DVST is CRT with
some modifications, ie., storage capability. Whatever picture or image displayed is
stored on the tube.

|l
l

Bad points:
Slow and difficuli
Qualuy deteriorates with time

| l

' +100V
\ Flood gun
lll % [| |- screen
|
I T
Storage
’. ‘ o grid
i cathode Accelerating Collector
' & focusing System
Fig. 1.15

!
DVST behaves like CRT with extremely long persistence, A line written on the screen
wi]] remain visible for up to an hour before it fades away from sight.

lt has a similar focusing and accelerating system but difference is that beam doesn’t
Wl’llle directly on the screen but on the storage grid as positive charged pattern. Storage
gnd is wire mesh grid coated with dielectric material (thin Al coating).

Function of collector is for smoolhmg purposes (unwanted electrons are removed}.
lt,
1.“21 RASTER AND RANDOM DISPLAY (MONITORS)

Rz&ster Monitors/Displays

De}p(_nding on different types of display devices. there are different displays possible
llk;e Raster scan and Random scan. Earlier display devices use to support random scan
as 1[took less memory because we were not interested in all the pixels of the image. But
w1tih cost of systems and memory going down, raster scan is used now-a-days. We will
be referl ing to Raster scan in our book.

Copmpuler Graphics images are composed of a finite number of pixels. A display with
good resolution might have 1000 divisions in X and Y directions. The screen would
then have 1000 X 1000 or 1 miliion pixels. Each pixel requires at teast one bit of intensity
nformallon light or dark and further bits are need if shades of gray or different colors
are desued Thus if we actually store the information for each pixel in computer memory,
a lot of memory would be required. This is in fact, what is done in some RASTER
CRAPHIC DISPLAYS. The portion of memory used (o hold pixels is catled frame buffer.
The{ memory is usually scanned and displayed by DMA, i.e., special hardware
mdependent of central processor {leaving the processor free for generation of images).

r — = - —
- D,

S

Fig. 1.16

The term RASTER is a synonym for “matrix” therefore a raster scan CRT scans a matrix
with electron beam. The rate at which electron beam scans the surface of CRT is often
directly related to the frequency of local line voliage.

Introduction to Computer
Graphics and Graphic Systems

NOTES

Seif-Instructional Material 21

Computer Graphics A raster CRT device can be considered as a matrix of discrete cells each of which can be

made bright thus it is a point plotting technique.

User

Displayed line

ﬁL——-

program

NOTES Fig. 1.17

frame huffer is often referred 1o as a pixmap.

lines at once from top to bottom.

22 Self-Instructional Material

> —

Monitor

In the raster display, Frame buffer may be examined to determine what is currently
being displayed. Surfaces as well as lines may be displayed on raster scan display
devices. The raster display can also display color images.

The most common type of graphics monitor employing a CRT is the raster scan display.
based on television technology. In a raster scan system, the electron beam is swept across
the screen, one row at a time from top to bottem. As the electron beam moves across each
| row, the beam intensity is turned on and off 1o create a pattern of illuminated spots.
@ Picture definition is stored in a memory area called the refresh buffer or frame buffer,

This memory area holds the set of intensity values for all the screen points. Stored
| intensity values are then retrieved from the refresh buffer and “painted™ on the screen
| one row (scan line) at a time. Each screen point is referred to as a pixel (shortened form
of picture element). The capability of a raster scan sysiem to store intensity information
) for each screen point makes it well suited for the realistic display of scénes containing
subtle shading and color patterns. Home television sets and printers are examples of
other systems using raster scan methods. Intensity range for pixel positions depends on
the capability of the raster system. In a simple black and white system, each screen point
is either on or off, so only one bit per pixel is needed to control the intensity of screen
positions. For a bi-level system, a bit vatue of 1 indicates that the electron beam is to be turn
on at that position, and a value of 0 indicates that the beam intensity is to be off.
|
I
|
|
|

Additiona! bits are needed when color and intensity variations can be displayed. Upto
24 bits per pixel are included in high-quality systems. which can require several
megabytes of storage for the frame buffer. depending on the resolution of the system. A
system with 24 bits per pixel and a screen resolution of 1024 x 1024 requires 3 megabytes
of storage for the frame buffer. On a black-and-white system with one bit per pixel, the
frame buffer is commonly called a bitmap. For Systeins with muliiple bits per pixel. the

Refreshing on raster-scan displays is carried out at the rate of 60 10 80 frames per second,
although some systems are designed for higher refresh rates. Sometimes, refresh rates
are described in units of cycles per second, or Hertz {Hz), where a cycle corresponds to
one frame. Using these units, we would describe a refresh rate of 60 frames per second as
simply 60 Hz. Atthe end of each scan line, the electron beam returns to the left side of the
screen to begin displaying the next scan line. The veturn to the left of the screen, after
refreshing each scan line, is called the horizontal retrace of the electron beam. And at the
end of cach frame {displayed in 1/80th to 1/60th of a second), the electron beam returns
{vertical retrace) to the top left comer of the screen to begin the next frame.

On some raster-scan systems (and in TV sets), each frame is displayed in two passes
using an interlaced refresh procedure. In the first pass, the beam sweeps across every
other scan line from top to bottom. Then after the vertical retrace. the beam sweeps out
the remaining scan lines, Interlacing of the scan lines in‘this way allows us 1o se¢ the
entire scene displayed in one-half the time it would have taken to sweep across alt the

1

I
:I‘nlerlacing is primarily used with slower refreshing rates. On an clder, 30 frame per-
second, non interlaced display, for instance. some flicker is noticeable. But with
mler]acmg each of the two passes can be accomplished in 1/60th of a second, which
brmgs the refresh rate nearer to 60 frames per second. This is an effective technique
for avoiding flicker, providing that adjacent scan lines contain similar display

A .
1r11format10n,

i
Random Monitors/Displays

\j\l_;'hen operated as a random-scan display unit, a CRT has the electron beam directed
only 1o the parts of the screen where a picture is to be drawn, Random scan
momtor s draw a picture one line at a time and for this reason are also referred to as
veclor displays (or stroke-writing or calligraphic displays). The component lines
of a picture can be drawn and refreshed by a random scan system in any specified
order

A pen plotter operates in a similar way and is an example of a random scan, hard-
copy device. Refresh rate on a random scan system depends on the number of lines
to be displayed. Picture definition is now stored as a set of line drawing commands
in an area of memory referred to as the refresh display file. Sometimes the refresh
dlsplay file is called the display list. display program. or simply the refresh
butffer.

Toz.dzsplay a specified picture, the system cycles through the set of commands in
the display file, drawing each component line in turn. After all line drawing
commands have been processed, the system cycles back to the first line command
inithe list. Random-scan displays are designed to draw all the component lines of
a p:cture 30 1o 60 times each second. High quality vector systems are capable of
handlmg approximately 100,000 “short” lines at this refresh rate. When a smali
set]'oflmes is to be displayed, each refresh cycle is delayed to avoid refresh rates
greater than 60 frames per second. Otherwise, faster refreshing could bum cut the
phosphor

Random scan systems are designed for line drawing applications and cannot display
real;stlc shaded scenes. Devices such as DVST, plasma panel etc. support only line
drang They don’t support for solid areas which can be constructed on raster
dlSplayS Such line drawing devices are calligraphic displays.

Smce picture definition is stored as a set of line drawing instructions and not as a set of
mlel,-nsny values for all screen points, vector (random) displays generally have higher
resolution than raster systems. Also, vector displays produce smooth line drawings
beclellusc the CRT beam directly follows the line path. A raster system, in contrast,
pr odLlceSJagged lines that are plotted as the point sets.

leference between Raster and Random Displays: The difference between raster and
random display is that raster display gives a realistic image and is not confined to just
line!’ or calligraphic drawings. Any kind of graphics can be designed using raster
dlsplays Vector (randem) displays generally have higher resolution than raster
5ystem5 as we can pass primitive commands directly. For example if we have to draw a
line! § raster would print the pixels of the line row by row on each scan line but in random
display line is directly drawn from the current pen position to the final coordinates
passed. Also, vector displays produce smoath line drawings because the CRT beam
directly foliows the line path. A raster system, in contrast, produces jagged lines that
are plotted as the point sets.

Introduction to Computer
Graphics and Graphic Systems

NOTES

Sell-Instructional Material 23

Computer Graphics

NOTES

24 Self-Instructional Material

Rgndom Raster

Restricted to engineering, line drawing | Stores intensity information for each screen
applications point so well suited for real life applications
which include shading and coloring

Doesn’t use interlacing Uses interlacing

Higher resclution Lower reselution

More expensive Less expensive

Uses monochrome or beam Uses monochrome or shadow mask type

penetration type

Image is displayed by steering the Image is displayed by scanning

beam along the vectors the whole display area

Editing is easy Editing is difficult

Refresh rate depends directly on Refresh rate independent of picture
picture complexity complexity

1.22 LCD AND LED

Liguid Crystal Displays are commonly used in small sysiems, such as calculators and
portable, laptop computers. These non emissive devices produce a picture by passing
polarized light from the surroundings or from an internal light through a liquid crystal
materiat that can be aligned to either block or transmit the light. The term liquid crystal
refers to the fact that these cotmpounds have a crystalline arrangement of molecules, yet
they flow like a liquid. Flat-panel dispiays commonly use nematic {threadlike} liquid-
crystal compounds that tend (o keep the long axes of the rod-shaped molecules aligned.
A flat-panel display can then be constructed with & nematic liquid crystal. Two glass
plates, each containing a light polarizer at right angles to the other plate. sandwich the
liquid crystal material. Rows of horizontal transparent conductors are built into one
glass plate, and columns of vertical conductors are put into the other plate. The
intersection of two conductors defines a pixel position. Polarized light passing through
the material is twisted so that it will pass through the opposite polarizer. The light is
then reflected back to the viewer. To turn off the pixel, we apply a voltage to the two
intersecting conductors to align the molecules so that the light is not twisted. This type
of flat-panei device is referred to as a passive-matrix LCD.

Picture definitions are stored in a refresh buffer, and screen is refreshed at the rate of 60
frames per second. as in the emissive devices. A hand calculator with Back lighting is
also commenly applied using solid-state electronic devices. Colors can be displayed by
using different materials or dyes and by placing a triad of color pixels at each screen
location.

Another method is to place a transistor at each pixel location, using thin-film transisior
technology. The transistors are used to control the voltage at pixel locations and to
prevent charge from gradually leaking out of the liquid-crystal cells. These devices are
called active-matrix displays.

LED

A type of emissive device is the Light Emitting Diode (LED). A matrix of diodes is
arranged to form the pixel positions in the display. and picture definition is stored ina
refresh buffer. As in scan-line refreshing of a CRT, information is read from the refresh

i
I
|
buffer and converted to volitage levels that are applied to diodes 10 produce the light
patterns in the display

1123 VGA AND SVGA MONITORS

il
VrGA Monitors

Albbreviation of video graphics array, a graphics display sysiem for PCs developed by
IBM VG A has become one of the de facto standards for PCs. In text mode, VG A systems
prowde aresolution of 720 by 400 pixels. In graphics mode, the resolution is either 640 by
4El30 (with 16 colors) or 320 by 200 (with 256 colors). The total paletie of colors is 262,144,

Unllke earlier graphics standards lor PCs — MDA, CGA, and EGA — VGA uses analog
mgnals rather than digital signals. Consequently, a monitor designed for one of the
older standards will not be able to use VGA.

Smce its introduction in 1987, several other standards have been developed that offer
gr 'eater resolution and more colors (SVGA. 8514/ A graphics standard, and XGA). but
VCA remains the lowest common deneminator. All PCs made today support VGA, and
possibly some other more advanced standard.

[t has been technologically outdated in the PC market for some time. VGA was the most
recent graphical standard that the majority of manufacturers conformed to. making it
the lowest common denominator that all PC graphics hardware supports before a
dev]ce -specific driver is loaded into the computer. For example, the Microsoft Windows
sp[ash screen appears while the machine is still operating in VGA mode, which is the
realson that this screen always appears in reduced resolution and color depth.

VG|A was officially superseded by IBM’s XGA standard, but in reality it was superseded
by numerous extensions to VGA made by clone manufacturers that came to be known as
Super VGA™.

1
SVGA Monitors

Su;l_);er Video Graphics Array, almost always abbreviated to Super VGA or just SVGA
is abroad term that covers a wide range of computer display standards.

Originally, it was an extension 1o the VGA standard first released by IBM in 1987
Unlike VGA—a purely IBM-defined standard—Super VGA was defined by the Video
Electromcs Standards Association (VESA}, an open consoriium set up to promote
mte{rope: ability and define standards. When used as a resolution specification, in
contrast 1o VGA or XGA for example, the term SVGA normally refers to a resclution of
800 >< 600 pixels.

Supe: VGA was first defined in 1989. In that first version, it called {for a resolution of
800 X 600 4-bit pixels. Each pixel could therefore be any of 16 different colors. It was
qu:ckly extended to 1024 x 768 8-hit pixels, and well beyond that in the following years.

A]lhough the number of colors was defined in the original specification, this soon
becalme irrelevant as (in contrast to the old CGA and EGA standards) the interface
buween the video card and the VGA or Super VGA monitor uses simple analog voltages
to 1nd;cate the desired color depth. In consequence, so far as the monitor is concerned,
there is no theoretical limit to the number of different colors that can be displayed. Note

that this applies to any VG A or Super VGA monitor.

While the output of a VGA or Super VGA video card is analog, the internal calculations
the card performs in order to arrive at these output voltages are entirely digital. To
increase the number of colors a Super VGA display system can reproduce, no change ai

Introduction to Computer
Graphics and Graphic Systems

NOTES

Self-Instructional Material 25

Comiputer Graphics

NOTES

26 Sell-Instructional Material

all is needed for the monitor, but the video card needs to handle much targer numbers
and may well need to be redesigned from scratch. Even so, the leading graphics chip
vendors were producing parts for high-color video cards within just a few months of
Super VGA's introduction.

On paper, the original Super VGA was to be succeeded by Super XGA, but in practice
the industry soon abandoned the attempt to provide a unique name for each higher
display standard, and almast al! display systems made between the late 1990s and the
early 2000s are classed as Super VGA.

Monilor manufacturers sometimes advertise their products as XGA or Super XGA. In
practice this means little, since all Super VGA monitors manufactured since the later
1990s have heen capable of at least XGA and usually considerably higher performance.

1.24 DISPLAY PROCESSOR

Display processor referred to as a graphics controller or a display coprocessor also. It
makes the CPU free from the graphics chores. There is a separate memory for the display
processor.

Display processor basically used for digitizing a picture definition given in a program
into a set of pixel-intensity values for storage in the frame buffer. This process is called
scan conversion. Display processors also used for generating various line styles,
displaying color areas and performing various operations such as magnify or reduce
the image rotate it or shift it or reflect it. It can interface with input devices. The process
is illustrated in Fig. 1.18.

Display

Bt it
Proces:
M:r:osr;)r Bufier | | Conwroller { | _Monitor

Display System
CPU Processor Memaory
L
\i
System Bus
IO Devices

Fig. 1.18 Raster-graphics with a display processor

Run-length encoding is used for saving in storage space. The disadvantages of this
approach are that changes in the intensity are difficuit 1o make and run length decreases
but storage requirements actually increases. When short runs are involved in this
process the dispiay processor gets difficulty for processing.

1.25 CHARACTER GENERATION -

Characters are almast always built into the graphics display device, usually as hardware
but sometimes through software. There are three primary methods for character generation.

|

1
|
il

S;t;roke Method

ThlS method creates characters out of a series of line segments, like strokes of a pen as
shown in Fig. 1.19. We can generaie our own stroke method character generator by
VECGEN algorithm. We can change he scale by doubling length of each segment.

Bt S

—————————

Fig. 1.19 Stroke method

D’lot Matrix or Bit Map Method

In lh]S characters are represented by an array of dots as shown in Fig. 1.20. An array of
3 dols wide and 7 dotis high is often used. But 7x 9and 9x 13 arrays are also found. This
ar:lgy is like a small frame buffer, just big enough to hold a character. The dots are the
ph‘f‘lels for this small array. Placing the character on the screen then becomes a matter of
copying pixel values from the small character array into some portion of the screen’s
fratne buffer. The size of a dot is fixed.

I AR

N Y
2P

[—:‘x

L S
R0

T Jk@i‘\t

N

(LX)

Y.
b

00008
Fig. 1.20 Character by dot matrix method [B]

N
L

[
Sta'rlbust Method

In this method we use pattern of 24 strokes to generate a character. Due 10 its characteristics
appearances itis called starbust. We can generate a character by highlighting some of the
strokes and keeping others blank. We can show the composition of 24 strokes as shown
in Flg 1.21.

12 11
| N 17/t
i6 10
15
2 14 9
24 18
3 23 20 B
21
4] ; 7
| 22 19
i 5 6

Fig. 1.21 Starbust method

Now we can generate any character using above strokes. Suppose we want to generate
"F”, we simply highlight the strokes numbered—1, 2, 3.4, 11,12, 24,

Introductior to Computer
Graphics and Graphie Systems

NOTES

Self-Instructional Material 27

Computer Graphics

NOTES

28 Scif-Instructional Material

Using this method we can generate different characters. numbers and different special
characters. For each character, we require 24 bit code word. Depending upon the
character. we can highlight a particular stroke. :

Disadvantages

+ This method is very slow.

s Requires code conversion feature.

» Poor character quality.
Antialiasing techniques can be applied to characters. This can improve the appearance
of the character, particularly for very small fonts and characters.

SUMMARY

s Computer Graphics has been defined as the colleciion of daia structure. graphic
algorithins and any higher level language. Passive Computer Graphics is called Off-line
graphics while Interactive Computer Graphics is called On-line graphics. Applicaticn
areas include Flight simutators. CAD. video games and many more. The survey of
computer graphics lakes us into the start of compuler graphics (black era) till the present
day graphics (Colored eraj.

¢ Components of Computer Graphics include Frame buffer, smonitor and display controller.
Input devices include keyboards, mouse. light pen. joystick, digitizer, touch panel, image
scanners, voice systems etc while putput devices include monitors (CRT) and printers/plotters.

s VGA is a graphics display systern for PCs developed by [BM. VGA has become one of the
de facto standards for PCs. In text mode. VGA systems provide a resolution of 720 by 400
pixels. in graphics mode. Lhe resolution is either 640 by 480 (wilh 16 colors) or 320 by 200
(with 256 colars). The total paletie of colors is 262.144.

» Super Video Graphics Array, almost always abbreviated to Super VGA or just SVGA is
a broad term that covers a wide range of computer display standards. Originaily. it was
an extension 10 the VGA standard first released by [BM in 1987. Super VGA was first
defined in 1989. [n that first version. it called for a resolution of 800 x 600 4-bit pixels. Each
pixel could therefore be any of 16 different colors. It was guickly extended 10 1024 x 768
8-bit pixels, and well beyond that in the lollowing years.

+ Analog (o digital conversion and vice versa is done by A/ID converter, Raster scan scans
the screen kine by line while random scan plots the image directly through the use of
primitive commands. Raster scan is being used now-a-days in graphics applications. Even
the home TV uses raster scan lechnology for rendering real images.

s Graphics primitives are primitive commands used by earlier graphics systems. Random
scan uses graphics primitives 10 plot the line or surfaces. GKS and CORE are some
standards associated with graphics primitives.

REVIEW QUESTIONS

L. What do you understand by Computer Graphics? Give application areas of [nteractive
Computer Graphics.

2. What is display memory called in a system which has portion of memory reserved
for graphics use only?

3. Goodl graphic progranmniers aveid the use of floating point operation whenever possible, Why?
4. Explain the following terms:
{) Persistence (i) Phosphorence
(i) Rasler scan {iv) Pixels and frame buffer.
5, What do you understand by V-RAM and how much V-RAM do you recommend for
your system?

- What do you understand by input/ Outpui devices? Explain the working of CRT.

- Whal is the dillerence between Raster and Random scan? Highlight the advanages of
using Raster scan.

. Fiil up the blanks:

(@) CAD stands for ...

(b)) CAM slands Tor

{c) DMA stands for

(d) Pixel stands forco.......

(e} CRT is coated wilh :.... lo avoid burning under prolonged excitation.
ANSWERS

(@) Compuler Aided Designing (b) Computer Aided Manufacturing

() Direct Memory Access (d) Picture Element

(¢} Phosphor.

FURTHER READINGS

Computer Graphic: V.K. Pachghare, Laxmi Publications, 2007. Second edition.

Computer Graphics: Prabhakar Gupia. Vineet Agarwal and Manish Varshney, Laxni
Publicaticns, 2011. :

Computer Graphics: Rajiv Chopra, S. Chand Publisher, 2011.

Computer Graphics: C.S. Verma. Ane Books, 2011.

Computer Graphics: Pradeepy K. Bhatia. [.K. International. 2009, pbk, Second Edition.
Computer Graphics: Ruchi Mishra, Global Vision Publisher. 2010.

Introduction to Computer
Graphics and Graphic Systems

NOTES

Sell-instructional Material 29

Computer Graphics

UNIT ”

Noes OUTPUT PRIMITIVES
(LINE AND CIRCLE
DRAWING ALGORITHMS)

' TRUCTURE

2.0 Learning Objectives
2.1 Color Display Techniques
2.2 Frame Buffer
2.3 Elements of 2D Geometry for Graphics
2.4 LineSegment
2.5 Vectors
2.6 Scan Conversion
2.7 How to Handle Screen Coordinates and How "C" Program Works
2.8 Line Drawing Algorithms
2.9 DDA Line Drawing Algorithm
2.10 Bresenham's Line Algorithm

! 2.11 Bresenham's Circle Generation

2.12 Midpoint Circle Generatiion

2.13 Ellipse Generation Algorithms

2.14 Polygon Filling

2.15 Inside Test (For Determining Points Inside the Polygon)
2.16 Quitline for Scan Line Filling Algorithm

2.17 Anti-Aliasing

: * Summary
s Review Questions
s Further Readings

2.0 LEARNING OBJECTIVES

After going through this unit, you should be able to:

» describe color display techniques

» explain the term frame buffer

* discuss about scan conversion

» describe the line drawing algorithms
¢ explain ellipse and circle generation.

30 Self-Instructivnal Material

Y

2.1 COLOR DISPLAY TECHNIQUES

i

{The wortd would iook so dull if there were no colors or if the quality of colars is not good.
Barlier graphics applications were deveioped in black and white but with the
1(:!iew:elopmem in technology and colored monitors becoming popular, graphics
applirationa are now being developed using colored displays.

A CRT monitor displays color pictures by using a combination of phosphors that emit
ﬂ]f’ferent colored light. By combining the emitted light from the different phosphors, a
range of colors can be generated. The two basic techniques for producing color displays
\f\'{'ith a CRT are the beam penetration method and the shadow mask method.

T'here are two ways of getting colored displays:

I. Beam penetration color display
2. Shadow mask color display

'IlThe normal! CRT can create image of a single color {black and white) due to limitation of
its phosphor.,

A'colored CRT for line drawing displays has been developed and it uses a multi layer
(RBG) phosphor and achieves color display.

1. BEAM PENETRATION COLORED DISPLAY: The beam penetration methgd
for displaying color pictures has been used with random-scan monitors. Beam
penetration colored display makes use of CRT but with multi layer phosphor.
The normal CRT can create images of singie coler due to limitation of phosphor.
A color CRT device for live drawing display has been developed and it uses a
multi Jayer phosphor and achieves color control by modulating a normally
constant parameter, namely the “beam accelerating potential™.

The beamn penetration CRT is similar to normal CRT's, the only unusual com-
ponent is the multilayer phosphor in which a layer of red phosphor is deposited
behind the initial layer of green phosphor. If the acceleraiing potential is in-
creased, the velocity of the beam seriking the phosphor is greater and as a result
the beam penetrates into green phosphor, increasing the green component or the
‘ light output. When a fairly low potential electron beam strikes the tube face, it
i excites only the red phosphor and the thereflore produces a red trace.
i Twao layers of phosphor, usually red and green, are coated onto the inside of the
1 CRT screen, and the displayed color depends on how far the electron beam
‘» penetrates into the phosphor layers. A beam of siow electrons excites only the
{

outer red layer. A beam of very fast electrons penetrates through the red layer
and excites the inner green layer. At intermediate beam speeds, combinations of
red and green light are emitted to show two additional colors, orange and

| veliow. The speed of the electrons, and hence the screen color at any point. is
i controlled by the beam-acceleration volitage. Beam penetration has been an
\I inexpensive way to produce color in random scan monitors. but only four colors
| are possible, and the quality of pictures

|} is not as good as with other methods.

! In this way a limited range of colors,

i.e. red. orange, yellow and green can
be generated.

Advantages: The biggest advantage is
that il is at half cost of shadow mask
and its resolulion is better.

Shadow mask

Disadvantage: Biggest disadvantage is B G
that change of color takes time which Fig. 2.1
doesn’t suit interactive graphics at all.

Output Primitives (Line and
Circle Drawing Algorithms)

NOTES

Self-Instructional Material 31

Camputer Graphics

NOTES

32 Self-Instructional Material

™

2. SHADOW MASK COLOR DISPLAY : In this display. there are three electron
guns, one for each of three primary colors. i.e., red, green and blue. The electron
guns are frequently arranged in a triangular pattern catled delta corresponding
to a similar triangular pattern of red, green and blue phosphor dots on the face
of the CRT.

To ensure that individuai electron guns excite the correct phosphor dots {e.g., red gun
excites only red phosphor dot), a perforated metal grid is placed between the electron
guns and the face of the CRT. This is the shadow mask (the perforations in the shadow
mask are arranged in the same triangular pattern as phosphor dots).

Note: Distance belween perforations is called pitch.

~

The color guns are arranged so that the individual beams converge and intersect at the
shadow mask. Upon passing through the hole in the shadow mask the red beam, for,
e.g., is prevented or masked from intersecting either the green or biue phosphor dot. It
can only intersect the red phosphor dot.

By varying the strength of electron beam for each individual primary color, different
shades can be combined into a large number of colors for each pixel. Uses much wider
range of colors.

It is used in colored TVs and gives us a large number of colors as compared to beam

_penetration method. Shadow mask methods are commoniy used in raster scan systeins

{(including color TV) because they produce a much wider range of colors than the beam
penetration method. A shadow mask CRT has three phosphor color dots at each pixel
position. One phosphor dot emits a red light, another emits a green light. and the third
emits a blue light. This type of CRT has three electron guns, one for each color dot. and
a shadow mask grid jusi behind the phosphor coated screen. Figure iliustrates the deita
shadow mask method, commonly used in cclor CRT systems. The three electron beams
are deflecied and focused as a group onto the shadow mask, which contains a series of
holes aligned with the phasphor dot patterns. When the three beams pass through a
hole in the shadow mask, they activate a dot triangle, which appears as a small color
spot on the screen. The phosphor dots in the triangles are arranged so that each ¢lectron
beam can activate only its corresponding color dot when it passes through the Shadow
mask.

Another configuration for the three electron gunsis an in-line arrangement in which the
three electron guns, and the corresponding red. green and blue color dots on the screen,
are aligned along one scan line instead of in a triangular pattern. This in-line
arrangement of electron guns is easier (o keep in alignment and is commonly used in
high-resolution color CRTs.

We obtain color variations in a shadow mask CRT by varying the intensity levels of the
three electron beams. By turning off the red and green guns, we get only the color coming
from the blue phosphor. Other combinations of beam intensities produce a small light
spot for each pixe! position, since our eyes tend to merge the three celors into one
composite. The color we see depends on the amount of excitation of the red, green. and
blue phosphors.

A white {or gray) area is the result of activating all three dots with equal intensity.
Yellow is produced with the green and red dots enly, magenta is produced with the blue
and red dots, and cyan shows up when blue and green are activated equally. In some
low-cost systems, the electron beam can only be set to on or off, limiting displays to eight
colors. More sophisticated systems can set intermediate intensity levels for the electron
beams, allowing several million different colors 10 be generated.

]'Iilolor CRTs in graphics systerns are designed as RGB monitors. These monitors use
shadow mask methods and take the imensity level for each electron gun {red, green and
b]ue] directly from the computer system without any intermediate processing. High-
quality raster-graphics systems have 24 bits per pixel in the frame buffer. aliowing
236 voltage settings for each electron gun and nearly 17 million color choices for each
EIIXCL An RGB color system with 24 bits of storage per pixel is generally referred toas a
full-color system or a true-celor system.

Iﬁtasma Panel

Plasma paneis, also calied gas-discharge displays. are constructed by filling the region
I?etwe(.n two glass plates with a mixture of gases that usually uses neon. A series of
\FFrtlcal canducting ribbons is placed on one glass panel, and a set of horizonial ribbons
is built into the other glass panel. Firing voltages applied to a pair of horizontal and
veriical conductors cause the gas at the intersection of the two conductors to break
down into glowing plasma of electrons and fons. Picture definition is stored in a refresh
buffcr and the firing voltages are applied to refresh the pixel positions {at the
mte1 sections of the conduciors) 60 times per second.

ll
It
"e Can retain display indefinitely

s an alternative to CRT as there was a search for a device which

* No compromise on quality of display

s Small space requirement

» Low voltage power supply.
ThL term plasma is the name of the device which refers to the neon gas that is
sandwmhed and sealed between two glass panels. it is a panel of very tiny neon gas
bLllile which can selectively be made to glow. By apply firing voltage, glow starts. Once
the glow starts, the voliage can be decreased up to which glow continues (sustaining
vnltage} Beiow this voltage, glow dies (cut of voliage). Plasma Panel need not be
refreshed Cost is high and resolution low. It is an array of neon gas where on means
by lghl glow and off means no glow.

Alle; nating methods are used to provide faster application of the firing voltages, and
thus brighter displays. Separation between pixels is provided by the electric field of the
conductors One disadvantage of plasma panels has been that they were strictly
monoc,hromat:c devices, but sysiems have been developed that are now capable of
d:sp]aymg color and grayscale.

Thm film electroluminescent displays are similar in construction to a plasma panel.
The difference is that the region between the glass plates is filled with a phosphor, such
as zmc sutfide doped with manganese, instead of a gas. When a sufficiently high voltage
is dpphed to a pair of crossing electrodes, the phosphor becemes a conductor in the area
of tlhe intersection of the two electrodes. Electrical energy is then absorbed by the
manganese atoms, which then release the energy as a spot of light similar 1o the glowing
p!a§n1a effect in a plasma panel. Electroluminescent displays require more power than
plasma panels. and good color and gray scate displays are hard 1o achieve,

_ﬁ
2.2| FRAME BUFFER

Frame buffer is the portion of memory reserved for holding the complete bit-mapped
image that is sent to the monitor. Typically the frame buffer is stored in the memory
chips on the video adapter. In some instances, however, the video chipset is integrated
into the motherboard design, and the frame buffer is stored in general main memory. So
we can say in our language that Frame Bulfer is the memory area which holds the
compleie¢ information of the pixel.

Output Primitives (Line and
Circle Drawing Algorithms)

NOTES

Self-Instructional Material 33

Computer Graphics

NOTES

34 Sell-Instructional Material

The frame buffer is a video outpui device ihat drives a video display from a memory
buffer containing a complete frame of data. The information in the buffer typically
consists of color values for every pixel (point that can be displayed} on the screen. Color
values are commonly stored in 1-bit monochrome, 4-bit palletized, 8-bit palletized,
16-bit high color and 24-bit true color formats. An additional alpha channel is
sometimes used to retain information about pixel ransparency. The total amount of the
memory required to drive the frame buffer is dependent on the resolution of the output
signal, as well as the color depth and palette size.

Frame buffers differ significantly from the vector graphics displays that were common
prior to the advent of the frame buffer. With a vector display, only the vertices of the
graphics primitives are stored. The electron beam of the output display is then
commanded {0 move from vertex to vertex, tracing an analog line across the area between
these points. With a frame buffer, the electron beam {if the display technology uses one)
is commanded to trace a left-to-right, top-to-bottom path across the entire screen, much
in the same way a television renders a broadcast signal. At the same time. the color
information for each point on the screen is pulled from the frame buffer, creating a set of
discrete picture elements {pixels).

2.3 ELEMENTS OF 2D GEOMETRY FOR GRAPHICS

2D geometry is used extensively in graphics and so we must be familiar with geometry.
We must know the equations related to lines, circles, ellipses etc. in order to generate or
scan convert them on the systen1. These equations can be used directly in our programs
so derivations are skipped in this book considering them out of scope.

We can use built-in functions of C language to draw lines, circles, ellipses, arcs and
polygons but we are interested in drawing them through our own algorithms as they are
more flexible.

First let us define what lines are and it can easily be said that any line can be drawn
using two endpoints (x;. y,) and (x,, y)

(XZ- YZ)

(1 y1)
Fig. 2.2
The ling equationisy=mx+b
Slope m=(y, - y,)/{x, - x,)
where (x|, ¥;) and (x;, y;) are end point co-ordinates provided by the user
and b=y - mx,
Slope m is the change in height divided by change in width for two points on the line.

The intercept b is the height at which line crosses the Y axis.

2.4 LINE SEGMENT

Let us consider only those points on a line that lie between two end points A| and A,.
This is called a line segment.

i
i
I

ﬁm that. So the question is how long is a line segment? :

i(I-Biven two endpoints A; and A,. we can determine its length L using Pythagoras
t{heorem.
I.

"[Y2 Az

|

yl e -y

P

Fig. 2.3 Pythagoras thearem

Ly=(x- "l)2 +{¥2- }’1}2

L=({x;~ xl)z + (YZ‘Yl)Z)w

2l5 VECTORS

Alvector has a single direction and a length. A vector may be denoted [D,. D) where D,
mdlcates how far to move along x-axis direction and D, indicates how far to move along
the y-axis.

Fig. 2.4

)
1 Ll
|
|

Unlike line segments, vectors have no fixed position in space. They tell us how far and
wh]a[direction to move but they do not tell us where to start: The idea of a vector is useful
because it closely paraliels the manner in which a pen draws lines on paper or an
electron beam draws lines.

2.6] SCAN CONVERSION '

Scaln Conversion is the process of representing continuous objects as a collection of
discrete pixels. Displaying discrete pixels of the object is called SCAN CONVERSION
{Suildents may be asked 1o scan convert a point, line, circle or an ellipse in
examinations).

Theltvideo output circuitry is capable of converting binary values stored in its display
memory inte pixel on. pixe! off information. This information is used by raster output
device to display a point. This helps the graphics programmers to display or create
maodels composed of discrete dots.

Any thing in the world can be produced with a dense matrix of dots but we think in
terms of graphic objects such as points, lines, circles and ellipses.

Computer graphics has come a long way since the start of graphics. Many algorithms
have been developed to scan convert the above mentioned shapes. However regardless

Length of aline segment is very important to evaluate because our algorithm will focus

Output Primitives (Linc and
Circle Drawing Algorithms)

NOTES

Self-Instructional Material 35

Computer Graphics

NOTES

36 Self-Instructional Material

of the method used. computer can produce images on raster devices only by turning
appropriate pixels on or off,

Scan conversion algorithm can be implemented in computer hardware or firmware
{programs written in ROM). However scan conversion algorithms can be implemented
in software as per our requirements.

2.7 HOW TO HANDLE SCREEN COORDINATES AND HOW “C”
PROGRAM WORKS

The point plotting/scan conversion techniques are based on the use of a Carlesian
co-ordinate system. Points are represented by x and y co-ordinates. the value of x
increases from L - R and y from top to bottom (Check out the coordinates of your screen
by writing simple programs using C language).

Let us start by writing simple programs in C programming language for graphics and
see how the screen behaves. When we start drawing any graphics on the screen, we
need a header file graphics.h and a library file called graphics.lib. The header file
contains the information and explanations of all functions and canstants we need. Both
these files are provided as part of TURBO C.

To move from the 1ext mode to the graphics mode that offers the best resolution, the
system puts the number corresponding to that mode in variable gm. The gm number
tells us which monitor we are using and its resolution.

The programs given in the book are developed using VGA adapter with the resolution
640 x 480.

To understand gd, we've to understand the concept of device drivers. Turbo C offers
some graphics drivers. These are the file with BGI(*.bgi) exiension. Throughout ocur
programs. gd has been assigned the value DETECT thereby asking initgraph(} function
to figure out which BGl file is needed.

The basic tools or built in functions used for drawing shapes are function like putpixel (},
line(), circle(), ellipse(). arc{) and drawpoly().

putpixel (x,. y,) illuminates or lights the pixet at position (x;, y,) on the screen.

line {x,. y,. X5, ¥} draws a line from point (x;. y;) to point (x;. y,).

2.8 LINE DRAWING ALGORITHMS

Straight line segments are used in aimost every graphics application such as generating
sceneries, bar charts, block diagrain, graph, engineering drawing. architectural plan
etc. Since the straight line drawing is very important and so useful it is worth taking care
that they are well drawn.

Criteria for Good Computer Generated Lines

1. Lings should appear straight and not zigzag. Point Plotting techniques are
admirabiy suited to the generation of vertical. horizontal or lines at 45 degree
1o x and y axis

2. Line should terminate accurately

3. Lines should have constant density, Le., point should be evenly distributed on
the line.

f
l!
Scan converting algorithms compute the points for us and corresponding to these points,
siignals are generated. Algorithms should be such that they require minimum computrations.

There are two lines drawing algorithm which are employed by graphics designers/
deve!opera

1. DDA (Digital Differential Analyzer) method
2. Bresenham’s line drawing algorithm.
i

2.9 DDA LINE DRAWING ALGORITHM

|
One technique for obtaining a rasterized straight line is (o solve the differential equation
for a straight line

l Dy/Dy=constant or A/A=(y;-y)/(%-x))
The solution is for the above differential equation is

‘ Yo=Y+ Dy

]‘i Yiar=Yi+{y:-)/ (x5 - x)) 4, (1)
where (x,. y,} and (x;, y,) are the end points of the required straight line and Y, is the
in'iltiai value for any given step along the line.
In'fact, equation 1 represents a recursive relation for successive values of yalong the

reiélmred line and is usually used to‘rasterize a line. This method is called Digital
leferentlal Analyzer {DDA) method.,

Now we can use the above recursive relation in our computer program. Following is a
sunpie DDA algorithm which will work in all quadrants and would rasterize a line. The
ling end points are {x;, y;) and (xz, ¥2) and are not equal. The line end points are provided
by;the user through input commands of the program.

DDA Algorithm
Intleger is integer floor function
Siggu returns - 1, 0. 1 as its arguments is < 4, =0, > 0.
/*Appropriate the line length so that we can move along either of X or Y axis*/
If | abs(x, - x,) >= abs(y, - y,) then
“ len = abs(x, - x,)
Else
H len = abs(y, -)
Endulf
f* Evaluatmg Axand Ay to be used in our program*/
:, Ax=(x,-x)/len
IH Ay = (yo-y)/len
/> To round the values we use multiplication by 0.5 and using sign function makes
algonlhm work in all quadrants™/
x=x+0.5"sign(Ax)
:E y= v +0.5*sign{ay)
/*Begin the loop*/
I=1
Aslongas (Iglen)
Putpixel (integer {x). integer (¥))
X=X+Ax
y=y+Aay

Output Primitives (Line and
Circle Drawing Algorithms)

NOTES

Selt-Instructional Material 37

Camputer Graphics

NOTES

38 Self-instructional Material

l=i+1
End loop
Lets take an example to illustrate the algorithm. We will solve a numerical and plot the
line and then scan convert it on the systent through a C program.
Example: Consider the linc from (0, 0) to {6, 6}, use DDA to rasterize the line.

Solution: et us perform some initial calculations
Initially X;=0 Y =0 X;=06 Y,=6
S0 our first step would be to evaluate the length
Length = abs(x, - x;} =6-0=06
Length = abs(y,-y,})=6-0=0
So length = 6 (in any X or Y direction)
Iad {x, - x,} been larger then X direction would have been chosen otherwise Y direction,

So our next step would be 10 evaluate Axand Ay as in our algorithm
Ax=x,-x/length=6-0/6=1
Ay=y,-y,/length=6-0/6=1

x=x,+0.5*sign (Ax)
=0+0.5%sign {t) /*sincesign(l) returns 1*/

x=05

Similarly, y=05

[valuating through main loop gives us
i plot x Y
1 0.5 0.5
2 0,0 1.5 15
3 (1,1) 25 2.5
4 (2,2) 35 35
5 (3,3) 4.5 45
6 4,4 5.5 5.5
7 (5, 5) 6.5 6.5
8 (6, 6) 75 7.5

So we can see from the above table how DDA method evaluates and plot new points (0.5
is taken as 0 in above table because we are considering floor value).

Example: Draw a line line from (0, 0) to (- 8. - 4) in third quadrant and develop a C
program to draw a line using DDA algorithm.

Solution: Layout of DDA algorithmusing “C”

Sign {int x)
{
if (k> 0) return 1;
if (k< 0) return -1;
if (k=="0) return9;
}
d, = X, - X33
dv=Y2 =y

if (abs(d,) > = abs(d,))
len = abs(d,);
clse

len= abs(dy):
Xipe = d\/len;

y=y,+0.5"sign (d):
while {i < = len)

putpixel(floor x, floor y):

X+ = Xines

Y=Y

Vine=d,/len '
x=x +0.5*sign (d): /*raround off
!
1
l
i
|
!
1 f++;

For the sake of students we have given a program for DDA method in C language.
Siudents can madify it according to their need and requirement, You can make it more
interactive and user friendly.

#include<stdio.h>
#:rlllclude<como hx>
#zr{l]clude<g1 -aphics.h>
#mc]udeqnath h>

v01(‘] dda(int.int,imt,int);
lI]t?lg(lll[),

imLfl ~0.p[8].x.y:

maing

\ i

int gd=DETECT gm.i,j=0;
int xa[1]={400};
int g;fall |={100};
int Xb[1}={800};
int Ybil]={400}:
clrs'ér();
prirﬁtf("line drawing using dda method”);
initgraph(&gd,&gm,” *);

wh illle(jc 1)

{ f

dda(xa(jl.yalj].xbljl.yblil):

jl

o

getc!p()

c[osegraph 0:

relurn({])

i

void.fida(im xa.int ya,int xb.int yb)

{ |

intdx.dylxlylfc;
dx=xh-xa;
dy=yh-ya;
if(abs{dx)>=abs{dy))
l=abs{dx);

»

Ouwtpurt Primitives {Line and
Circle Drawing Algovithms)

NOTES

Self-Instructional Material 39

Computer Graphics

NOTES

40 Solf-Instructienal Material

else

I=abs(dy):
xi=(dx)/L;
yl={dy)/L; \
x=x1+(0.5%sig{dx});
y=y1+(0.5%sig(dy));
while(fl<=l)

{

f=floor{x);
c=floor(y);
putpixel{f.c WHITE);
x+=x1;

y+=vl;

Fle+:

}

!

int sig(int k)

{

if (k>0}

return{l);

if (k<0)

return{-1):

if (k==0)

return(0);

}

2,10 BRESENHAM'S LINE ALGORITHM

Bresenham's line algorithm is an efficient method for scan converting straight lines in
that it uses only integer addition. subtraction and multiplication by 2 and floating point.
operations are avoided in Bresenham'’s algorithm. The computer can perform the
operations of integer addition and subtraction very rapidly. The lines drawn are of
superior quality as compared to DDA method.

Fig. 2.5

In this algorithm we talk about a true line as shown in the above figure. Call the distance
to those pixels lying immediately above the true line A;and the distance to those directly
below it B,

We will keep on talking about A; and B; throughout the algorithm. Bresenham's
algorithm identifies the decision or test variabie

i | -

1
\éfhen d;< 0. the closet pixel in the raster will be the pixel below the true line.
Cl-ionversely. when d; > = 0 the pixel immediately above the true line is closest.

'1;‘0 implement the algorithm all that remains is to calculate and update the various
values of d,

Initially set
d,=2d, - d,
where d, = th“ X
d,=Y;-Y,
Tlrereafter if d; >={0 the x and y are incremented
' Xio1=Xi)
‘. Y=Y,
aii"id iy = di+ 2(d, - dy)
Ifid, < 0 then only x is incremented
Xis1= X
di, = d;+ 2d,

Example: Indicate which raster locations would be chosen by Bresenham's algorithm
V . : .
when scan converting aline from screen co-ordinates (1. 1) to (8. 5).

So;lulion: First the starting values (Initial values) must be found

l d,=x,- X

| =8-1

1 —

1 d}"dy_.yl
=5-1

| _

Therefore d=2d,-d,

=2%4-17

=1 [nitial value
Applying the above procedure again and again would get us the required solution.

§
UlI’ilmalely we would get a table of xand y that can be plotied 10 give a line segment.

| x iy d

1 1 1
| 2 2 -5
'l 3 2 3
? 4 3 -3
i 5 3 5
|i_ 6 4 -1
| 7 4 7
i Andsoon | Andsoon

I
-Follo;wing is the C implementation of Bresenham’s algorithm.

Bresenham’s Line Program

//TODRAW A LINE (BRESENHAM'S LINE DRAWING ALGORITHM]...
#inc%ude<c0ni0.h>

#include<stdio.h>
!

Output Primitives {Line and
Circle Drawing Algorithms)

NOTES

Self-Instructional Material 41

Computer Graplics #include<graphics.h>

#include<math.h>

#include<dos.h>

void linel (int x, inty,. int x5, int y,)

{

intdx.dy, I, x, y, p. xend;

dx = {x;-%,) ;

NOTES dy = {y,-y,):

p=2*dy-dx;

if (x,>x,) //checks which x(x, or x;) L0 use as starting point
{ //and which x(x, or x) to use as end point

X=X’

Y=

xend=x,:

}
else

{

X=Xy,
¥Y=Y2:
xend =x,;
}
while (x<xend)

{

putpixel {x, y, RED):
Xt

if (p<0)
p=p+2tdy

clse

{

Y+

p=p+ 2" {dy-dx) ;
b

}
)

void main (void)

{

int gd=DETECT.gm:;
clrser{) ;

initgraph (& gd, & gm.” ")
setbkeolor (GREEN) ;

linel (200, 0. 300, 300) :
getch ()

}

42 Self-Instractional Material

211 BRESENHAM'’S CIRCLE GENERATION Qutput Primitives (Line and

Circie Drawing Algorithms)

i

I:f1a circle is 1o be scan-converted nicely, the use of trigonometric and power functions
must be avoided. Itis therefore desirable to perform the calculations necessary 1o find
the scan converted points with only integer addition, subtraction. multiplication by

powers of 2. Bresenham's circle algorithm allows these goals to be met with limited
mijmber of steps.

E i NOTES

‘\

True Circle

|
n

i

Fig. 2.6

A‘; inthe case of straight line, the best approximation of a circle will be defined by those
plXElS in the raster that fall the least distance from the true circle.

Decision variable d;value is derived as (derivation is beyond the scope of this book).

i d=3-2r

Thereafter if d, < 0 then only x is incremented
1: Xa=x5+1

anq decision variable changes to

| d;

: 1

and if d, >= 0 then x & yare incremented

=0+ 45+ 6

Xj+|=)(i+l

| }’;+|=.Vf‘1
‘ dioi=di+4x,-y) + 10

We are giving Bresenham’s Program for circle generation in C:

BnTlsenham s Circle C Program
intlude<stdio.h>

mlclud(,«como h>

ml.ludeﬁmath b

1nclude<d0&, h>

mc]ude<glaph!cs h>
vordfcwciemid {int. int, int, int);

VOld plotpoints (int xcen, int ycen, int r)
{]

intp, x.y:

x=0;

y=1

p= ?;_-2"r:

while (x<y)

Sell-Instructional Marterial 43

Camputer Graphics

NOTES

44 Self-lnstructional Material

{

circlemid (xcen, ycen. x. y):
X++)

if (p<0)

p = p+4*x+6:

else

{

y—

p=p+4* (x-y)+10;

}

}
}
void circlemid (int xcen, int ycen, int x, inty)
{

staticinti=0;

putpixel (xcen+x. ycensy. i++) .

putpixel (xcen-x, ycen+y, i++) ;

putpixel (xcen+x, ycen-y, i++) ;

putpixel {xcen-x, ycen-y. i++)

putpixel (xcen+y, yeen+x. i++} :

putpixel {xcen-y. yeen+x. i++}

putpixel (xcen+y, ycen-x. i++) :

putpixel (xcen-y, ycen-x, i++) ;

delay (10);

}

void main {)

{

int gd==DETECT. gnv:

inti:

clrser

initgraph(&gd. &gm.” *):

for {i=0: i<=15: i++)

{

setbkcolor (i);

plotpoints {300. 230. i+i*3) ;

}

setcolor {4);

outtextxy (282,227, "Ehtiram”) ;

getch () :

1

2.12 MIDPOINT CiRCLE GENERATION

As in the case of straight line, the best approximation of a circle will be defined by those

pixels in the rasier that fall the least distance from the true circle.

Decision variable d; value is derived as {derivation is beyond the scope of this book).
d=1-r

Thereafter if d; < 0 then only xis incremented

|

i
h X =x+1
and decision variable chang\es to
g, =di+2x,+3
and if d; >= 0 then x & yare incremented
' X, =X+ 1
Yier=yi-1

di,y=di+2{x;-y) +5

This algorithm is quite similar to Bresenham's algorithm except that initial estimate and

décision variable equations are changing by half.

2113 ELLIPSE GENERATION ALGORITHMS

i
Ellipse has two axes- major and minor axis. It is quite similar to circle.

/ /Ellipse Generating Algorithm
/ /Simple Cartesian-Coordinaie
void ellipse({int xc, int yc, int xr, int yr)
{
int len;
if (xr > yr)
{
intyl2, y22,
intyll =vye, y21 = ye;
for (int x=xc-xr+1; X<=XC+XTI: ++Xx)

int x12. x22;

int x11 = xc, x21 = xc;

‘ for (int y=ye-yr+1; y<=yc+yr; ++y)
{

{ x12 = x¢c + len;
Y x22 = xc - len;
line(xt1,y-1,x12,y);

N
-

{
len = yr*sqri(l - SQR{{x - xc} / double(xr}}}:
ylZ=yc+len;
yZZ=yc-len;
1 line(x-1,y11,x, y12);
line(x-1,y21, x, y22);
{ yll=yl2;
{ y2l =vy22;
}
}
eise
{

len = xr " sqrt{l - SQR{{y - yc) / double(yr}));

Output Primitives (Line and
Cirele Drawing Algorithms)

NOTES

Self-Instructional Material 45

Computer Graphics

NOTES

46 Self-Instructional Material

line{x21, y-1,x22.y}
x11 =x12;
xel =x22:

}

h .
/ /Eflipse Generating Algorithm

//Simple Polar-Coordinate
void ellipse(int xc, int yc. int xr, int yr)
{
const int ITERATIONS = 1009;
double theta;
moveto(xc + Xr, yc);
for {inti=1; i<=ITERATIONS: ++i)
{
theta=2*PI*i / ITERATIONS;
lineto(ROUND (x¢+xr*cos(theta)), ROUND({yc+yr*sin(theta)));

2.14 POLYGONFILLING

So far discussion has dealt with only the lines and characters. The world might seem
rather dull if it were made out of straight lines. Flow interesting is the world of patterns,
colors and shading, Unfortunately. much of the early graphics dealt with line drawings
only. This was because the available devices (DVST, Plotters etc.} were line drawing
devices. Raster display can display solid patterns and objects with no greater effort than
that involved in showing their outlines. Coloring and shading is possible with raster
technology.

We introduced new graphic primitive, the Polygon in the first chapter. We have already
discussed what polygons are and how to represent them? We shall now iearn how to
determine if a point is inside a polygon. Finally, a method for filling in all inside pixels
will be developed.

We wish 10 be able to represent a surface. One basic surface primitive is a polygon, a
many sided figure. A polygon may be represented as a number of line segments
connected end to end to form a closed figure. The line segments that make up the
polygon boundary are called sides or edges. The endpoint of the sides are called the
polygon’s vertices. The simplest polygon is the triangle. having three sides and three
vertex points.

We have already discussed that polygon can be divided into two classes: Concave and
Convex. A Convex polygon is a polygon such that for any two points inside the polygon,
all points on the line segment connecting them are also inside the Polygon. A concave
polygon is the one, which is not convex. A triangle is always convex.

2.15 INSIDE TEST (FOR DETERMINING POINTS INSIDE
THE POLYGON)})

Having entered commands in the display file, we next might wish to be able to show
pelygon as solid object by setting the pixels inside the polygon as well as those on
boundary.

L

|
|
I'T"el us consider how we can determine wiether or not a point is inside the polygon? Quitput Primitives {Line and
EiVEN -ODD Method : One way of doing so is to construct a line segment between the Circle Drawing Algorithms)
p:ioml in question and a point known to be outside the polygon. Then we count how

many intersections of the line segment with the polygon boundary accur.

Ifgihere are odd numbers of intersections then the point is INSIDE, an even number

mdlcales that point is QUTSIDE. This is called the ODD-EVEN test for determining
polygon interior points.

NOTES

i.
I
i
I
promt of intersection is also the vertex then 1o handle such a case, we must look at the
othler endpoints of the two line segments which meet at this vertex. If these poinis lie on

the same side of the constructed line then the point in question counts as even number

of ! 1nte1 sections. If they lie on the opposite side of the constructed line, the point is
cotinted as single intersection.

Fig. 2.7

There are many methods to fill a polygon. Some of them are :

qulod Fill Method : One way of filling the polygons is to first draw the edges of the
polygon in a biank frame buffer. Then starting with some "Seed™ point known to be
irlsEde the polygon, we set the intensity to the interior style and examine the neighboring
plxels We continue to set the pixel values in an increasing area until we encounter the
])oundaly pixels. This method is called Flood fill because color flows from the “seed”
plxel until reaching the polygon boundary.

When flood filling is used. the user will generally provide an initial pixel called a seed.,

theﬁalgm ithm will inspect each of the surrounding eight pixels to determine whether the
extent has been reached.

; __——Seed point

Fig. 2.8

Self-Instructional Material 47

Computer Graphics Implementing the Flood Fill Algorithm

Flood-Fill

Flood-fill also called seed-filf, is an algerithm that determines the area connected 10 a
given node in a multi-dimensicnal array. 1t is used in the “bucket” fill tool of paint
programs to determine which parts of a bitmap to fill with coior and in puzzle games
such as Minesweeper, Puyo Puyo, Lumines, and Magical Drop for determining which

pieces are cleared.
NOTES

Fig. 2.9

The flood-fill algorithm takes three parameters: a start node, a target color, and a
replacement color. The algorithm looks for all nodes in the array which are connected 1o
the start node by a path of the target color. and changes them to the replacement color.
There are many ways in which the flood-fill algorithm can be structured, but they all make
use of a queue or stack daia structure, explicitly or implicitly. One implicitly stack:bhased
{recursive) flood-fill implementation (for a two-dimensional array) goes as follows:
Flood-fill (node. target-color, replacement-color):

1. If the color of node is not equal to farget-color, return,

2. Set the color of noede to replacement-color.

3. Perform Flood-fill {one step to the west of node, target-color, replacement-color).
Perform Flood-fill (one step to the east of node, target-color, replacement-color).
Perform Flood-fill (one step to the north of node, target-color, replacement-color).
Perform Flood-fill (one step to the south of node, target-color, replacement-coior).

4. Return.

Fig. 2.10

Though easy to understand, this implementation is impractical in languages and
environments where stack space is severely constrained (e.g., Java applets).

An explicitly queue-based implementation might resemble the following:

Flood-fill {node, target-color, replacement-color):

Set Q 1o the emply queue.

If the celor of nede is not equal to target-color, return.

Add node to the end of Q.

For each element n of Q:

Set the color of 10 replacement-color.

If the color of the node to the west of 1 is farget-color, add that node to the end
of Q.

If the color of the node to the east of n is targer-coior, add that node to the end

of .

S S N

P e ey e ey e

If the color of the node to the north of nis target-color, add that node to the end
of Q.
If the color of the node to the south of nis target-color. add that node to the end
of Q.
7. Continue looping until Q is exhausted.
8. Return.
IY[ost practical implementations use a loop for the west and east directions as an
cIJpnrm?almn i aveid the overhead of stack or queue management:
Elood-fill (node, target-color, replacement-color):

Set J to the empty queue.

If the color of node is not equal to target-color, return.
Add node to Q.

For each element n of

If the color of n is equal to target-color:

Set w and e equal to n.

e e

Move w to the west unil the color of the node to the west of wno longer matches
target-color.

=

Move e to the east until the color of the node to the east of e no longer matches
target-color.

19. Set the color of nodes between w and e to replacentent-color.

d:[). For each node n between w and e

11. If the color of the node to the north of n is target-color, add that node to Q.
l If the color of the node to the south of 1 is target-color. add that node to Q.
|112 Continue looping until Q is exhausted.

13. Return,

Aldaptmg the algorithm to use an additional array to store the shape of the region allows
generahzatlon to cover "fuzzy” flood filling, where an element can differ by up to a
specaﬁed threshold from the source symbol. Using this additional array as an alpha

chanm,] allows the edges of the filled region to blend somewhat smoothly with the not-
filled region.

Another method to fill is called SCAN LINE Meihod. One need to consider only the
pllxels which lie inside the polygon.

Thle algorithm can be sped up by filling lines. Instead of pushing each potential future-
])lXGl coordinate into the stack, it inspects the neighbour lines (previous and next) to
ﬁrﬁd adjacent segments that may be filled in a future pass: the coordinates (either the
start or the end) of the line segment are pushed on the stack. In most of cases this
scanline algovithm is at least an order of magnitude faster than the per-pixél one.

LelI us suppose that we start with the largest Y value and work our way down, scanning
from left to right as we go in the raster manner. Our constructed test lines will be the
horlzontal lines at the current Y scanhing value. Many problems in computer Graphics
can be approached a scan line at a time. Algorithms, which take this approach. are
callled SCAN LINE algorithms.

We can draw to boundary of the polygen in a blank frame buffer and then examine the
pixels in the box around the polygon. scan line by scan line. Moving around the scan
line, when we encouniter a pixel with the intensity of the boundary, we enter the polygon.
Subsequent pixels are given the interior intensity until we encounter a second boundary
pixel.

Owtput Primitives (Line and
Circle Drawing Algerithms)

NOTES

Sell-Instructional Marterial 49

Compuler Graphics

NOTES

50 Self-instructional Material

The problem with this scheme is that we must start with a frame buffer free of pixels with
the polygon boundary intensity and we must be careful aboul cases where two polygon
edges meet at a single point. We can avoid this problem by determining the polygon
houndary values directly from the polygon instruction instead of from the frame buffer.
Using the display file instructions, we can determine where the scan tinc crosses the
polygon boundary.

“Consider only the sides which intersect the scan line. Our task becomes setting those
pixels on the horizontal scan line which lie inside the polygon.”

2.16 OUTLINE FOR SCAN LINE FILLING ALGORITHM

The algorithm for filling a polygon should begin by ordering the polygon on the largest
Y value. It should begin with the largest Y value and scan down the polygon with
decreasing Y. For each Y. it should determine which sides can be intersected and
determine the X values for these intersection peints. The X values are sorted, paired and
passed to the line drawing algorithms.

The algorithm which performs the YX scan and fills in the polygon is called FILL-
POLYGON.

It starts by retrieving the polygon information from the display file and sorting it by the
largest Y value. This is achieved by means of picking the value through aigorithm
specially designed for this purpose. The filling, in of the polygon is done by repeating
these five steps: ’

1. First check if any additional polygon sides should be considered for this scan
line algorithm.

2. The second step is to sort the X coordinates of the points where the polygon
sides crosses the scan line.

3. The third step is to actually turn on or light the pixels between the polygon edges
4. Next the current scan line is decremented.
5. And the process repeats.

These steps are repeated unti! the scanning process has passed all polygon edges.

2,17 ANTI-ALIASING

In digital signal processing, anti-aliasing is the technique of minimizing the distortion
artifacts-known as aliasing when representing a high-resotution signal at a tower
resolution. Anti-aliasing is used in digital photography. computer graphics. digitai
audic, and many other domains.

In the image domain, aliasing artifacts can appear as wavy lines or bands, or moiré
patterns, or popping, strobing, or as unwanted sparkling: in (he sound domain, as
rough. inharmonic, or spurious tones, or as noise.

Anti-aliasing means removing signal components that have a higher frequency than is
able to be properly resolved by the recording (or sampling) device. This removal is done
before {re-) sampling at a lower resolution. When sampling is performed without
removing this part of the signal, it causes undesirable artifacts such as the black and
white noise near the top.

In signal acquisition and audio, anti-aliasirig is often done using an analog anti-
aliasing filter to remove the out of band component of the input signal prior to sampling
with an analog to digital converter. In digital photography. optical anti-aliasing filters
are made of birefringement materials, and smooth the signal in the spatial optical

J—

ﬁomain The anti-aliasing filter essentiaily blurs the image slightly in order to reduce
resoiutlon 1o below the limit of the digital sensor {the larger the pixel pitch. the lower the
?‘ch:evable resolution at the sensor level).

Basically there are two methods of anti-aliasing:

+ Post-iliering

» Pre-filtering

Post-filtering

II%[this process sample rate is increased and this is accomplished by increasing the
resolution of the raster device, However there is a limit to the ability of CRT raster scan
dewces to display very fine rasters. This limit suggests that the raster tube calculated at
h‘!gher resolution and displayed at lower resolution, using some type of averaging to
olll?lain the pixel attributes at the lower resolution, Actually the concept of filtering
olliiginates from the field of signal processing. This technique is called post-filiering.

There are two main post-filtering techniques which are as follows:

i
2.
1.

s A e ——_EE

Supersampling
Low-pass Filtering

Supersampling: Supersampling is an antia-liasing technique. the process of
eliminating jagged and pixelated edges (aliasing). It is a method of smoothing
inmages rendered in computer games or other programs that generate imagery.
Aliasing occurs because real-world objects have continuous. smooth curves and
lines. Monitors can only display discrete points of light called pixels. Since
pixels are square and uniformly colored, lines become jagged.

Supersampling is one of the ways of solving this problem. Samples are taken
at several instances inside the pixel {not just at the center as default) and an
average color value is calculated. This is achieved by rendering the image at a
much higher resolution than the one being dispiayed, then downsampling
{shrinking) it to the desired size, using the extra pixels for calculation. The resukt
is smoother transitions from one line of pixels to another along the edges of
objects.

The number of samples determines the quality of the output, Options available
normally range from 2x to 16x.

Computational cost and adaptive supersampling: Supersampling is computationally
expensive because it requires a lot of video card memory and memory band-
width, since the amount of buffer used is several times larger. A way around
this problem is adaptive supersampling. This works by acknowledging that very
few pixels will actually be on a boundary, therefore only these need 1o be
supersampled.

At first only a few samples are made within a pixel. If these values are very
similar, only these samples are used for determining color. If not, more are used.
The result of this method is that a higher number of samples are calculated only
where necessary, thus improving performance.

Low-pass Filtering: Filiering reduces noise errors in the signal. For most appli-
cations a low-pass filter is used. This allows through the lower frequency
components but attenuates the higher frequencies. The cut-off frequency must be
compatible with the frequencies present in the actua!l signal (as opposed to
possible contamination by noise) and the sampling rate used for the Analog 10
Digital conversion.

A low-pass filter that's used to prevent higher frequencies, in either the signal
or noise, from introducing distortion into the digitized signal is known as an

.anti-aliasing filter. These generally have a sharper cut-off than the normal low-

Output Primitives (Linc and
Circle Drawing Algorithras)

NOTES

Self-Tnstructional Material 51

Computer Graphics

NOTES

52 Self-Instructional Material

pass filter used to condition a signal. Anti-aliasing filters are specified accord-
ing to the sampling ratc of the system and there must be one filter per input
signal.

Pre-filtering

In this method. a pixel is treated as a finite area rather than as a point and this technique.
hasically works on the true signal in the continuous space to derive proper values for
individual pixels. There is one most poputar pre-filtering technique. is termed as area
sampling which is discussed as follows:

Area Sanipling: In this approach, we superimpose a pixel grid pattern onto the
continuous object definition. For each pixel area that intersects the object, we calculate
the percentage of overlap by the object. This percentage determines the proportion of the
overall intensity value of the corresponding pixel that is due to the object’s contribution.

SUMMARY

s We loocked al geomelry involved in drawing lines. We derived equations and these
equations can be used by computer programs 1o generate lines,

s There are Lwo lines drawing algorithm which are employed by graphics designers/
developers:

1. DDA {Digital Differential Analyzer) method
2. Bresenhamt's line drawing algorithm.

¢ Bresenham’s method is a better method since il avoids the use of floaling point
operations.

» DDA technique for obtaining a rasterized straight line is 10 solve the dilferential equation
for a straight line

Dy/D,= constant or AJ/A = (- v}/ (- x)
The solution is for the above differential equaltion is
Yo=Y +Dy
Yior= Y+ (- 0/ g - x)) 4,
where (x;. ¥;) and (x;. y3) are the end points of ihe required straighit line and Yiis the initial
value for any given step along the [ine.

s Bresenharn'’s line algorithm is an efficient method for scan converting straight lines in that
it uses only integer addition, sublraction and multiplication by 2 and floating poini
operations are avoided in Bresenham's algerithm. The computer can perform the
operations ol integer addition and subtraction very rapidly. The lines drawn are of
superioy quality as compared (o DDA method.

& Screen coordinates increase [ron lelt to right and lrom Lop to bottam. The resolution of
the system used 10 write programs in this book was 640 x 480 (VGA resolution).

s Circle has eight-point symmetry so it is very easy to plot the circle. Bresenham's circle
algorithm uses this symmetry to draw the circle. Circle mid-point and eilipse generation
algorithm is also given in the hook.

‘REVIEW QUESTIONS

I. Write a program to draw a circle using Bresenham’s algorithm.
2. The endpoints of a given line are (8. 0) and (6, 18). Compute each value of ¥ as x steps
lrom 0 10 6 and plot the resuli using DDA method.

|
|

- What are the steps required to plot a line whaose slope is between 0 and 45 degrees

using Bresenham’s method?

. Indicate which raster locations would be chosen by Bresenham’s algoritbun when scan

converling a line from pixel coordinate {1, 1) 10 pixel coordinate (8, 5).

. Which one is belter line algorithm: DDA or Bresenham's algarithm? Explain vour

answer.

. Modify Bresenham’s circle algorithm to circle mid point algorithm and develop a C

program [or the same,

7. What do you understand by Palygon Filling? Explain stack base full algorithm,
8. Discuss the techniques of anti-aliasing and describe the methods of anti-atiasing.

FURTHER READINGS

Computer Graphic: V.K. Pachghare, Laxmi Publications, 2007, Second edition.

Computer Graphics: Prabhakar Gupta. Vineet Agarwal and Manish Varshney, Laxmi
Publicalions. 2011.

Computer Graphics: Rajiv Chopra, S. Chand Publisher, 2011.

Computer Graphics; C.S, Verma, Ane Books, 2011.

Computer Graphics: Pradeep K. Bhatia. LK. International, 2009, pbk. Second Edition.
Computer Graphics: Ruchi Mishra, Global Vision Publisher. 20i0.

Qutput Primitives {Line and
Circle Drawing Algorithins)

NOTES

Self-Instructional Material 53

Computer Graphics

NOTES

54 Self-instructional Material

UNIT I"

2-DIMENSIONAL
TRANSFORMATION

30
31
3.2
3.3
3.4
3.5
3.6
3.7
38
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Learning Objectives

Introduction

Two Dimensional Transformation
Homogeneous Coordinate System

Roiation of a Picture about an Arbitrary Point Q (h, k)

Mirror Reflection

Shearing

Transformations Routines

Displaying Procedure

Windowing and Clipping

Viewing Transformation

Application of Viewing Transformation
Aspect Ratio '

Clipping

Point Clipping

Line Clipping

Clipping Coordinate

Midpoint Subdivision Algorithm
Polygon Clipping

Sutherland Hodgeman Polygon Clipping
Generalized Clipping

Multiple Windowing

Shielding

Hardware Input Devices Handling Algorithins
Classes of Input Devices

Enabling and Disabling the Input Devices
Event Handling

String Queue

Event Checking

Echoing

Interactive Techniques

s Summary

» Review Questions

e Further Readings

e b—

|

3.0 LEARNING OBJECTIVES

!
After going through this unit, you should be able to:

» describe about two dimensional transformation

* discuss about homogeneous coordinate system

s explain the term windowing and clipping

describe the interaction picture construction techniques.

311 INTRODUCTION

i
Alimost ali graphics systems allow the programmer to define picture that include a
variety of transformations. For example—The programmer is able to magnify a picture
s? that detail appears more clearly, or reduce it so that more of the picture is visible.

Basic operations are as follows :
(@ Translation
ib) Scaling
ic) Rotation.

1
312 TWO DIMENSIONAL TRANSFORMATION

il . , . .
In'2D Transformation twoe dimensions are available, i.e., X-Axis and Y-Axis.
T .
Graphically it is represented as follows :

vi

Fig. 3.1

[y S

—

Translation: Translation means to move a picture {rom one point to another
point ie, in translation the position of the picture is changed.

—

[
1 Example: If P (X, Y} and we translate it at (h, k) then the point P’ becomes
X+hY+4k.
1_ Sowecansaythat P'=P+T o [A]
! X'=X+tx 1Bl
a Y’z_Y-H_y ..1Cl
Example:
IfP (2, 3) and T = (5, 6) then calculate P'.
X=x+tx X=2+58=7
Y=y+ty Y=3+6=9
So the value of P'= (7,9). Ans.

N—OP We cannot represent the translation irr the form of Matrix.
Example: Translate a polygon with coordinates A {2, 5). B (7, 10) and C (16, 2)
by 3 units in X-direction and 4 units in Y-direction.

A=A+T

[

2-Dimensional Transformarion

NOTES

Self-Instructional Material 55

e

Comiputer Graphies

NOTES

56 Scll-Instructional Material

N I
= 9 ns
B=B+T
= [71.?
= 1074
w-[]
= _14- 5.
C=C+T
o [19,]3
“12]"14
LI
= _6 ns.

{h Scaling: Scaling means to change the size of the picture. If (P} is the initial point

and after scaling the point is (P’), then
P'=S*P
X' =5x+X

X’ Sx 0] (X
MR
In the scaling we represent the Scaling as follows
PP=S*P
Where (S) is a two dimensional matrix, which is known as Scaling Matrix.

Example: Scale the pelygon with coordinates A (2, 5), B (7. 10) and C(10, 2) by two
units in X-direction and two units in Y-direction.

Where Y =S5Sy+Y

Solution:

Given Sx=2and Sy=2

Therefore transformation matrix is

=[5)l 2

2 5
The object matrixis | 7 10
10 2
'X’ P
LY, 2 5|0
So X, Yl=|7 10t* 0 2
X5 Y] [10 2
(X5 Y| [4 10
X, Yj|=|14 20| Ans.
X5 Yi| |20 4

(0 Rotation: Rotaticn means, we want to rotate the picture by an angle.

P{X.Y)
X r
Fig. 3.2
x In this case :
I X' =rcos(8+¢)

X =rcosBcosd-rsinbsing oAl
But X=rcos9

Y =rsin®
Now from equation |A] we have

X'=Xcos¢p-Ysind ... |B]
Now

Y’ = rsin (0 + 6)

Y =rsinBcoso+reosBsind ..IC]
But X=rcosd

Y =rsin@
Now from equation [C] we have

Y =Xsing+Ycos ¢ D]
Now from equation |Bf and [D] we have

X’ cosp —sing| X
v’ |sino cosd| 1Y

P'=Riy"P
Where Ry is called Rotation Matrix.
Nm Now in 1w dimensions, we cannot assign the value of translation in the
Matrix form. Now to solve this problem we consider a new coordinate system that is
known as Homogeneous Coordinate System.

3.3 HOMOGENEOUS COORDINATE SYSTEM

In l:; Homogeneous coordinate system, we add a new additional logical dimension. In
Hol;nogeneous coordinate system, the coordinate is
P {wx, wy, w) where w! =0
If we want to convert it in 2D, then the coordinate is
X=wx/wandY = wy/w
For{Example : If in Homogeneous system, the coordinates is (1, 1, 0.5) then in 2D

coordinate system the coordinates will be (=(2,2)

05’ 0.5)
The advantage of Homogeneous Coordinate System is that. by this coordinate system,
we'can converl the translaiion in the form of Matrix.
() Translation: If the initial coordinate is (X, Y, 1) and after the translation, the
cocrdinate is (X', Y’, 1) and the ranslation factor is 1, and ¢, then we can represent
this as follows :

2-Dimensional Transformation

NOTES

Self-instructional Material 57

Computer Graphics X=X+,

Y=Y+
X1 [1 0 &} [X
yl=[0o 1 w|*Y
1] (0 0 1]]1
P’=T*P
. (1 0 K] N
NOTES Where T=|[0 1 ty| iscalled Translation Matrix.
v 0 0 1

{h Scaling: In Homogeneous coordinate system, the Scaling is defined as follows:
If the initial point is (X, Y. 1) and after the Scaling the point is (X", Y’, 1) then
we can define it as follows :

b Sx 0 0] [X
Y |=|0 Sy O*Y
1 0 0 1 1
- (© Rotation: In Homogeneous coordinate system, the Rotation is defined as follows:
If the initial point is (X, Y, 1} and after the rotation. the point is {X". Y*, 1) then
we can define it as follows @
X cosd —sing O X
Y'|=]sin¢ cosg O*lY
1 0 0 I[]1
Scaling a picture about an arbitrary point Q

I
; If the picture is as follows and if we want to scale the picture about the poini Q (h. & then
the following points are to be followed :

Q(h, k)

Fig. 3.3
Step 1.

Translate Q to origin

Qth, k)

58 Self-Instructional Materiaf

i
Step 2.
Perform Scaling

Step 3.
1}

Translate point QQ to its original position.
Translate point Q o its original position

—

Mathematically it defines as follows

PP=T_p_py*P

P”= Sy 5y P

P =Ty "P”

ow from equation |A], [B], and |C] we have

P =Ty r " Ssxsy Ten-n™F

o

l P"=[0 1 k|*|0 Sy

Sx 0 h 1 0
| P’=|0 Sy k|*[0 1
.; (0 0o 1|0 o
ISy 0 —Sxh+h
P"=10 Sy -—Syk+k|*P
0

Sx 0 (1-Sx)h|
P*=|0 Sy (1-Sy)k|*P

PII! = M - P
Where (M} is called Composite Matrix.

0] |1

of*|0

11 |0

—h

-k*P
1

e B = |

1Al
.18
e

..ID]

- [E|

Example: Write composition of matrix for (2, 2) magnifying the picture ABCE about its center

and center is at (10, 10).

2-Dimensional Transformation

NOTES

Self-Instructional Material 59

Computer Graphics

NOTES

60 Scif-Instructional Marerial

Solution:
Step 1. Translate the picture at origin

P'='I'(-|0.-10)*P

2 0
0 2
0 0
1 0
0 1
0 0
*P
Ans.

1 0
o|*(o 1
1116 0
-10
-10|*P
1

Step 2. P"=Sp 5"
Step 3. P =Tugany " P”
Now from equation {A], [B], and [C] we have
P = T{m. 10) ' S(z. 2 ? 1:(- 10.- 10) *P
i 0 10
P"=10 1 10[*
0 0 1]
[2 0 10]
p”=(0 2 10]|*
0 0 1]
[2 0 -10]
P"=310 2 -10
0 0 1]
So the compaosite matrix is !
2 0 -10]
M= |0 -10
(0 0 1]

1Al
. B]
e

-10
-10|*P

3.4 ROTATIONOFA P‘ICTURE ABOUT AN ARBITRARY POINT Q (H,K)

The following steps are followed for the rotation of a picture about an arbitrary point

Qlh.)
Step 1. Translate Q to origin.
Step 2. Perform rotation.

Step 3. Back Translation of point Q to its original position.
Graphically it is represented as follows :

Q (k, k)

Step 1.

Perform Scaling

Fig. 3.4

—

s

S_tep 2. v

Mathematically it is represented as follows
PP=T ,.n*P
P"=Rg " F'

| P = Ty i * P

Now from equation |A], [B], and [C] we have

P =T " Ry " Tipn"P
1 0 k| |cos® —sin® 0|1 O
P"=10 1 k|*|sin® cos® O*(0 1
0 0 1 0 0 1 0 0
P"=M*P

}
Wlf!iere M is the Composite Matrix,

NOTE W We know that M, M,t= Mi *M,. Where M, and M, are two Matrices, But in Compuer
fo '

Graphics M; * M, = M, * M, I the following case
Will_ere are doing simultaneous types of a parameler.
(1;] Firstly we translate any piciure and then again translate the picture,
ﬁ M, "M, =M," M,
{b} Firstly we scale the picture and again we scale the picture then
M, " M,= M, M,
(cl] Firstly we rotate the piclure and then again rotate the picture then
MM, = M," M,

Example:
Verify that R " Rig=1
cos® -—sinf 0| |cos{(-0) -sin{-8) 0
sin 6 cosB 0*]sin(—8) cos(-8) 0O
0 0 1 ¢ 0 1

. |Ad
. {B}
- ICl

1
=

-k|*P

Z2-Dimensional Transformation

NOTES

Self-Instructional Material 61

Computer Graphics

NOTES

62 Self-Instructivnal Material

[cos® —sin® 0 cos@ sin® O
sin© cos® O0{*|-sin® «cosB O
0 0 1 6 0 0
[cos? 0+5in20 sinfcos@—sinBcos® 0
0 1 0
0 0 i
1 0 o
0 1 0
0 0 1
I |[Identity Matrix]
NOTE W Anticlockwise Rolation (+)
Clockwise Rotation (-)

Example: Given fine PQ where P (1, 2} and G (3, 10). Rotate this line about Q by 90°.
Solution:
For rotation we perform the following steps:
Step 1. Translate Q to origin.

P=T s _ " P

P”= Ry * P

P = Tg 10" P
Now from equation [A], [B]. and |[C| we have

P”=Ty 10" Rigoy " Tro3,-19) " P

[(x; x3] {1 0 3] fcos90 -sin%0 0] [1 0 -3} [1
Y, Y|=|0 1 10[*{sin9 cos90 O|*|0 1 -10|*|2
1 1] [0 0 1 0 0 1110 o0 1| [1
(x; xs1 1 o 3][o -1 o] {1 o =-3}[1 3
Y, Yj|=|0o 1 10}]*1 o0 ol*fo 1 -1w0*|2 10
1 1| [0 0 1f|p 0o 1j|0 O 1 [1 1
X{ x3] [o -1 3] [-2 o0

Y Yi|=|1 o0 10[*[-8 0

1 1) (0 0o 1][1 1

x; x31 fino3

Y, Y|={8 10

1 1] {1 1

So the value of P’ (X, Y,) =P (11.8)
And the value of Q7 (X, Y,) =Q' (3, 10) Ans.
Example: Calculate A’B'C’ LY where a picture is rotated 30° about point A.
A@G.1).B(3.7).C(1.3).andD (5. 3)
Solution:
We perform the following steps for rotation

Pr=Ts.n"F

P”= Riygoy * P’

P”=Tg y*P”

o (A

]

-~ ICl

3
10
1

. [Bi

- [C]

\'%

Now from equation [A], [B]. and |C] we have
P”= T(a. 1) * Rr30°) * T{- 3,-1 "P

;X{ X5 Xy X5 I 0 3} |cos30
}Y{ Y; Y Y. [=10 1 1[*sin30
1 1 1 1 0 0 1 0

] . .
l?y this equation, we can calculate

(}1(1', LT v (), we'h and (%), v,) Ans,

-sm30 0|1 0 -=-3]13 3 1 5
cos30 O|ff0 1 ~-1|*1 7 3 3
0o 1110 0 1 1 1 1 1

35 MIRROR REFLECTION

0
The mirror reflection of a picture is shown as follows :

f

Th}is is Mirror Reflection

!

Fig. 3.5

0
0

|
If the mirror reflect about X-Axis then the equation is

is called the Mirror Reflection Matrix

X'=XandY'=-Y
X1 1 o
Y[=10 -1
1] (0 o
So P'=Mx*P
[1 0
Where Mx= |0 -1
|0 0

t
ab?lul X-Axis.

If the mirror reflect about Y-Axis then the equation is

0
0
1

0]

is called the Mirror Reflection Matrix

X=-Xand¥Y =Y
x7 [-1

Y= 0 1
t] Lo o

So P'=My*P
‘ -1 0
Where My=| 0 1
| 0 O

about Y-Axis.

2-Dimensional Transformation

NOTES

Seli-Instructional Material 63

Computer Graphics

NOTES

64 Self-Instructional Material

Mirror Reflection of a Picture About a Line y = m x

If we apply the Mirror Reflection of a picture about a line y = m x then we followed the
following points

Y A Y=mxL
o
& c
(90° - 8) BTD
% A
X
Fig. 3.6

The following are the points which we can mirror reflect about a line through X-axis.
Step 1. Rotate Line L by {- 8)

Where 8=tan ! (m)

PP=Ry*P Al
Step 2. Take Mirror reflection about X-Axis

P"= Mx*P - |B]
Step3. Rotate Line Lby (+8)

P” =Ry *P” - 1C]

Now from equation {A], |B]. and [C] we have
P” =R *Mx*T._g*P Ans.
The following are the points by which we can Mirror Reflect the image about line through
Y-Axis.
Step 1. Rotate Line L by {90 - 8)

P'=Rgs.gy" P - A]
Step 2. Take Mirror reflection about Y-Axis.

P"=My* P’ - |B]
Step 3. Rotate Line L by (90 - 6)

P”=Rmo-en" P” 1€

Now from equation 1A, |B]. and {C] we have
P” =R 9o-op "My* Tgg_g " P Ans.

Mirror Reflection of a Picture About aLine y=mx+ ¢

If we apply the Mirror Reflection of a piciure about a line y = m x then we followed the |
following points

o
Y c Y=mwxn
B!
A
D
Re
c
X
Fig. 3.7

In this case the following steps are to be followed

[1
1
]I

Step 1. Translate the Line by (0, - C)

‘ P=Ty.q)"P o [A]
Step 2. Rotate by {-8) Where 8 = tan™' (m) .
P’=R g P ..-|B]
Step 3. Take Mirror Reflection about X-Axis
‘ P” = Mx* P” - [C]
Step 4. Rotate the Line by (8)
\ P™ = R, * P” - (D]
Step 5. Back Translate (0, C)
l O N Bl

Now from equation [A], |B}, |C}. [D] and |E] we have
P”’” = T(UC) * R[e} * MX* R(_ q) * T {] C} P AI‘IS

3%6 SHEARING
I

A transformation that change the shape of an object is called the Shear transformation.

Two cammon shearing transformations are used. One shift X coordinate values and
other shift Y coordinate values. However in both the cases only one coordinates (X or Y)
changeq its coordinates and other preserve its values.

Sl11learing About X-axis

'I‘I?e X Shear preserves the Y coordinates, but changes the X values which changes
vertical lines to tilt right or ieft as shown in the following figure

- X
Fig. 3.8(a) Criginal cbject

X
Fig. 3.8(b} Ohbjects after X shear

X=X+8,*Y
Y=Y
| Xl [1 sh, o] [X
' Y'[=]0 1 o(*|Y
1] [0 o 1] |1
P’= S[Shcar X) *P
[1 Sk, 0]
Where Stshearxy= |0 1 0 is catled shearing Matrix about X-Axis.
0 0 1

L

Z-Dimensional Transformation

NOTES

Self-Instructional Material 65

Computer Graphics Shearing About Y-axis

The Y Shear preserves the X coordinates, but changes the Y values which caused
horizontal lines to transform in to lines which slope up or down as shown in the
following figure

MOTES

=X

Fig 3.9(a) Original ohject

—

Fig 3.9(b} Ohjecct after Y shear

X=X
Y =Y+S,, X
x1 [1 o o] [x
Y =15, 1 0P*Y
1 (0 0o 1j [
P = S[Shear‘r’} *P
(1 0 o
Where Ssheary) = [Spy 1 0] iscalled shearing Matrix about Y-Axis.
0 0 1

3.7 TRANSFORMATIONS ROUTINES

In the Transformation Routines. we have to write the functions for translation scaling
and rotation and mirror reflection etc.

3.8 DISPLAYING PROCEDURE

The calls which involve esiablishiment of a transformation are called display procedure
calls and these calls can be nested, ie., there can be multiple transformations and
subprograms which draw sub pictures are known as Display Procedures.

For example if we want to scale any object about a given point then first we translate the
point in to origin and then apply scaling and again we translate back 1o original
position. In this situation user would add one or more translation levels to the system.

66 Self-Instructional Material

|

|
Basically a procedure call involve the following steps : . 2-Dimensional Transformation
1. Saving the overall transformation matrix

2. Multipiying the overall transformations matrix on the left by the transformation
in the cali 0 form a new overall transformation matrix

A'routine from a display procedure invelved the following steps::

1. Restoring the overall transformation matrix-from the value saved

2. Returning control to the calling program.
ffi?fanlple. Perform a 60° rotation of triangle A (0, 0}, B (1. 1), and C (- 1. - 1). NOTES
I(?‘) About Origin by About P (0, 1)
S({lulion.
(8 When we rotate any image about origin, then there is no need for transforma-
tion.
P‘ = R {60) * P
) (x} x5 x3] [cos60 -sin60 0] [0 -1
vy, yy|=|sin60 cos60 Of*(0 1 -1
,l 1 1 1 0 0 1| (1 1 1
-~ -) -
B [
- , , 2 2
ot B S 0 1 -1
yioo¥ b‘§=[_i] (.]_] gi*lo 1 -1
111 2 2 11 1
| 0 0 1
'0 1-3) (f3-1)]
2 2
noon T J3+1) (-J3-1
yio yio oy|=|0 7)
1- 1 1
1 1 1 |
Now comparing the values we have
X/'=0
Y, =0
. (1-13)
2 =
L2
J3+1)
YZ’ = 2
\ /
X ¥ JE B 1
T2
A
3+1
Yy =- (\/_2 J Ans

Sell~Instructional Material 67

Computer Graphics

NOTES

68 Self-Instructional Material

- (B About P (0. 1)
Step 1. Translate point P to origin

P'=Typ.y"P 1Al
Step 2. Perform the Rotation

P”= Ry " P’ .. |B]
Step 3. Back Translate to point P

P=T " P -lcl

Now fromn equation {A], |B]. and [C] we have
P = Tm. n " Ren” T{u,- n P
From this equation we can find the values of (X" Y}, {X;". Y}, and {X5". Y3'). Ans.

Example. Reflect the triangular polygon whose verticesare A (- 1, 0), B{0,-2). and C (1. 0)
about the liney = x +2.

Solution. -
Y=x+2 1]
Compareequation {l|by y=mx+c
M=1
C=2
Step 1. Translate the Line by {0. - 2)
Pr=Ty_n"P o A
Step 2. Rotate line L by {- 45)
P" =R 45 P - [BI
Step 3. Take Mirror Reflection about X-Axis
P™ = Mx*P” * ..l
Step 4. Back Rotate the Line by (45)
P = Ryygy * P .. [D]
Step 5. Back Transtate (0, 2)
P™ =Ty »*P™ ... |El

Now from equation JA], [B|, [C]. D] and [E| we have
P =Tz " Ruysy) "Mx"R_45 " Tig_ " P
Now from this equation we can calculate the desired points. Ans.

3.9 WINDOWING AND CLIPPING

Typically, a graphics package allows us to specify which part of a defined picture is 10
be displayed and where that part is to be displayed on the display device. Furthermore,
the package also provides the use of scaling, translation and rotation techniques
described in the previous chapter to generate a variety of different views of a single
picture. We can generate different views of a picture by applying the appropriate
scaling, translation and rotation. The process of selecting and viewing the picture with
different views is called Windowing and a process which divides each element of the
picture into its visible and invisible positions, allowing the invisible position to be
discarded is called Clipping.

3.10 VIEWING TRANSFORMATION-

We know that the picture is stored in the computer memory using any convenient
cartesian coordinate system. referred to as Word Coordinate System (WCS).

LS

However, when picture is displayed on the display device it is measured in Physical
Iaevice Coordinate System (PDCS) corresponding to the display device. Therefore
displaying an image of a picture involves mapping the coordinates of the points and lines
that form the picture into the appropriate physical device coordinate where the image is to
bt? displayed. This mapping of coordinates is achieved with the use of coordinate
transformation known as Viewing Transformations.

\?{indow

The portion of the picture which we want to display is called Window.

View Port .

Vtiew Port means area of display device on to which window is mapped.

The viewing transformation which maps picture coordinates in the Word Coordinate
System to display coordinate in Physical Device Coordinate System is performed by the
fo}llowmg iransformations :

(a) Normalization Transformation (N)
(b) Workstalion Transformation (W)

() Normalization Transformation: We know that, different dispiay devices may
have different screen sizes as measure in pixels. Size of the screen in pixel
increases as resolution of the screen increases. To avoid this and make our
programs to be device independent, we have (o define the picture coordinates
in some units other than pixels and use the interpreter to control these coordi-
nates to appropriate pixel values for the particular display device. The device
independent units are called the Normalized device coordinates. In these units
the secreen measures 1 unit width and 1 unit length which is shown in the
following figure.

.1 (1.1

(0. 0) {(1.0)
i Fig. 3.10(a)

|
! The lower left corner of the screen is the origin, and the upper left corner is the
[point {1, 1). The point (0.5, 0.5) is the center of the screen no matter what the
1 physical dimensions or resolutions of the actual display device may be. The

INTERPRETER uses a simple linear formula to convert the Normalized device
coordinate to the actual device coordinates.
X=Xn*XwiA]
i Y=Yn*Y#h|B|
1 Where

X = Actual device X coordinates.
Y = Actual device Y coordinates.
X = Normalized X coordinates.
Y 1= Normalized Y coordinates.
X w= Width of actual screen in pixels.
Y h = Height of aciual screen in pixels.

£

2-Dimensional Transformation

NOTES

Self-Instructional Material 69

Computer Graphics

NOTES

70 Seif-Instructional Material

The transformation which maps the word coordinates to Normalized device
coordinate is called Normalized iransformation. It involves Scaling of X and Y,
thus it is also referred to as Scaling transformation.

() Workstation Transformation; The transformation which maps the Normalized
device coordinates to physical device coordinates is called Werkstation trans-

formation.

The Viewing transformation is the combination of Normalization transforma-
tion and Workstation transformation which is defined as follows::

V=W'N

. [A]

Where N is the Normalized transformation which mapped the word coordinate system
to Normalized coordinate system and W is the transformation which mapped the
Normalized device coordinate syster to device coordinate system.

Now if there is a Window (X W min, Y Wmin, X V max, Y V max). Now we want to map

the window on to the View Port.

Itis described in the following figure :

Y
Window ¥ extent
X extent
- X
Fig. 3.10(b)
The following steps are to be followed :
Step 1. Translate the window o to origin
P'=T (xwmin-¥Wmnin A
Step 2. Taking the scaling
P’=Sixspy P .. [B]
Step 3. Translate it to View Port
P” = T(X Wnsin. Y Wnin) ~1€]
Now from equations [A], |Bl, and |C], we have
P” = T(X Wmin, Y W min} - S[s'x.S}‘) ' T{—)(\’\’mirl_-YW min} [DI
Butin th}e case of Normalized device coordinate system coordinates of View Port will be
0.0,1.1).
So XWmin=20
YVmin=0
XVmax=1
YVmax=1
Now
1 0 XVmin
Txwminywmin =10 1 YVmin
10 1
[1 0 0
Two=[0 1 0|=I
0 0 1

So from equaticen [D] we have

I *
V=1 S(s X549 T[-x W min, — Y W min) 2-Dimensional Transformation
—_ *
V= S{sx. 5y T(-X\‘\-’mln.- Y Wmin) IE]
Equation |E] represent the viewing transformation matrix in the Normalized device
coordinate system.
XV max — XV min
XW max ~ XW min
YV max - YV min
YW max — YW min NOTES

The following figure shows the compiete viewing transformation

Where Sx=

And Sy=

Word Normalized)
coordinate Transformation
Systemn (WC)
¥
Device
Translate Scale Rotate » Coordinates
{DC)
Waorkstation Transformation

Fig. 3.11

3111 APPLICATION OF VIEWING TRANSFORMATION

)
The following are the applications of viewing transformation:

. By changing the position of the View Port, we can view object at different
positions on the display area of an output device

displayed objects

|
T. By viewing the size of view ports, we can change the size and properties of
3

. We can achieve zooming effects by successively mapping different sized win-
‘ dows on a fixed size view port.

Example Find the Normalized transformation for mapping a window (1. 1, 3, 3) on to a view
po:t (A} (0.0, 0.5, 0.5) and on to a view port (B) (0,0, 1, 1).

Sollutmn
(A){iCiven Window (1.1.3.5)
VléW‘ port {0, 0. 0.5, 0.5)

XWmin=1

l YWmin=1

l XWmax=3
YWmax=>5
XUmin=190
YUmin=0

‘ XUmax=105

‘i YUmax=105

So this is Normalized Device Coordinate System.

XV max — XV min
XW max — XW min

Sx=

H Self-Instructional Material 71

B

Computer Graphics

NOTES

72 Se!f—_lnstrucrionaf Material

Sxe 05-0
3-1
S.\'zgé
2
Sx=l
4
' Sy YV max — YV min
Y= YW max - YW min
05-0
S =
Ay
05
Sy= —
7=
1
Sy= —
=%

Now for viewing transformation matrix
Step 1. Translate the window on to origin

P'= T[—X Wmin - ¥ L min)
Step 2. Taking the scaling

P"=Seusn* P
Step 3. Translate it 1o View Port

P = T{XV min, YV min)
Now from equations |A], |B], and [C], we have

P = T{X\f'min.‘:'\-' min) : S{sx. ¥ ¥ T(—X\Nmin, -Y W omin)
Now the viewing transformation matrix

V= T{XV min. YV min) v S(sx. 54 * T(—X W min, - Y ¥ min}
But in case of Normalized Device Coordinate System, we know that

T(xv min, YV mim = T (1181 I I

So
V= S(sx. sy} * T(—X Wmin, - Y W min)
V=s(l,1]*T[-1,-1)
4 8
1 o o
4 1 1 0 -1
V=10 3 o|*flo 1 -1
0 0 1 [0 0 1
+ » i
2 1
- 0 —
4 4
-1
V=0 l — | Ans.
8 8
0 0 1

A

... |BI

- IC]

.. D}

(113) Given Window (1,1, 3, 5)
it .
View port (0,0, 1, 1}
Sx = XU max —~ XU min
XW max — XW min
1-0
Sx= ——
3-1
Sx= l
2
Sy YU max — YU min
Y= YW max — YW min
1-5
Sy= ——
| Y= %520
i 1
Sy=—
| ok
Inthis case the Viewing transformation matrix-
V= S[sx‘ 51 * T{- X W min. - ¥ Wiminj
V= s(l,l]*'r(-l,-l)
2°4
1 0 0
2 1 1 0 -1
V=|0 1 oo 1 -1
1 1]
- 90 —
2 2
V=0 - Ans,
4 4
0 0 1

Example. Find the viewing transformation for mapping a window ABCDA (1. 1).B(5,3).C

. l:'j) and D (0. 3} on to the Normalized view port (0,0. 1, 1).

Solition.

So 1 tan © = (2/4) = (1/2)
Thén 5in @ = _J%
An(ljl cosB= 2
I s
| AB= |[(5-1) +(3-1)
AB= J16+4

AB= [20
j_ AB= 2.\/3

2-Dimensional Transfermation

NOTES

Self-Instructivnal Material 73

Computer Graphics Now the following steps are to be followed

C
4.5)
[¥]
(©,3)

B

(5.3)
NOTES 2

A1, 1) 4

Step 1. Translate the window by (- 1.- 1)
Step 2. Rotate ithy - 8
’ Step 3. Taking Scaling
After performing these steps the shape is as follows :

In this case

S 1-0
X= _ZJ—5—
Sxe —
X = 375
1-0
Y E
1
Sy:ﬁ

So the Viewing transformation matrix

o c
J5
A
25 B
V=S;xsn Ree " Teioy
[Sx 0 0] [cos(-8) -sin(-8) 0] 1 0 -1
V=0 Sy 0|* sin(-6) cos(-8) 0|*|0 1 -1
0 0 1 0 0o 1o o 1
[1 112 1 T
—_— 0 gl | = — 0O
25 V5 5 i 0 -1
1 -1 2
V=1| 0 — O —= — 0o0|¥|10 1 -1
J5 555 6 0 1
0 0 1 0 0 1

After muitiplying these matrices we can find the viewing transformation matrix.

74 SelfiInstructional Material

3112 ASPECT RATIO

if
There are two types of aspect ratio :

(@ Windows Aspect Ratio

Eb} View Port Aspect Ratio,

.Ea} Windows Aspect Ratio: The Window Aspect Ratio is calculated as follows :
XW max - XW min

a,= LA
¥ YW max — YW min

(b} View Port Aspect Ratio: The View Port Aspect Ratio is.calculated as follows :
XV max — XV min
YV max — YV min

a,= . |B|

|

J

313 CLIPPING

Cl]ilpping means that the portion which is inside of the window is displayed, but the
pm"uon which is outside of the window is not displayed. The procedure that identifies
Lhe : portion of a picture that are either inside or outside of a specified region of space is
referred to as Clipping. The region against which an object is to be clipped is called a
Cllp Window or Clipping Window:.

f . .
It unusually is in a rectangular shape as shown in the following figure :

/ P1i
Pt

/ =1

P2
Fig. 3.12 (@) Before clipping Fig. 3.12 (b) After clipping

3.14 POINT CLIPPING

!
The pomts are said to be interior to the clipping window if

XW min € X € XW max
ANI? YWmin£Y <YW max

NOTE W The equal sign indicates that points on the window boundary are included within the
window.

3.15 LINECLIPPING

The Line are said to be interior to the Clipping Window and hence visible if both end
poir'ns are interior to the Window. '

We will now discuss the Line Clipping Algorithms

1. Sutherland Cohen Line Clipping Algorithm: The algorithm is used for clipping
E of a line against a rectangular window (X W min, Y W min, X W max, Y W max).

This algorithni uses a 4 bit code.

2-Dimensional Transformation

NOTES

Scif-instructional Material 75

Computer Graphics Graphically it is represented as follows

Y =Y max 1000 Q (XW max. YW max)
0001 0010
NOTES Y=Y minP / {(XW min, YW min) X = X max
X = X min 0100
Fig. 3.13

In this algorithm. the following steps are followed :
Calculate the end points code of 1A| and calculate the end point code of B].
The following procedure is followed for caleulating the end point code ©.

(@ For Bit 1
If YW min - YW max £ 0 then
Code =0
Else
Code = 1
by For Bit 2
If YW - YW max - Y £ 0 then
Code =0
Else
Code = 1+
(0 For Bit 3
If X - XW max £ 0 then
Code =0
Else
Code =1
(¢ For Bit 4
If XW min - X £ 0 then
Code =0
Elise
Code = 1

« If the end point code of both points {A) and (B) is 0000 and 0000 then

¢ The line is completely visible

» Else we take AND operation of end point code of A B.

« If after the AND operation, the result is 0000 then the line is partially visible and
it is called as Clipping Coordinates.

« Ifafter the AND operation the result is 1ro1 0000 then the line completely clipped
or completely invisible.

3.16 CLIPPING COORDINATE

1, The line which is partially visible, that is called Clipping Coordinate.

2. Now we find that which portion of line is visible and which portion of line is
invisible.

76 Sellinstructional Material

3. In this case, we find the intersection point of tine with windowing boundary
and the portion, which is inside the window is visible and the portion, which
is outside of the window is called Clipping Portion.

NOTE W For finding the intersection point. we have 10 use the following equation of the line :
X=X +(X;-X)) t - [A]
Y=Y +(Y,-Y)t .. [Bl

Example. We find that which portion of the line is clipped and which portien is visible.

{’(3, 15}
D

|
} C(8, 12}
3
!
|
‘ B
l A2, 3)
il Q6,12)
Solution. In this case
XWmin=2
(YW min=3
! XWmax=9
J YW max =12

Slcp 1. Firstly we find the end point code of Pand Q.
So fo: the end peoint code of P

X-l-!S andY =15

Bil—ll (Y-YWmax} 5 (15-12) 23>0—>code=1
Bit2 {YWmin-Y) - {(3-15) > -12<0 > code=0
BitPS (X-XWmax) 2 3-9)—=-6<0-—code=0
Bitli:l XWmin-X) - (2-3}>5-1<0—>code=0
So the 4 bit code of point P is 1000

Now for the end point code of Q

X r6andY 2

Bit Li (Y-YWmax) 5 (2-12) 5-10<0 > code=0
Bit—lZ (YWmin-Y}) =5 (3-2)>1>0—=code=1

Bit- 3 (X-XWmax) 5 (6-9)—>-3<0—code=0
Bit- 4 (XWmin-X)—=2(2-6--4<0—=code=0

So the 4 bit code of point'P is 0100

NO\t\{f the 4 bit code of P and Q. i.e.. not 0000 and 0000, so the line PQ is not complete!y
visible.

Sleg)1 2. Now we impose the AND operation between the code of Pand Q.
4 bit_ code of P =.1000

4 bit code of Q = 0100

AND operation — 0000

Now_after the AND operation the 4 bit code is 0000.

So now in this case line PQ is called Clipping coordinate.

il ' . ; .
Now,we have to find the intersection point.

i
'

|

2-Dimensional Transformation

NOTES

Self-Instructional Material T7

Computer Graphics Now from the 4 bit code we know that it intersects.
Y=Ymaxand Y=Y min
Now for first point say |, it intersects at Y = Y max
X=X, +X;- X))t o (A
Y=Y, +{Y,- Y}t .. |B]
Now from equation [B] we have, putting Y =Y max
Y max = y; + (y,- y))

NOTES t=(Ymax-Y,) /{Y,-Y))
(=(12-15) / (2-15)
t=(-3/-13)
t=(3/13)

Now we put the value of t in equation |A}
X=X, + (X=Xt
X=3+(6-31*(3/13)
X=1{48/ 13)
So the coordinate of I, is (48/13, 12)
Now for point[,
From the 4 bit code it will intersectat Y = Y min
Now putting Y = Y min in equation |B]
Ymin=Y, +(Y,- Y}t
t=(Ymin-Y,) 7/ {Y,-Y))
t=(3-15) / (2-15)
t={-12 / -15)
t={12 /13)
Now we put the value of tin equation {B}
X=X, +{X;- X))t
X=3+(6-3"(12/13)
L, X=(75/13)
So the coordinate of I, is (75/13, 3)
Now we find the code of 1, is (75/13. 3)
I, (48/13,12) and L, (75/13. 3)
For 4 bit code of |
Bit-1 (Y -YWmax) 2 {12-12) 5-0<0>code=10
Bit-2 (YW min-Y}) -5 (3-3) 5 0<0—=code=0
Bit-3 (X - XWmax) = (75/13-9) -5 ¢code =10
Bit-4 (XWmin-X) 2 (2-75/13} 2 -4 <0 - code=0
So the end point code of [, is 0000

Now the end point code of [, and I, is {0, 0, 0,.0) and (0, 0, 0, 0). So the portion I, [; is
visible. And the portion P |, and [, Q is clipped.

3.17 MIDPOINT SUBDIVISION ALGORITHM

1. We have seen that. the Sutherland Cohen subdivision line clipping requires the
calculation of the intersection of the line with the window edge.

2. This calculation can be avoided by repetitively subdividing the line at iis mid-
point.

78 Self-Instructional Material

3. Like previous algorithm, initially the line is tested for visibility. If line is com-
pletely invisible il is rejected.
4. Ifline is partially visible then it is subdivided in two equal parts. The visibility
1 tests are then applied to each half. This subdivision process is repeated until
we get completely invisible line segmenis.
This is illustrated in following figure :
/PZ /P2
P3
P P
{a) (b)
P2 P2
F’fy/ Pf’;/
P3 P3
;:/ '
P1 P
{c) {d)
P2
PS‘/
P3
P4P7 P6
P1
(e)
Fig. 3.14
Algbrithm

lI Read two end points of the line say P, (x;. ¥} and P, (x,. y).

2] Read two corners {left top and right bottom}) of the window say (XW min. YW min,
E XW max, YW max).

Assign the region codes for two end poeints using the following steps :
(A) E'For Bit 1

'i]f Y - YW max < 0 then

il Code =0

Else

W

Code = 1

(B} { For Bit 2

If YW man Y £ 0 then
Code =0

E

3
o

Code =1

2-Dimensional Transformation

NOTES

Sell-Instructional Material 79

Campuier Graphics

NOTES

80 Self-Instructional Material

{C) For Bit 3
If X - XW max £ 0 then

Code =10

Else
Code =1

{D) For Bit 4

I XW min X £ 0 then
Code =0

Else
Code =1

4. Check for visibility of lifie.
(@ If the end point code of both points are zero then
The line is completely visible.
Hence draw the line and go to step 6.
(b If the end point code of both points are not zero and the logical AND of them
is also non zero then the line is completely invisible. So reject the line and
ga to Step 6.
(& If end points cade for two end points do not satisfy the coordinate in 4 (a) and
4 (b). Then the line is partially visible.
5. Divide the pariially visible line segment in equal parts and repeat steps 3
through 5 for both sub divided line segments unti! you get completely visible
and compietely invisible line segiment.

6. Stop.

3.18 POLYGON CLIPPING

1. A Polygon is nothing but the collection of lines. Therefore, we might think that
line clipping algorithm can be used directly for polygon clipping.

2. IHowever, when a closed polygon is ciipped as a collection of lines with line
clipping algorithm, the original closed polygon becomes one or more open
polygon or discrete lines as shown in the following figure. Thus we need to
modify the line clipping algorithm to clip polygon.

AN
i_/\/> _/\/\

S yd

\/ b d

{a) Before clipping {b) After clipping
Fig. 3.15 Polygon clipping done by line clipping algorithm

3. We consider a polygon as a closed solid area. HMence after clipping it should
remain close. To achieve this we require an algorithm that will generate addi-
‘tional line segment which make the polygon as a closed area.

2-Dimensional Transformation

l For Example

N

A R
H
< > D
. G /
\ / \ NOTES
\/ F E
(Before clipping) (After clipping)

lnf&he above figure line A-B, C-D. E-F. and G-H are added to polygon descripiion to make
itclosed.

3.19 SUTHERLAND HODGEMAN POLYGON CLIPPING

L A polygon can be clipped by processing its boundary as a whole against each
l window edge.

« This is achieved by processing all polygon vertices against each clip rectangle
l boundary in turn.

: Beginning with the original set of polygon vertices, we could first clip the
polygon against the left rectangle boundary to produce a new sequence of
vertices.

» The new set of vertices could then be successively passed to a right boundary
clipper. a top boundary clipper and a bottom boundary clipper as shown in the
following figure :

=1

........................

Top clipped Right clipped

Il

..........

i Bottom clipped

Sell:Instructional Material 81

Computer Graphics

NOTES

82 Self-instructional Material

« At each step a new set of polygon vertices is generated and passed to the next
window boundary clipper. This is the fundamental idea used in the Sutherland
Hodgeman algorithm.

+ The output of the algorithm is a list of Polygon vertices all of which are on the
visible sides of a clipping plane. Such each edge of the polygon is individually
compared with the clipping plane.

« This is achieved by processing two vertices of each edge of the polygon around
the clipping boundary or plane.

In this case we have to consider the following four points :
1. If the first vertex of the edge is outside the window boundary and the second

vertex of the edge is inside then the intersection point of the polygon edge with
the window boundary and the second vertex are added to the output vertex list.

2. 1f both vertices of the edge are inside the window boundary, then only the
second vertex is added to the output vertex list.

Graphically it is represented as follows :

Vy v)
4 — Outside
VY, V, — Inside

Save V" and V,

Fig. 3.17

3. ifthe first vertex of the edge is inside of the window boundary and the second
veriex of the edge is outside then only the edge intersection with the window
boundary is added to the output vertex list.

Graphically it is represented as follows :

Yy v, — Qutside
ViV, V, — Inside

Va
Then only Save V,

Fig. 3.18

4. If both vertices of the edge are outside of the window boundary, nothing is
added 1o the output list.

Graphicaliy it is represented as follows :

v, V, = Qutside
ViV V, — Inside
Vv,
Then only V,’
W
2
Fig. 3.19

Now from the above four points we can realize that there are two key processes in this
algorithm

(@ Determining the visibility of a point or vertex (inside - Outside Text).
(B Determining the intersection of the polygon edge and the clipping plane.

|

|

NOTE W One way of determining Lhe visibility of a point or vertex is described here.

[. ; .
1 » Consider that two points (A) and {B) define the window boundary and point
under consideration is (V), then these three points define a plane.

¢ Two vectors which lie in that plane are AB and AV.

* If this plane is considered in the XY plane. then the vector cross preduct AV * AB
has only a Z component, given by {XV - XA) (YB - YA) - (YB - YA) (XB - XA).

* The sign of the Z component decides the position of point {V) with respect i0
window boundary.

¢ If {Z) is positive, then the point is on the right side of the window boundary.
» If {Z} is negative. then the point is on the left side of the window boundary.

E:'dialm ple. Consider the clipping boundary as shown in the following figure and determine the
position of points V; and V,,

i
1-" B(2,5)
*. vi N —— :
1 v, i E
o i PTA ;
1.3 (4. 3)]
A(2, 1) mmmmmmmm e mm e ;
X
So}lulion. Given
v, {1.3)
Vz,(4.3)
AR
B (2 5)

Usmg the cross product for (V1}, we get
(XV XA)(YB-YA)- (YB-YA) (XB-XA)
—){1—2) GB-13-3-112-2)
- (TU 4)-{2) (@ -
4-90
- —1 9
Thei-{result of the cross product for (V) is negative hence (V) is on the left side of the
window boundary.
Using the cross product for (V5), we get
- (XV XA)(YB-YA)-(YB-YA} (XB-XA)
(4 2)(5-1-B-1(@2-2)
- (2J (4)-(2) (O

- 81[
The result of the cross product for (V,) is positive hence (V) is on the right side of the
window boundary. Ans,

o!iThe second key process is Sutherland Hodgeman Polygon Clipping algorithm

!15 to determine the intersection of the polygon edge and the clipping plane.
j

Algorithm

1. Read coordinates of all vertices of the polygon.

2. Read coordinates of the clipping window.

3. Consider the left edge of the window.

4, 1 Compare the vertices of each edge of the polygen, individually with the clipping
'g'plane.

o
il

2-Dimensional Transformation

NOTES

Sclf-lnstructional Material 83

Computer Graphics

NOTES

84 Self-Instrucrional Material

5. Save the resulting intersection and vertices in the new list of vertices according
to four possible relationships between the edge and clipping boundary as dis-
cussed earlier.

6. Repeat the step 4 and 5 for reversing edges of the clipping window. Each time
the resultant list of vertices is successively passed to process the next edge of the
clipping window.

7. Stop.

3.20 GENERALIZED CLIPPING

We have seen that in Sutherland Hodgeman Polygon Clipping Algorithm, we need
separate clipping routines, one for each boundary of the clipping window. But these
routines are almost identical. They differ only in their test for determining whether a
point is invisible or outside the boundary.

« It is possible to generalize these routines so that they will be exactly identical
and information about the boundary is passed to the routine through their
parameters.

« Using recussive technique, the genceralized routine can be called for cach bound-
ary of the clipping window with a different boundary specified by its parameters.

« This form of algorithm ailows us to have any number of boundaries to the
clipping window. thus the generalized algorithm with recursive technique can
be used o clip a polygon along an arbitrary convex clipping window.

3.21 MULTIPLE WINDOWING

Some systems allow the use of Multiple Windowing that is a {irst image is created by one
or more window transformations on the object. Then windows are applied to this first
image to create a second image. Further windowing transformation may be done until the
desired picture is created.

Every application of a window transformation allows the user 1o stice up a portion of
the picture and reposition it on the screen. Thus multiple windowing gives the user
freedom to rearrange the components of a picture. The same effect may be obtaining by
applying a number of single window transformations to the object.

3.22 SHIELDING

Shielding is the reverse of Clipping. i.e.. in Shielding, the portion which is inside of the
window is not displayed only the portion which is outside of the window is displayed.
Example. Use Sutherland Cohen Line Clipping method, to clip a line starting from (-13.) and
ending at (17, 11} against the window having its lower left corner at (- 8, - 4) and upper right
cornerat (12, 8).

Solution. Given

XWmin=-38
YWmin=-4
XWmax =12
YW max =8
Given Line P (- 13.5)
QQ7.11)
Now we have 1o find the end points of P and Q.
P {-13,5)

| X=-13andY=5

Bit 1 — " {Y-YWmax) = (5-8) =-3<0code=0
1?“2_) YWmin-Y)=(-4-5=-9%<0code=0
lIEiiitS—-) (X-XWmax)= (-13-12)=-27 <0code =0
IL?ittl——) (XWmin-X)=(-8+13)=5>0code=1
§o the end point code of point P is 0001.

Now the end pointof Q

Q(17.11)

X=17and Y =11

I{S’litl—a Y-YWmax)=(8-11)=-3<0code=0
fB!it2—> (YWmin-Y)=(11+4)=13>0code=1
B'it3-—~> (X-XWmax)=(12-17)=-5<0code=0
Bll4—> XWmin-X)=(-8-17=-25<0code=0

So the end point code of point Q is 0100,

Now the 4-bit code of X and Y are not 0000.

So the line P() is not completely visible.

\!ow take the A'\JD operation between the end point code of Pand Q.
4 Ilrnt code ofP — 0001

4!igic code of Q — 0100

/-‘ll{\‘D operation — 0000

After the AND operation the resultis 0000.

I
So the line is partially visible, i.e., known as clipping coordinate. Now we have to find
\\Ihich portion is visible and which portion is clipped. For that particular purpose we
have to use the following equation of line.

1; Y=Y, +(Y,-Y}t .. [BI
i

\TPW we have to find the (X, Y) coordinates for the intersecting points. i.e., point (I,) and
0|mt {I,) as mentioned above.

l
3. 23 HARDWARE INPUT DEVICES HANDLING ALGORITHMS

Once the routine and their tasks for input device are specified, a user easily handles

Lhose devices.
I
Iti 1s not necessary for the user to know how these devices perform any function. The user

can operate the device just by knowing the feature being available. The system acts as
mterface between user program and the device available.

There are different types of input devices. So the ‘Insides’ of the interface routines varies
from device to device. Each device has its own algorithm however; the outsides will
always look the same. The user comes in contact only with the outsides. A simulation of
all, giapthS input is possible using only a keyboard device. A keyboard simulation
needs drastic changes in the internal form of the routine of the general case. The reasons
are stated below :

= The input applied from a keyboard via a high level language appears 1o be a
sampled, rather than event driven. At any time, a READ may be done which
always returns some value. So the processing is suspended until the input is
obtained. Thus it acts a sampled device. That is when a READ occurs. a value
is returned. To make it an event driven, the vale should be returned whenever

2-Dimensional Transformation

NOTES

Self-instructional Material 85

Computer Graphics a READ occurs. independently of whether or not new information has been
placed in a input buffer.
e Practically, this is not true for most high level languages.
e We can assume that there is only one device in use. Hence the procedure which
occur become of two simulations events are not considered.

3.24 CLASSES OF INPUT DEVICES

NOTES
We have five classes of input devices, which are as follows

1. Button: [is an event-driven device. When it is pressed an interrupt is generated,

2. Pick: This class used a light pen. It is again an event-driven device. It select a
part of the display.

3. Keyboard: We all are familiar with this class. This is also an event-driven device
which contained number of keys for applying input.

4. Locator: It is a sample device. It returns the coordinates of some position.

5. Valuator: It is also a sampled device. It returns only a single value. It may be
set or reset by the user.

NoTE ¥ For specifying a particular piece of hardware, it is essential to indicate the class of
inpul device and mentber of that class the device happen to be.

3.25 ENABLING AND DISABLING THE INPUT DEVICES

« Each device has ON-OFF facility to enabte it when required in (o operation and
o disable after using it.

» This is achieved with the routines provided with each device.

« If any device is not required at any time, it is disabled which ignores its input,
if any.

« The routines can be written to enable and disable the device classes instead of
enabling and disabling individual device.

» In the routine, we can create a flag for each class.

» When a flag is set, it indicate, that particular class is enabled.

The foliowing table describes the type of class and the equivalent class number for their type.

Type Class Number

Button 1
Pick 2
Keyboard 3
Locator 4
Valuator 5

1. Routine to Enable an Input Class: The routine takes a class number; perform
the necessary operations to turn the device-classes logically ON (enable) and
sets the corresponding device {lag (o true.

Algorithm: ENABLE_GRUP (CLASS) //Routine to enable an Input device
class

Argument: |[CLASS] the code for the class to be enabled.
Global: BUTTON, PICK, KEYBOARD, LOCATOR. VALUATOR device flags.
Begin:

IF CLASS =1 then

Begin

86 Seff-Instructional Material

End;

PERFORM ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE
BUTTON DEVICE:

BUTTON«TRUE;
End:
If CLASS = 2 then
Begin

PERFORM ALL QPERATIONS NEEDED TO PERMIT INPUT FROM THE
PICK DEVICE;

PICK«TRUE;

Lnd;

Jf CLASS = 3 then

Begin

PERFORM ALL OPERATIONS NEEDED TQ PERMIT INPUT FROM THE
KEYBOARD DEVICE;

KEYBOARD«TRUE;

End;

If CLASS = 4 then

Begin

PERFORM ALL OPERATIONS NEEDED TO PERMIT INPUT FROM THE

LOCATOR DEVICE;

LOCATOR<TRUE;

End;

If CLASS = 5 then

Begin

PERFORM ALL OPERATIONS NEEDED TQ PERMIT iNPUT FROM THE
VALUATOR DEVICE,

VALUATOR<TRUE;

End:;

Return;

. Routine to Disable an Input Class:
Algorithm: DISABLE_GRUP (CLASS) //Routine 1o disable an Input device

class

Argument: JCLASS| the code for the class to be disabled.
Global: BUTTON, PICK, KEYBOARD, LOCATOR, VALUATOR device flags.

Begin:

If CLASS =1 then
Begin
PERFORM ALL OPERATIONS NEEDED TO TURN OFF BUTTON DE-

BUTTON«FALSE,
End:

If CLLASS = 2 then
Begin

PERFORM ALL OPERATIONS NEEDED TO TURN OFF PICK DEVICE;
PICK«FALSE:

2-Dimensional Transformation

NOTLES

Setf-Instructional Material 87

Computer Graphics

NOTES

88 Self-instructional Marerial

End;

If CLASS = 3 then

Begin

PERFORM ALL QPERATIONS NEEDED TO TURN OFF KEYBOARD
DEVICE;

KEYBOARD«-FALSE;

End;

If CLASS = 4 then

Begin

PERFORM ALL OPERATIONS NEEDED TO TURN OFF LOCATOR
DEVICE;

LOCATOR«FALSE;

End:

If CLASS = 5 then

Begin

PERFORM ALL OPERATIONS NEEDED TO TURN OFF VALUATOR
DEVICE;

VALUATOR«FALSE;

End;

Return;

End;
N_O—TE‘ We can also provide the user with a single routine for disabling all input
devices.
3. Routine (o Disable all Input Devices:
Algorithm: DISABLE_ALL //Routine to disable all Input devices
Local: CLASS for stepping through the possible classes of devices.

Begin:
For CLASS =1105
Do
Disable_Group(CLASS);
Return;
End; '

3.26 EVENT HANDLING

kY

Generaliy we consider an event-driven device or one which generate an interrupt. When
an interrupt occurs, the processor temporarily stops its current activity. services the
interrupt and after completing the servicing, resumed its normal processing,

Servicing an Interrupt

« Servicing an interrupt means identifying which device caused the interrupt and
obtaining the input data from that device. This information is then stored on the
event queue.

» Strings are handled a little differently because they may require more storage.
On the event queue, instead of trying to store the entire string in a data field,
we store a pointer which tells us where the string may be found.

L -
'|

?Igorithm (model} for the Processing of an Input Device Interrupt 2-Dimensional Transformation

f?.]gorilhm EVENT (This algorithm is a model for the processing of an input device
interrupt)

BEGIN
DISABLETHE PHYSICAL INTERRUPT.

) /[To prevent interruption of the detected interrupt processing
l SAVE PROCESSOR STATUS;
|

DETERMINE WHICH DEVICE (CLASS AND NUMBER) CAUSED THE INTER- NOTES

.

BEGIN

IF EVENT FROM A STRINGINPUT DEVICE THEN
BEGIN

GET THE INPUT STRING;
ADD_STRING_Q(STRING, DATA);

1

|‘ IFDEVICEISLOGICALLY ENABLED THEN
l

|

| END

: ELSE
GETTHE DATA FROM THE DEVICE;
ADD_EVENT_Q(CLASS, NUMBER, DATA);

|
'E
S = N

| RESTOREPROCESSORSTATUS;

| REENABLE PHISICAL INTERRUPT;

RETURN;
END;

The queue data structure works on a principle, First-In-First-Out (FIFO), When the new

data arrives, it is placed at the rear-end of the queue. The following algorithm can be

usgd to add a new entry to the queue.

Allgonthm ADD_EVENT_Q (CLASS, NUMBER, DATA)
[//Add the event to the event queue

Argumente CLASS Class of the input device.

NUMBER Number of the input device.

. DATA Data from the input device.

GIII_OBAL EVENTQC, EVENTQN, EVENTQD

k‘ CLASS ARRAY, NUMBER ARRAY AND DATA ARRAY OF SIZE QSIZE}}
t:l Which from the event queue.

QFRONT, QREAR are the points to point front and rear ends of event queue,
CONSTANT-QMAX the Maximum size of the Event Queue
BEF}IN

‘;[IfQREAR =QMAX then QREAR«1 else

1' QREAR—QREAR+1;

‘ if QFRONT=QREAR then RETURN ERROR ‘EVENT OVERFLOW’
EVENTQC[QREAR]«CLASS;
EVENTQN|QREAR]«—NUMBER;
EVENTQD[QREAR]«DATA;
If QFRONT =0 then QFRONT«1
RETURN;

Self-Instructional Material 89

Computer Graphics

NOTES

90 Self-Instructional Material

END;

« Here, we have used arrays to hold the queue data. The location of the last entry
in the queue is indicated by a pointer. Here the pointer QREAR performs this
feature. When the next event occurs, the new data is stored at the location pointed
by incrementing the pointer.

e i the pointer reached at the end of the array. that is, if the queue is completely
filled, the pointer points to the first array pointer.

e There is one more pointer, QFRONT to point the position {location) from where
the next data is to be removed from the queue. If the QFRONT is equal to zero,
it indicates that the queue is empty. When the first data’is entered in the queue,
it is set (0 one.

That means we can say that the above procedure is implemented with the help of
circular queue. The following figure shows the various pointers of a queue.

1 2 3 4

5 8 1 4 2

T T

GFRONT OREAR
{Pointer to point new {Pointer to point most
data {o be removed) recently slore data)

3.27 STRING QUEUE

This is another way of storing information. The information may be stored in a string
and the string may be stored in a special siorage area. called String-Queue.

The following algorithm js written to add a string to a String-Queue. Here each new
string is added to an array of strings. We also implement this algorithm with the help of
cireular queue.

Algorithm to add a string to a String-Queue

ALGORITHM ADD_STRING_Q(STRING, DATA)
{{Saves string and returns a pointer to it in DATA
ARGUMENTS STRING a string to be saved in the string array.
DATA for return of the index of the stored string
GLOBAL STRINGQ an array of strings.
SQREAR next free string storage area.
CONSTANT SQMAX the size of the string queue array.
BEGIN
IfSQREAR = AQMAX then SQREAR«1 else SQREAR«-SQREAR+1;
STRINGQ[SQRAR]«STRING
DATA«SQREAR;
Return;
END;

3.28 EVENT CHECKING

The event qucue can be checked to determine if an

s Lvent has taken place.

» The rouline can be written which returns infermation about which device has
caused an event.

* Alter checking the queue, if we find that the queue is empty, it indicates no event

has Laken place. The routine may poll the queue for a specified period of time.

» At the end of this time, if the queue is still empty, an indication of failure may

be returned.

» The routine is given below. It considered two type of devices

(@ Interrupt Generation
{f Non Interrupt Generated.

The two cases are handied differently as discussed as follows :

Case 1. Non Interrupt Generaied Devices: If the input device not generates interrupts,
then the event process should be simulated through polling the device directly. The
Po!lmg may be done by two ways

i

]
|
|
E

!\J..

Case

[

[

. It may be built in to the primary language and/or operating system used. In this

case, the input will acts as it from a sampled device,
For Example
READ statement of a high level language. ~

In this routine given below, keyboard input is obtained using a simple READ
statement,

The second way uses a loop written by us. This is a polled device. In the routine
given below, the buttons are detected with polling loop.

2. Interrupt Generated Devices: In this case, the routine polls the queue until the

event has occurred. Then it obtain from queue, the class and number of the device which
caused the event. In the routine queue below picks are done through true interrupts.

Aléorithm to Check the Event Queue
t
Algorithm: AWAIT_EVENT (WAIT, CLASS, DEVICE)

A

cl

[fRoutine to check the event queue

rguments WAIT the time to wait for an event to occur.

CLASS, DEVICE to return the type of event which occurred.

lobal BUTTON, PICK, KEYBOARD device enabled flags.

INPUT_STRING, PICKED_STORE storage for keyboard and pick in+
put DETECTABLE segment detect ability] attribute array.

BUTTON_FLAG, PICK_FLAG, KEYBOARD_FLAG flags indicating
the status of polled devices.

Local TIME_END the time at which to stop waiting.

EE—

DATA for receiving data from the event queue,

If buttons are simulated by sampled device, then include the following
conditional statements

If BUTTON then
BEGIN
READDEVICE;
CLASS«1;
Return;
END;
If picks are simulated by sampled device, then include the foliowing
conditional statements
If PICK then
BEGIN

-

2-Dimensional Transformation

NOTES

Self-Instructional Material 91

Computer Graphics

NOTES

|
92 Self-Instructional Material

PICKD_STORE«(;
White PICKE_STORE<1 OR PICKED_STORE>NO. OF SEGMENTS
ORNOTETECTABLE (PICKED_STORE} do
READPICKED_STORE;
CLASS«2;
DEVICE«1;
Return;
END;
If keyboard is simulated by sampled device, then include the following

conditional
statements

[f KEYBOARD then
BEGIN
READ INPUT_STRING;
CLASS<3;
DEVICE«];
Return;
END;
If interrupt generating or polled devices are available then include the

I

following loop.
TIME_END«TIME (} + WAIT;
While TIME (}<=TIME_END o
BEGIN
GETQ({CLASS, DEVICE, DATA);
If CLASS =0 then
[f CLASS =2 then PICKED_STORE«—DATA;
Else if CLASS =3 then INPUT_STRING«-STRINGQ [DATA];
Return;
END;
If a pick is simulated on a polled device then include the following
conditional statements
BEGIN
READ_PICK (DEVICE, PICKED_STORE);
If DETECTABLE {PICKED_STORE] then
BEGIN
CLASS«2;
Return;
END;
ENDy
If the keyboard is treated as a polled device, then include the following
conditional statements
If KEYBOARD and KEYBOARD_FLAG then
BEGIN
CLASS«3;
READ_KEYBOARD (DEVICE, INPUTSTRING);
Return;
END;

CLASS«(;
DEVICE<(;
Return;
END;

l

Getting the Event (Class, Device and Data)

» The algorithm given below returns the event {class, device, and data) at the front
of the event queue. The position of the loading elements is indicated by the

| pointer QFRONT.

. If QFRONT is zero. It indicates that the queue is empty, otherwise, the value of

1 the loading item is returned and QFRONT is incremented 1o point the next entry.

Allgorithm which returns the event at the front of the event queue

A]!giorithm GETS (CLASS, DEVICE. and DATA) returns the event of the front of the event
queue. Ifthe queue is empty, zero is returned.

;‘{rgu ments CLASS, class of the event
DEVICE, device of the event
DATA, input data from the event.
Gl‘oba[EVENTQC, EVENTQN, EVENTQD the event queue arrays,

i QFRONT, QREAR pointers to front and rear of event queue.
Cl?nstants QOMAX, the size of the event queue,

BE[C]N

i

CLASS«0;
If QFRONT =0 then return;

CLASS—EVENTQC [FRONT];
DEVICE<EVENTQN [FRONT];
DATA«EVENTQD [FRONTE

If QFRONT = QREAR then '
BEGIN
QFRONT«0;
QREAR(;
END;
Else if QFRONT = QMAX then QFRONT«1:
l Else QFRONT—QFRONT +1;

Return;
E[\ﬁ);
Flu?hing all events from the EVENT QUEUE

i The event queue stores the event information. We can obtain this information
whenever for future processing.

+ Sometimes, we may want to start fresh, that is, a fully clear queue. In this case. it
is necessary to fiush or clear the event queue.

The following algorithm discarded the unwanted events from the event queue
Algorithm FLUSH_ALL_EVENTS

' /{ Removes all events from event queue
Global QFRONT, QREAR, event queue front and rear pointers.

2-Dimensional Transformation

NOTES

Self-Instructional Material 93

Computer Graphics

NOTES

94 Self-Instructional Material

SQREAR String file pointer.

BEGIN
QFRONT<0;
QREAR;
QSREAR«T;
Return;
END;
Getting Device Data

We know that, how to store the information, when an event occurred. This information
can be retrieved using, routine. The following routine is written 1o returns stored
keyboard input:
Algorithm to write the stored keyboard input:
Algorithm GET_KEYBOARD_DATA (STRING, LEN)
// Routine to return the stored keyboard input.
Arguments STRING, for the return of the string.
LEN, the string’s length.
Global INPUT_STRING, keyboard input storage.
BEGIN
LEN&«LENGTH {(INPUT_STRING);
STRINGINPUT_STRING;
Return;
END;
The following algorithm is written to return the selected pick value.
Algorithm to return the selected pick value:
Algorithm GET_PICK_DATA (SEGMENT_NAME)
// Routine to return the selected pick value.
Arguments SEGMENT_NAME, the name of the selected segment.
Global PICKED_STORE, Pick input storage.
BEGIN
SEGMENT_NAME«PICKED _STORE;
Return;
END;

AWAIT INPUT from Individual Devices

» We have studies AWAIT_EVENT routine. That routine is written by assuming
several input devices in use. However, many applications require input from
only one device at a time and prohibit the simultaneous use of several devices.

For example Time-Sharing system.
In such situations, we must use routines which await input from only a single class of
devices. Such routines are device and system dependent.
Algorithm to await input from a BUTTON
Algorithm AWAIT_BUTTON (WAIT, BUTTON_NUM)
{/ User routine to await the pressing of a button.
Arguments WAIT, the time of wait for a button event.
BUTTON_NUM, for return the number of button device.
Global BUTTON, device enable flag.

|
o

11

- BUTTON_FLAG, status flag if button is a polled device.
TIME_END, the time at which to stop waiting,
DUMMY, a dummy argument.

If Buttons are simulated by a sampled device, then include the following
segments-
READ BUTTON_NUM;

Ifinterrupt generating or polled device are used then include the following
loop

TIME_LIMIT<TIME () + WAIT;
While TIME () <= TIME_LIMIT do

BEGIN
If interrupt generating buttons are used, they may be formed by
BEGIN
GETQ (CLASS, BUTTON_NUM, DUMMY);
If CLASS==1 then return;
END;
if buttons are simulated on a polled device, then include the
Following

BECGIN
READ_BUTTON (BUTTON_NUM);

Return;
END:

BUTTON_NUM«(;
Return;

Algorithm to await a pick:
Algorithm AWAIT_PICK (WAIT, PICK_NUM});

|

/{ User routine to await a pick.

Arguments WALIT, the time to wait for a pick event.

Glﬁ)bal
L(ligal
BEGIN

!
|
|
|

PICK_NUM, for return of the no. of the picked events.
PICK, device enabled flag.

PICKS_FLAG, status flag if pick is a polled device.
TIME_END, the time at which te stoop waiting.

1f NOT PICK the return ERRCR 'PICK NOT FOUND’;
If picks are simulated by a sampled device, then include the following-

READPICK_NUM;
If interrupt generating or polled devices are used, then include the
Following loop
TIME_END«TIME ()+ WAIT;
While TIME(}<=TIME_END do
BEGIN
If interrupt generating picks are used, they may be formed by
BEGIN
GETQ (CLASS, DUMMY, PICK_NUMCG;

Z2-Dimensional Transformation

NOTES

Selfl-Instructional Material 85

Computer Graphics

NOTES

96 Seif-instructional Material

If (CLASS == 2) then return;
END;
1f picks are simulated on a polled device then include the
Following conditional statements-
I PICK_FLAG then
BEGIN

retu_rn;
END;
END;
PICK_NUMG;
Return;
END;

3.29 ECHOING

e In graphics, user can obtain the information about his/her actions with the
technique called Echoing.

e With this information. user can compare what he has done with what he wants
to do.

« Some form of Echoing should be present which allows user to work comf{ortable
and confidently with the program.

e So Echoing is an important part of an interactive system.
Examples of Echoing

Example, For keyboard input, the typed character is usually displayed on the
scréen. Graphically it is represented as follows :

A
Keyboard

Example. A screen cursor is used for echoing a location pointed by a locator, It displays the
current locator position. So the user can see the current locator setting and rotate its position to
the abjects on the displays. Graphically it is represented as follows :

\

- Echoing a location

Example. A pick may be echoed by identifying the selected objects on the display. The selected
objects can be differentiated by making them brighter, dotted, flashing thent or changing their
cooler. Graphically it is represented as follows .

LY LY

Echoing a pick

|

EJlijal'llplc Buttons can be used to select menu items. They can be echoed by differentiating them 2-Dimensional Transformation
fmm non-selected items by making them brighter, dotted, flashing or changing their color.
Graph:cany it is represented as follows :

; ITEM 1

ITEM 2
C®0O0O0 ITEM 3

|
1| ITEM 4

ITEM 5

NOTES

‘ (I I O

Value is 25 1015 25

3.30 INTERACTIVE TECHNIQUES

In graphics, Interactive Techniques are used for interlacing, creating and modifying
pir."{%ures. Some of these techniques are as follows

Point Plotting

» It allows user to select a particular point,on the screen.
- It can be performed by a combination of a locator and a button.
The process of point plotting is as follows :
Thelztuser selected point is located by locator and the button indicates when the locator is
curlrently positioned. The Algorithm for point plotting is given below. It must await the
button event. As soon as it occurs. the locator may be read. The following algorithm
qel?cts a poinl on a screen.
Algonthm to select a point:
Algon thm AWAIT_BUTTON_GET_LOCATOR (WAIT, BUTTON_NUM, X, Y}
/{ User routine to interactively select a point.
ATguments WAIT, the time to wait for a button event.
] BUTTON_NUM, for return of the user’s button selection.
]] X, Y points the user selected.

BEGIN
AWAIT_BUTTON (WAIT, BUTTON_NUM);
READ_LOCATOR (X, Y);
. Return;
END;

NOTE W The point plotting routine can be use to obtain line segments. In this case, the user
can select the points and those points can be connected with a line segment.

Algorithm DRAWLINE ()
BEGIN
BUTTON_NUMecontinue;
While BUTTON_NUM«CONTINUE;
Do
BEGIN

AWAIT_BUTTON_GET_LOCATOR (WAIT, BUTTON_NUM, X, Y};

Self-Instructional Material 97

Camputer Graphics

NOTES

98 Seff-Instructional Material

LINE_ABS_2(X,Y);
MAKE_PICTURE_CURRENT;
END;

END;
Graphically it is represented as follows :

L/
T

{a} Plot a first point {b) Plot a second point () Connected the plotters point
Fig. 3.20

There are various interactive techniques, which are as follows :

{a)
)
@
(@)

G

Positioning Techniques
Pointing and Selection
Inking and Pointing.
Positioning Techniques:

« Positioning sometimes knows as locating 'which is one of the most basic
graphical input techniques.

e In this technique. the user indicates a position on the screen with an input
device and this position is used to insert a symbolic or to define the end
poinis of a line. Positioning operations can benefit in a number of ways from
the use of feedback.

+ There are various examples of positioning feedback. which are as follows :
o Rubber Band Technique
o Dragging
o Dimensioning Techniques
o Graphical Potentiometer.
Pointing and Selection: Graphical input devices play a very important role in
allowing the user to point to the screen.

e In many applications pointing rather than positioning is the basis for
interaction.

» The user may have no need to add more information to the picture and may
be interested solely in studying and asking questions about the information
already displayed.

Inking and Pointing: If we sample the position of a graphical input device at
regular intervals and display a dot at each sampled position, a trail will be
displayed of the movement of the device. This technique which closely simulates
the effects of drawing on paper is called Inking. Graphically it is represented
as fotlows :

D e ||\ (B

(@) (b) {©)
Fig. 3.21 Feedback inking

SUMMARY 2-Dimensional Transformation

The manipulation of image is done by performing appropriate geometric or coordinate
transformation on the object.

There are some basic transformation such as Translaiion, Scaling, and Raoiation.
Other than these transformations Reflection and Shearing are (he other transformation.
Translation is used to shift the object from one position 10 anclher position.

Scaling is used (o change the shape of the picture. ie. reduce or magnily the shape of
the abjecl. NOTES

Rotation is used to rotate the object about a given point,

Reflection gives the mirror image of the object.

Shearing is the distortion in the shape of the object.

Hotogeneous coordinate system is used hecause due to this il is possible to use the
combine Translation. Rotation, Scaling which increase the efficiency and elegance.

A rectangular acea specified in word coordinates is called Window, i.e., the portion of
the picture which we want to display is known as Window.

A rectangular area specified in device coordinates is called View Port, i.e. the partion
of the screen, where we want to map the window is-known as View Port:

The portion which is inside the window is visible and the portion, which is outside of
the window. is not visible. This process is known as clipping.

» Shielding is the opposite of clipping. i.c. the portion, which is inside of the window,
is not visible and the portion. which is outside of the window is visible.

s The viewing (ransformation can be performed by using three steps :

{a) Translaticn

{b) Scaling

() Re-Translation.

s! Cohen Sutherland algorithm and Midpoint Subdivision algerittun are based on 4 bit
codes that are known as region codes. They are used for the clipping.

The Sutherland Hodgeman algorithm is used for polygon clipping.

We have lhe various Hardware Inpul [nteraction techniques by which we can direct
interact with the Hardware.

s| We divide the Input devices in the lorm of classes.

+1 The classes are as follows:

(@ BUTTON () PICK

() KEYBOARD (d) LOCATOR

(e} VALUATOR.

=1 The classes also have the unique numbers which are as follows :

i T ——— S ——
B e B e @ ———T Pt g =T - L J » L] L] L]

TYPE CLASS NUMBER
BUTTON 1
PICK
KEYBOARD
LOCATOR
VALUATOR

IL[INPUT DEVICE Type and Class Number|
+' We can also enable and disable the complete group class according to our requirement.

s | |2

+ Evem Queue is a circular queue. which holds the Number Queue, Data Queue and Class
Queue.

+ Event Queue is the collection of Number Queue, Dala Queue and Class Queue.
1

Self-Instructional Material 99

Compunter Graphics

NOTES

Y Seif-Instructional Material

REVIEW QUESTIONS

Give general form for the rotation about any arbitrary point P(h,).
Give the 2-D transformation matrix lor

) Transtation

{b) Scaling

{c) Rotation.

Why the concept of Homogeneous Coordinate system is evolved? Give the Homo-
genecus Coordinate for Translation, Scaling, and Rotation.

What do you mean by composite transformation? How is it useful?

5. Derive the transformation matrix for rotalion abow an arbitrary point P(h,).

10.

11
12.

13.

14,
15,

16.
17.

19.
20,

21.

22

Write a short note on .

{a) Mirror reflection

(I} Shearing transformation.

Show how reflection in the line y = x and in the line y = - x can be performed by a
scaling aperation followed by a rotalion.

Find out the sequence of basic transformations which are equivalent 1o X-direction
shearing,

Find out the sequence of basic transformations which are equivalent to Y-direction
shearing.

Show that the successive reflection aboul any line passing through the coordinate
origin is equivalent to a single rotation aboul the origin.

What is shearing transformation? Explain with suitable examples.

Prove that one scaling transformation and one rotation in 2-D transformalion are
commule, ie.,

S*R=R"S
Prove that two 2-D wuansformation are commude, i.c.
T, *T,=T," T
What is composile (ransformation? Explain with suitable examples.
Prove (hat
Rig=t=Rear
Define the lerm windowing. also define the importance of windowing.

Describe the method by which any poirt can be determine that it is left or right to
the any line segment.

Find the Normalizalion transformation that maps 2 window whose lower left corner
is at (0.) and the upper right corner is al (2. 4) on to

(@ A view port that is the entire normalized device screen.

{h) A view port that has lower left comer at (- 1. - 1) and the upper right corner at
(- 172, - 1/2),

Differentiate between Window and a View Port with suitable examples.

Write short noles on the following:

{a) Viewing Transformalion

(b Clipping

(¢} Windowing

() The Cohen Sutherland Line Clipping Algorithm

(@ The MidPoint Subdivision Algorithin.

Show why the Sutherland Hodgeman clipping algorithm will only work for convex

clipping regions.

Write a routine o clip an ellipse against a rectangular Window.

:23. Explain Sutherland Hodgeman algerithm for polygan clipping.
24, Define the term point clipping and line clipping.

25. Define the 1erm viewing transformation with suitable example,
26. Derive lhe transformation matrix for 2I3 viewing transformation.

27. Explain the advanlages and disadvantages ol Sutherland Hodgeman Polygon Clipping
M algorithot.

28. Find a normalized lransformation from the window whose lower lefl corner is at

‘ (G, 0) and upper right corner is at {m. 1) on 1o the normalized device screen so that

(aspect ralio reinains same.

28. Lel a line segment with end peoints L; (- 2. 1) and L; (2, 8). determine point P (1, - 1)

[is left or right to the line segment?

30. What do you mean by viewing transformation? Define it wilh suitabie example.

31. Write routines to perform the following operations on input devices. button. pick,

keyboard. locator, and valuator by considering each of them as a class.
{a) Enable input device class individually

\ (B) Disable inpul device class individually

| {d Disable all input devices.

32. What is the [unction of event queue? Give the algorithm to add an event to the event gueue,
33, Give algorithm which-returns event (Class, Device and Data) from the event queue.
34. Give algorithms 10 await input [rem a button and a pick.

35. Defina the term polling with suitable examples,

36. Explain the concept of Interrupt with suitable examples.
37. Write short nole on the {ollowing:

{a) Eveni Queue

(8 On Line Character Recognition -
(£) Positioning Techniques

(d) Inking and Pointing.

38. Exptain the cancept of event handling in detail.

3!5:l Explain Interrupt scheme for retrieving input data, Also explain any one algorithm for

l input device handling.

40! What do you undersiand by Echoing? How does echoing atlow the user 1o compare
‘ what he has done against what he wanis to do?
41

o What is Point Polling? Give algorithm to select a point.

42} Write an algoril}im 10 draw a line segment.

4311 What do you mean by “rubber band lines”? How these lines can be implemented?
441 Define ihe term Dragging. Write a routine for dragging.

i
\‘ FURTHER READINGS
I

L
i

Computer Graphic: V.K. Pachghare, Laxmi Publications, 2007, Second edition.

»| Computer Graphics: Prabhakar Gupta, Vineet Agarwal and Manish Varshney, Laxmi
.Pubiications, 2011.

o). Computer Graphics: Rajiv Chopra, 5. Chand Publisher, 2011.

«| Computer Graphics: C.5. Verma, Ane Books, 2011.

! Computer Graphics: Pradeep K. Bhatia. LK. International. 2009, pbk, Second Editian.

» Computer Graphics; Ruchi Mishra, Global Vision Publisher. 2010.

2-Dimensional Transformation

NOTES

Sell-Instructional Material 101

Computer Graphics

UNIT |V

NoTES 3-D TRANSFORMATION

STRUCTURE

4.0 Learning Objectives
4.1 Introduction
4.2 3-D Geometry
4.3 3-D Primitives
4.4 Three-Dimensional Transformation
4.5 Tiling
4.6 Aligning a Vertex with Z-Axis
4.7 Mirror Reflection
4.8 Three-Dimensional Viewing
4.9 Viewing Parameters
4.10 Projection.
4.11 Vanishing Point
4.12 Three Vanishing Point Perspective Projection
4.13 Standard Perspective Praojection Matrix
4.14 3-D Clipping
4.15 Three-Dimensional Midpoint Algorithms
s Summary
s Review Questions
e Further Readings

4.0 LEARNING OBJECTIVES

After going through this unit, you.should be able to:

s describe three dimensional transformation

s explain three dimensional viewing
s discuss projection and vanishing point.

4.1 INTRODUCTION

Some graphics applications are two dimensional such as charts and certain maps and
soon. However to create a realistic picture, scene or model, we need to represent it in 3-D
graphics.

The creation of realistic picture is an important task in various fields such as simulaiion,
design, entertainment. advertising, research, education etc.

To create a realistic picture we must process the scene or picture through viewing-
coordinate transformation and projection routines that transforms three dimensional
viewing coordinate or to two-dimensional device coordinates.,

102 Seif-Instructional Material

3 'f2 3-D GEOMETRY 3-13 Transformation

i
The three-dimensional system has three axes x, yand z. The crientation of coordinate
system is determined by two systems.

(a) Right Handed Coordinate System

(b) Left Handed Coordinate System.

(a} Right Handed Coordinate System: In the right handed system the thumb of the
right hand points in the position z direction as the curls the fingers of the right NOTES
hand from x to y.

Graphically, the Right Handed Coordinate System is represented as follows :

Y

Fig. 4.1{a)

~ Left Handed Coordinate System: In the left handed coordinate system , the left
hand thumb to point the position z direction when we imagine the fingers of
the left hand curl from the position x-Axis to the position y-Axis(through 90°)
Lo grasp the z-Axis.

Graphically, the Left Handed Coordinate System is represented as foltows :

Y

Fig. 4.1(b)

| Here we adopt right handed system for computer graphics.

| Now with this coordinate system we can specify any point in space by the
'iorder triple(x, y. 2).

In 3-D geometry, the line is specified by a pair of equations

Y“‘Yl _ Y?,_YI

Where (x,. y,. z)) and (x,. y,. 2,) are the two peints which specify the line.
A Plane is specilied by a single equation of the function
Ax+By+Cz+D=0

\ Seif-Instructional Material 103

Computer Graphics

NOTES

4.3 3-D PRIMITIVES

Like 2-D primitives, we have 3-D primitives to draw points, lines, and plane in three
dimensions. Here we have to provide the three coordinate specifications insiead of two.

Let us consider three-dimensional LINE and MOVE algorithms

Algorithm-1: (3-D Absolute Move)

MOVE_ABS_3D (X, Y, Z)
Arguments- X, Y, Z are three coordinates of point to move the pen to.
Global- DF_CUR_X, DF_CUR_Y, DF_CUR-Z Current pen position coordinates.
Begin
DF_CUR_X&X;
DF_CUR_Y<Y;
DF_CUR_Z«7Z;
DISPLAY_FILE_ENTER(1);
Return;
End;

Algorithm-2: (3-D Absolute Line)

LINE_ABS 3D{X,Y,Z) .
Arguments- X, Y, Z are three coordinates of point to move the line to.
Global- DF_PEN_X, DF_PEN _Y, DF_PEN -Z the Current pen position.
Begin

DF_PEN _X&X;

DF_PEN_Y<«Y;

DF_PEN_Z&Z;

DISPLAY_FILE_ENTER (2}

Return;
End;

Algorithm-3: (3-D Relational Move)

MOVE_REL_3D (DX, DY, DZ) [The 3-D relation Move]
Arguments- DX, DY, DZ changes to be made to the pen position.
Global-DF_PEN_X, DF_PEN _Y, DF_PEN -Z the Current pen position.
Begin

DF_PEN _X<«DF_PEN_X+DX;

DF_PEN _Y«DF_PEN_Y+DY;

DF_PEN _Z«DF_PEN_Z+DZ;

DISPLAY_FILE_ENTER(1);

Return;
End;

Algorithm-4: (3-D Relational Line)

LINE_REL_3D (DX, DY, DZ) [The 3-D relation Line drawing Routine]
Arguments- DX, DY, DZ displacement over which a line is to be drawn.
Global- DF_PEN_X, DF_PEN _Y, DF_ PEN -Z the Current pen position.

104 Seif-instructional Material

Begin 3-D Transformation
DF_PEN _X«DF_PEN_X+DX;

DF_PEN_Y«DF_PEN_Y+DY;

DF_PEN_Z«DF_PEN_Z+DZ;

DISPLAY_FILE_ENTER (2

Returny;

E?d;

. NOTES
Aléonthm 5: Absolute Polygon

POLYGON ABS_3(AX, AY, AZ, N) [The 3-D absolute Polygon drawing Routine]
Arguments- [N] The no. of Polygon sides.
AX AY, AZ arrays of the coordinates of the vertices.
Global DF_PEN_X, DF_PEN _Y, DF_PEN -Z the Current pen position.
th)lca! I for looping.
Begin
Iff!ll\l<3 then return error ‘size error’;
| DF_PEN_X«<AX [N}
i DF_PEN _Y<AY[N];
DF_PEN _Ze&-AZ[N];
DISPLAY_FILE_ENTER (N);
Forl TtoN
Do LINE_ABS_3 (AX[I], AY{1}, AZ{1]);
Réturn,

AIg'?rithm-6: (Relational Polygon)

POL\!’iGON_REL_E} (AX, AY, AZ, N} {The 3D relative Polygon drawing Routine}

Aréument«;- [N] The no. of Polygon sides
AX AY, AZ arrays of the displacement for the Polygon sides.
Global DF_PEN_X, DF_PEN _Y, DF_PEN -Z the Current pen position.
Local- I for looping, TMPX, TMPY, TMPZ storage of points at which Polygon is closed.
Begl'm
1f 1\:j<3 then return error ‘size error’;

't // Move for starting vertex

1t DF_PEN_X& DF_PEN _X+AX[I];

| DF_PEN_Y«DF_PEN _Y+AY [I};

| DE_PEN_ZeDF_PEN_Z+ AZ[I};

l. //Save vertex for displaying the Polygon

"' TEMPX«DF_PEN_X;
TEMPY<DE_PEN_Y:
TEMPZ«DF_PEN_Z;

DISPLAY_FILE_ENTER {N);
{/{Enter the Polygon Sides

For#l_=2 to N

{
E
[Self-Instructivnal Material 105

Computer Graphics

NOTES

106 Self-Instructional Material

Do LINE_REL_3 (AX[1], AY[1], AZ[1]);

/{Close the Polygon

'LINE_ABS_3 (TEMPX, TEMPY, TEMPZ);
Return;

End;

4.4 THREE-DIMENSIONAL TRANSFORMATION

+

Like two dimensional transformation. three-dimensional transformations are formed
by composing the basic transformations of Translation, Scaling and Rotation. Each of
these transformations can be represented as a Matrix transformation with homogenous
coordinates. Therefore any sequence of transformations can be represented as a single
matrix, formed by combining the matrices for the individual transformations in the
sequence.

1. Translation: Initially Pont P(X. Y, Z) is in the 3 coordinate system and the
translation factor T{tx, ty, tz) are also given then afier the translation the Point
P(X, Y. 2%} is as [ollows

X=X+ ix ' 1A
Y=Y+ty ... | B}
Z=Z+1z . ICl
Then we can represent the translation in the Homogenous coerdinate sysiem as
follows
X (1 0 0 &x][X
Y' - 0 1 0 [|Y
z' 0 0 1 kr||2Z
1 [0 0 0 1gi1 ;
PP=T*P
[1 0 0]
0 1 0 ty
Where T= 0 0 1 & .
0 0 0 1)

is known as translation matrix in 3-D coordinate system.

2. Scaling: If we want 10 change the size of the picture in 3-D coordinate system then
it is called as Scaling in 3-D coordinate system. Initially the point P{X, Y, Z) and
the scaling factor (Sx, Sy. Sz) then after the scaling the point P'(X", Y. Z7} is as

follows :
X = X +Sx A
Y'=Y+S8y .. |Bl
Z'=7+Sz . IC]

We can represent the scaling in the form of matrix as follows

x] [sx o 0 0][X
Y| j0o sy o0 o|]|Y
z|7lo o sz of|z
1| o o o 1f|1

S 0 0 0

0 5% o0 0

Where Sesxs9 = 0 0 Sz 0
0 0 0 1

is called Scating Matrix in 3-dimensional coordinate system.
3. Rotation: In 3-D) coordinate system, Rotation can be performed in 3 ways

(@ Rotation About Z-Axis: If we want to rotate the image (point) about Z-Axis
then the equation is as follows

X=Xcos8-Ysin8

Y'=Xsin9+Ycos8 . |Al
=7
Now we can represent this in the form of matrix as follows

X’ cos® -sin® 0 0] [X

Y| sin® cos® 0 O |Y

Z 0 0 1 6|2

1 0 6 0 131
PP=Rz(B)*P

Where
cos® -sing
sin O cosB
0 0
0 0
is called Rotation Matrix about Z-Axis.

(B Rotation About X-Axis: If we change in equationno. (@ X =Y. Y — Z and
Z — X then the following equation may occur
Y =Ycos8-Zsing
Z'=Ysin8+Zcos O
X=X
Now we can represent this in the form of matrix as follows
X’ 1 0 X
Y’ 0
Z’| |6 sin® cos @
1 0 0 0
P'=Rx{6) P
1 0 0
0 cosH
0 sin® cos @
|0 0 0

Rz ()=

.. [B]

0 0

cosB —~sin®

*

Y
z
1

—sin &

Where Rx(B)

is cailed Rotation Matrix about X-Axis.

Retation About Y-Axis: If we change in equation no. (b} X = Y, Y — Z and
Z — X then the following equation may occur
Z'=7Zcos8-Xsind
X' =Zsin8+Xcos b
Y=Y
Now we can represent this in the form of matrix as follows

9

- C

3-D Transformation

NOTES

Sell-Instructional Material 107

Computer Graphics

X cos®@ 0 sin® 0] (X
Y’ 0 1 0 0],|Y
Z'| " 1-sin® 0 cos® 0O} |Z
1 0 0 0 1 1
P'=Ry@®*P
Where
NOTES cos@ 0 sing O
1 0 0
Ryt6) = —sinB@ 0 cos® O
0 0 0 1
Is called Rotation Matrix about Y-Axis.
Example. Given point P(0,4,0,1) Rotate it by 90° anticlockwise abowt X-Axis.
Solution.
P’= Rxygoy " P
Xl (1 0 0 0] 0
Y’ 0 c¢os90 -sin90 0f 14
Z'{ 10 sin90 cos9 0 |0
1] {0 0 0 171
(X7 1 0 o 0of |0
Y’ ~ 6 0 -1 0,4
z o 1 0 ol fo
1] [0 O o 1; {1
[X* [0
Y’ 0
z'| |4
(1] |1
So in this case P'=(0.04.1) Ans.
Now we want to Rotate P” by 90° about Y-Axis.
P”= Rypgy " P’
cos90 0 sin90 O 0
. 0 1 0. 0f. |0
b= —-sin9) 0 cos90 0| |4
0 0 0 1] |1
[X” 0 0o 1 0]fo
Y” 0 1 0 0f,0
z?{"|-1 0 o0 ofla
1 g o o0 1} |1
(X 4
Y” 0
Z” = 0
L1] U
So in this case P”"=(4,00.1) Ans.

108 Scif-Instructional Material

'
1

4.5 TILTING

fi
Tihing is equivalent to rotation about one axis by some angle 6 followed by rotation

about some other axis by ¢.

Forexample

P’= Rx " P A
P”= Ry * P’ .- |Bl
rom equation [A] and [B] we have

P”= Ry " Rxig " P

T -
pr—— finti— e,

1) .
But if we consider this

P'= Ryg,*P

P’= Rxgq, * P’

P"= Rxg,*Rxg) *P
P’ Rxg ,q,*P

That is not the example of Tilting, because here we rotate the point about the same
AXis.

E::c'iamplc. A cube of side (a) is placed at (h, k. 1) such that its edges are parallel to three axes.
Rollate cube by @about paint A about X-Axis.

Solution.
Z
D c
H
a
A 8
{h.k.l}
E -
F Y

X

Firstly we describe how to calculate the points of a cube.

l Z 1
(0.0.a) {0,a,0) c
(a-%ai {a.2,0)
a
A
B
. (hk.h 0.0.0) Y
(a.0,0) F(a,a.0)

3-D Transformation

NOTES

Self-Instructional Material 109

Computer Graphics Step 1. Translate point A to origin.

PP=T_ p4-n*F A
Step 2. Rotate by 8 about X-Axis.
P”=Rxg, * P ... |B}
Step 3. Back translate the point.
P”=Tyrn P’ . 1Cl
Now from equation {A] and [B] we have
P"=Tysn"Rxg " Trn-s-n"F « (D]
NOTES Now '
(1 0 0 h
0 1 0 k
Twen=lo o 1 1
0 0 0 1
(1 0 0 -h
0 1 0 -k
Teni0=lg o 1
0o 0 0 1
1 0 0 0
0 cos® -sing O
R¥ = 0 sin® cos® O
0 0 0 1

And the Matrix P is as follows if we treat that point is at origin

A B C D E F G H]
0 0 0 0 a a a a
P=|0 a & 0 0 a a 0
0 0 a a 0 0 a =
(r-1r 1 1 1 1 1 1]
And if the pointis at {f. k, {) then the point will be
[h h h h h+a h+a h+a h+a
k k+a k+a k k k+a k+a k
le { l+a Il+a 1 I l+a [+a
1 1 1 1 1 1 1 1

4.6 ALIGNING A VERTEX WITH Z-AXIS

Aligning Matrix is equivalent to two rotations, .., Rotation by some angle aboui same
Axis followed by rotation by some other angle about some other Axes.

110 Seif-instructional Material

AVz= Ry(5,) Rx(e,) [A] X-Z Plane 3-D Transformation
Si]milarly we have '
| AVx= Rz _q) *Ryg [B] X-YPlane
Similarly we have
AVy= Rx(me,} * Rz(e‘) [C] Y-ZPlane
Example. Rotare a unit cube by 45° about its main diagonal.
, Z
NQTES
{0,8,1)
0.1,1)
(1.0.1) g
H {1.1,9) |
H
B L
{0.1.0) ¥
A (0.0.0) ’
{(1,0,0) (1,1.0)
X
Scﬂution.
Step 1. Align vertex BH with Z-Axis
. P = R.‘f(-az) * Rx(el) *P . |A]
§
Step 2. Rotate about Z-Axis by 45°
P”= Rzyse * P’ .. |Bj
Step 3. Back alignment of BH
E. P” = Ry, " Rx_g,)* D" - 1C]

Now from equation [A], [B] and [C]| we have-

a=b=c=1

sin 8, = [
8] = Si]"l"l (

9[= 45°
fa

g,= sin”! | —m———
(,,‘az +b? 4+
|

2
; - Cos B, = ﬁ Ans,

I this case

b

Jb2+f:2
1

J-or)
-

1

J14+1

Example. Rotate a unit cube by 45° about its main diagonal. Unit cube is placed such that its
three edges are parallel to three principle Axes and lowest vertex isat (2. 3. 4).

Solution.

The following steps are 10 be followed

P™= Ry, " Rx_g) “ Ry *Ryg) “Rxq, " P

J1+1+1

- |D]

1

Jerli))

Self-Instructional Material 111

Computer Graphics

NOTES

112 Self-lrnstructional Material

Step 1. Translate the lowest point to the origin

=T .3.9"F o LA
Step 2. Align the main diagonal to the Z-Axis
P”= Ry, *Rx_g, " P . |Bl
Step 3. Perform Rotate about Z-Axis by 45°
P”r = RZ(‘:S’] * P” aen [C]
Step 4. Back alignment .
PI’!’ = Rx(_ a])_* Ry(ej) * Plll . lDl

Step 5. Back Translate
plfff) = T[zl 3I 4) * P)‘)‘fr‘ . {E]
Now from equation {A], |B}, iCj. |D} and [E} we have

LD * » * * * * *
P™ = T 3.4 Rx(_ei) Ry(&,) Rz[ﬁ,) Ry(-ﬂ;) Rx(el) T(—z,—3,—-4) P Ans.

4.7 MIRROR REFLECTION

In 3-D. we have mirror reflect the object about the planes, i.e., we mirror reflect the cbject
about XY plane, we mirror reflect the chject about YZ plane. we mirror reflect the object
about ZX plane.

Mirror Reflection of an Object about XY Plane .

If we mirror reflect the object about XY plane then the Z coordinate is negative, i.e.

X=X
Y=Y
And '=-7Z
We can represent this as follows
X’ 1 0 0 0] |X
Y’ 0 1 0 0], Y
z|7 o o -1 0|z
1 6 0 0 1 1
P’=Mxy*P
Where
1 © 0 0
0 1 ¢ 0
Mxy = 0 0 -1 © is called the mirror reflection matrix about XY Plane.
0 0 0 1

Mirror Reflection of an Object about YZ Plane

If we mirror reflect the object about YZ plane then the X coordinate is negative, i.e.

X=-X

Y=Y
And

=7

We can represent this as follows

|
|
X’ -1 0 0 o] [X
Y’ 0 1 0 of Y
z|7lo 0 1 0|z
1 0 0 0 111
P'=Myz*P
Where
l -1 0 0 0
' 01 0 0]
i Myz= is called the mirror reflection matrix about
; 6 0 1 0
[6 0 0 1
YZ Plane.

Mirror Reflection of an Object about XZ Plane

If we mirror reflect the object about XZ plane then the Y coordinate is negative, Le.

l1 X=X

1 Y'=-Y

And
| 7'=2

We can represent this as follows

1 0

-1

0

0

P'=Mxz*P

is called the mirror reflection about XZ

Ex:;\imple. Mirror reflect a point in 3-I about a given plane, space is fixed by a normal to the
plaire (ﬁ] and a point known as reference point Ry (X, Y Z o} on the plane.

SOll[lliOn.
Step 1. Translate the reference point ta the origin
| Pr=T *P

=Xp.~ Yo, =)
Step 2. Align the normal of the plane with the Z-Axis
P"= R.yl:—ﬂzj * RX(G;] *p’
Step 3. Take mirror reflection about XY Plane
©OP”=Mxy*P”
Step 4. Back alignment
Pﬂu = RX(_ﬂ]) * Ry(ax) * Pln
Step 5. Back Translate

: P =T(Xc»}’n-za) p

3D Transformation

NOTES

Self-Insiructional Matcrial 113

Computer Graphics

NOTES

114 Self-Inistructional Matorial

Now from equation {A[, B], [C]. {D] and {E| we have

P = Tog s * R¥ap “Re *MXy " Ryg,) * R * Tiegg =gy~ "P Ans.
Example. Find the matrix for mirror reflection with respect to the plane passing through the
origin and having a normal vector whose direction is M = I+]+K

Solution.
N=I+}J+Kandi=lj=I k=1
Step 1. Align the normat 1o the Z-Axis

P’= Ry(q, "Rxqgy P .Y
Step 2. Take mirror reflection about XY Plane
P’=Mxy* P .. B}
Step 3. Back alignment
P” = Rxig) " R¥e, *P” - [C]

Now from equation {A], {B} and [C] we have

P“= Rx_g) * Ry, * Mxy* Ry.q,) "Rxp,) " P

P*=M*"P
So the myirror M is as foflows
M= RX(-G,} * R.Y(az) * Mxy * R.Y(—Bz) * RX(BI) [D]
b

sing, = | ——=
! ,/b2+c2
8, = sin~! ! =sin”' i
=8 Ji+1) ' J2

8,= 45°
sin@ -(i w— 1 = —1—
a2) (et)\
([[+ ¢ _[J1+1 }_[E}

JFrrrd) \JTeie 3

Now putting these values in equation {D] we can calculate the value M Ans.

cos 8, =

4.8 THREE-DIMENSIONAL VIEWING _

The 3-D viewing process is inherenily more complex than the 2-D viewing.

in 2-dimensional viewing we have 2-D window and 2 view port and ebjects in the word
coordinates are clipped, against the window and are then transformed into the view
port for dispiay.

The complexity added in the three-dimensional viewing is because of the added
diversion and the fact that even though objects are three-dimensional and the display
device are only 2-D.

The mismatch between 3-D objects and 2-D displays is compensated by intreducing
Projections.

h
1:?

'I;he Projection transforms 3-D objects into a 2-D projection plane. The following figure
shows the conceptual model of the 3-D transformation process.

l Modeling Modelling Ward
:i Coordinates Transformation Coordinates
|)
: . Projection View Viewing 1
1 Transformation Coordinates Transformation
3

¥ Projection Waorkstation Device

"] Coordinates Transformation Coordinates

Fig. 4.3 Conceptual model of 3-D transformation process

In|3 D viewing, we specify a view volume in the word coordinates with modeling
transfm mation. The word coordinate positions of the objects are then converted into
v1{e,wmg coordinates by viewing transformation. The Projection transformation is then
u‘;led to convert 3-D description of objects in viewing coordinates to the 2-D projection
(‘00rd111ares Finally the Workstation transformation transfers the projection
coordmates into the device coordinates.

Lelt us consider that we have to write a flight simulator program. The first thing (o be
donc is to construct a model of the world over which the pilot is to fly. Buildings,
helds runways, lakes and other scenes may be constructed using 3-D line and
polygon primitives. Windowing and modeling allows us real world dimensions.
Therefore model of the world is represented using the word coordinates. Then object
deisicrlpnon is converted lrom world coordinates to viewing coordinates. This
prbduces the view which the pilot can see from his Airplane. The projection
lran‘sformallon is then used (o convert 3-D description of the object in viewing
coordmates to the 2-D projection ceordinates. The 2-D projection coordinates are
convex ted into device coordinates which are used to display the picture on the video
dlsplay
Ii
4. 9 VIEWING PARAMETERS

]
i

Yw

Py (Xo Yor Zg)

z .
v Fig. 4.4

As mentioned earlier, we can view the objects from the side or the top or even from
behind. Therefore it is necessary to choose a particular view from a picture by first
defining a view plane.

3-D Transformation

NOTES

Self-Instruciional Material 115

Computer Craphics

NOTES

116 Self-instructional Material

A view plane is nothing but the film plane in a camera which is positioned and oriented
for a particular shot of the scene. Word coordinate position in the scene is transformed
to viewing coordinates, and then viewing coordinates are projected on to the view plane.
A view plane can be defined by establishing the viewing coordinates system or view
reference coordinate system.

View Reference Point

The first viewing parameter we must consider is the view reference point. This point is
the center of our viewing coordinate system. It is often choosing to be close to or the
surface of the object in a scene. Its coordinates are specified as Xy, Yp and Zg,.

7

View Plane Normal Vector

The next viewing parameter is a View Plane Normal Vector. This Normat Vector is the
direction perpendicular to the view planc and it is defined as [DXN, DYN, DZN].

WE KNOW THAT THE View Plane is the film in the camera and we focus camera
towards the View Reference Point. This means that the camera is pointed in the
direction of the View Plane Normal. Graphically it is represented as follows :

Camera
N{View Pilan
|~ normal vector)

/| axonometric

Fig. 4.5

As shownin the above figure, the View Plane Normal Vector is a directed line system from
the view plane 1o the View Reference Point. The length of this directed line segment is
referred 10 as View Distance.

N‘O—TE\ It is possible to obtain the different views by rotaling the camera about the View
Plane Normal Vectlor and keeping view reference point and direction of [N] vectar fixed.

At different angles, the view plane will show the same scene, but rotated so that a different part
of the object is up. The rotation of a camera or view plane is specified by a View Up Vector
VIXUP. YUP. ZUP] which is another important viewing parameter.

4.10 PROJECTION

Projection means displaying a 3-D object {in real world) as a 2-D object in physical
device coordinate system,

|
b
B

(?Ilassification of Projection

1
The classification of the Projection is as follows:

Projection
A s
Parallel Projection Perspecﬂ\;e Projection
. I : T

1 1
i Orthographic Oblique One Vaneshing Two Vaneshing Three Vaneshing

] Point Point Point
-Mul Tiview Axonometric ‘—IZI‘—]

i Cabinet Cavalier General
fl Isometric Dimetric Trimetric
l

| T |
Sectional view Tree view Auxilliary view

I
\

P?rallel Projection

Fig. 4.6

Pa'll;allel Projection is specified by

(@ Direction of Projection
{b) View Plane.

In Parallel Projection, Z coordinate is discarded and parallel lines from each vertex on
lh(.lobjecl are extended until they intersect the view plane. The point of intersection is the
PFOJECUOH of the vertex. We connect the projected vertex by line segments which
cogfestpond to coordinates on the original object.

[

:
i
!

View plane

1
E Fig. 4.7 Parallel projection of an object 1o the view plane

Perspective Projection -

Persq;pective Projection is specified by

(@) | Point of Projection
(B4 View Plane.
{
0rtThographic Projection

Orthographic Projection is a special kind of parallel projection in which the direction of
projection is perpendicular to the View Plane.

Oblique Projection

Oblique projection is a speciat kind of paraliel projection in which the direction of
projection make any angle to the View Plane except 90°.

3-I3 Transformation

NOTES

Self-Instructional Material 117

Camputer Graphics

NOTES

118 Self-Instructional Material

Cabinet Projection

Cabinet Projection is a special iype of Oblique Projection in which the length of the
projection point is half than the actual position of the point.

¢ P (00,1}

1

A

2]

Fig. 4.8

IF AP=1
THEN AP =1/2
Then it is called as Cabinet Projection.

Cavalier Projection

Cavalier Projection is the special type of Oblique Projection in which the length of the
projection point is same as the actual position of the point.

FI
(v
A -
{1} ,
=1
Fig. 4.9

IF _AP=1
THEN AP =1

Then it is called as Cavalier Projection.

General Projection

If the projection is neither Cabinet nor Cavalier then the projection is called General
Projection.

Multi View Projection

Multi View is a special type of Orthographic Projection, in which we can see the various
views of the picture.

Axonometric Projection

Axonometric is a special type of Orthographic projection which tells how the direction
of projection makes the angle with the three principles Axis.

” Isometric Projection 3-D Transformation

Isometric Projection is a special type of Axonometric Projection, in which the direction
of projection makes equal angle with the three principles Axis.

[ﬁiametric Projection

Diametric Projection is a special ty pe of Axonometric Projection, in which the direction
Ufzprojection makes equal angle with two principles Axis.

] . L NOTES
T|rIlmetnc Projection

Trimetric Projection is a special type of Axonometric Projection, in which the direction

of projection makes unequal angle with three principles Axis.

Sectional View
[

Secuona] View is a special type of Multi View Projection. in which the image is ivied in
thie form of sections.

Fs

Tree View

TI?G View is a special type of Multi View Projection, in which the tree like structure i.e.
hle:archlcal structure is visible.

Auxnllary View

lfthe projection is neither Sectional View nor Tree View. then it is called as Auxiliary
View.
|

| . . e
Perspective Projection

Pcrspecuve Projection is specified by a point called center point and a View Plane.
Craphlcally the Perspective Projection of any line is represented as follows

Projected ray

Cp
{Centre of
projection)

m\
(A

i Fig. 4.10 A’B’" is the perspective projection image of AB.

||
The Classification of Perspective Projection is as follows:

Perspective projeclion

| 1

One vanishing point Two vanishing point Three vanishing point
nerspective projection perspective projection perspective projection
Fig. 4.11

Self-Instructional Material 119

Computer Graphics

NOTES

120 Self-Insiructional Material

4.11 VANISHING POINT

Perspective projected image of two parallel lines will not be two parallel lines. They will
be non parallel and on exiending these lines they meel at some point is known as
Vanishing Point, *

Example of One Vanishing Point Perspective Projection

A A Cp
yC
B
By D
Lo .
VP C! Df

{Vanishing point)
Example of Two Vanishing Point Perspective Projection

[vP,)

[VP,]

If we have two Vanishing points, then it is called as Two Vanishing Point Perspective
Projection.

4.12 THREE VANISHING POINT PERSPECTIVE PROJECTION

If we have three Vanishing points, then it is called as Three Vanishing Point Perspective
Projection. Graphically it is represented as follows :

VP4
VPl

VP
Fig. 4.12

Four Anomalies of Perspective Projection 3-D Transformation

In Perspective Projection, we have four anomalies and that four anomalies are as
ft])lllows':

{n) Perspective foreshortening (b} Concept of vanishing point

(© View confusion @) Topological distortion.

(@ Perspective Fareshortening: Perspective foreshortening means. the perspective image of
the farther object from the center of point will be smaller. Graphically it is represented

as follows : NOTES

e

{Perspective image
of both the objects)

{Perspective
image of
second object)

First object second object ‘

B’

ii
0 {Perspective image
of first object)

Fig. 4.13(a)

() Concepl of Vanishing Point: Perspective projected image of two parallel lines
will not be two parallet tines. They will be non parallel and on extending these
lines they meet at some point is known as Vanishing Point. Graphically it is
represented as follows :

A ﬁ.\ Cp
8 C
B
, / 0
i
N\"‘"‘h\-
""""" 3 >

{Varishing point)
Fig. 4.13(b)

| Setl-Instructional Material 121

Computer Graphics

NOTES

122 Self-Instructional AMaterial

{3 View Confusion: If center of point is beiween object and view plane, then the
perspective image of the object will be inverted then it is called as View Con-
fusion. Graphically it is represented as follows :

Y4 A

Ar

Fig. 4.13(c)

{d) Topalogical Distortion: Assume a plane passing through center of point and
parallel to View Plane, then perspective image of any point lying on this plane
will be formed at infinity. then it is known as Topological distortion. Graphically
it is represented as follows :

Ca{0,0,—d)

Fig. 4.13(d)

4.13 STANDARD PERSPECTIVE PROJECTION MATRIX

When center of projection line lies at negative Z-Axis and View Plane is XY Plane, then
it is known as Standard Perspective Projection Matrix.

P{X, Y. 2)

C(0,0,—d)

o (X 0,0}

Fig. 4.14

L

|
Now in this case

1{ {0 0 1

P'= PPrespeclive * P
“Where

PPrcspcctive =

Lo J e R ST
o O O

o O O A

Matrix.

0

[EQ) _ o
RC) ™ \RQ
d _(E
d+z) \X
X’ = [dx }
d+z
Similarly we have
ay
Y’ =
| [d +z J
Z=10
Now we can represent this in the form of Matrix
X’ d 0 0
Y’ 0 d4 0
Z| o 0 0

0
0
d

o o o

1Al

... [B

— N

is known as Perspective Projection

E:i!;mple. Find the Projection Matrix. If the View Plane is any whose Normal is ——+— and

P

N

refgrence point is Ry(Xy. Y 5. Z) and center of point is origin.

Pxy2)

x.y.2)
(g Yo 2}
Ro

N

P'=aCP

Where o is the constant.

r — = i + Ngj + N3k

Since P and P’ both are on the same line then we have

. 1A}

Wef;have the point P(x, y. 2) and the point P’ (X', ¥, £}, so we have

* X =aX
Y'=aY
Z=aZ

And we also have

.. 1B]
.1C]
..[DI

3-D Transformation

NOTES

Sell-Instructional Material 123

Computer Graphics

NOTES

124 Self-Instructional Material

— =0
= [{xX'~xp)i+ (/- yo)j+r (Z- 7] . [n;i+ myj + mgk] = 0

. = (X=X + (- Yy + (- Z)m =10 « |E]
Since we have
fi=jj=kk=1
Now putting the values of {(x'. ¥, Z} from equation {B], {C], and |D] in equation {E|
we have
= {ox - xp)ny + (ay— Yol + (02— Zg)n; =0
= 0 (N X+ Y+ M2) = X, + Yol + Zyiy
e (xonl + Yoty + Zght3 J IR
RX + M + N2
Let d = (xgn, + Yohip + Zyily)
Now from equation No. [F], we have
a=d/{mx+ ny+ nz) LG
X = ox=dx/(mx+ Ny + nyz) ..[Hl]
Y =ay=dy/(mx+ my+ 2) ()
Z = az=dz/{mx+ ny+ z))

Now we can represent this in the form of Matrix

7 [4d 0 o0 0] [x
y 6 4 ¢ 0| |y
Z|7lo o a of]z
1 m m ony 0] |1
P'=Phe, " P
[d 0 0 0]

Where is called Projection Matrix.

m ny O

Example. If center of projection is not origin and it is some other point (a, b. ¢) and view plane
is any plane then find the projection matrix.

Pixy.z)

The following steps takes place.

Step 1. Translate the whole system into origin

Pr=Tra-b-9™P Al
Step 2. Take the Perspective Projection
P” = Pporspocli\-o TP .. |B}

Step 3. Back translate the whole system into new position
P"= Tian, a P”
Now from equation [A]. [B], and [C] we have

P”= T(a. b ' Pperspeﬂivc > T(-a.-b.-r) *P

¥ P”=M*P
Where M is the Composition Matrix.
M= T[a‘ b iy Pperspeclivc * T{—a. -4 =¢)

p?rametrfc equation of the line.

X=X+ (X=Xt
Y=Y,+(Y,-Y)t
Z=Z,+(Z,-Z)t

This is the case, when the topological distortion take place.

S(I)Ilulion.

Given equations are

X=X+ (X - X))t
Y=Y, +(Y,- Y}t
Z=Z,+(Z2y-2Z))t
Now putting the values we have
X=-1+{2+1)t

X=-1+13T
Y=1+(-2-1t
Y=1-3T
Z==-2d+ (0+2dit
Z=-2d+ 2dt

()

E!:_fample. HP=(-11-2d),Q=(2 -2 @) and CP = (0. 0, - d) calculate P* Q" taking

Al
- IB]
- 1C]
. [D]

- E]

- |F}

Now this is the case of standard Perspective Projection Matrix because the View Plane

is XY and CP is on negative Z-Axis. So we have

P" = Pperspecitve” P
4 0 0 01 [-1+3¢
. lo 4 o o] | 1-3t
P=lo 0o o of |-2a+2a
_0 0 1 4 1
x| [d(-1+30)
y d(1- 36
: 2| ” 0
w —d -+ 2dt
Now by comparing these values we have
! Cd(-1+3H
T Cd+2dt
, . d(1-3h
T Td+2dt
Z'=0
Now from [G]. and [H] we have, that the denominator is 0 when t = %
: 1
Solat I=E
X=ecand Y =o

-G

... [H}
-1

3-D Transformation

NOTES

Self-Instructional Material 125

Computer Graphics

NOTES

126 Self-Instructional Material

Now when t = 0, then we calculate point P/
_d(=1+3"1)

' =d(-1)/d=1
—d+2d*1
da(-1 *0
yo AC1E3T0 gy
—d+2d*0
Z’=0
So the coordinate of P’ is {1, -1, 0}
Now when t =1, we calculate point Q)
d{-1+3*1
R wb L) NN
—-d+2d*1
d(1-3*1
O U PV I
-d+2d*1
Z’=0

Then the coordinate of Q%is (2, -2, 0)

The Perspective image of PQ is P"Q°, but it is not continuous and at £ = 1 /2 P’ = and
(Y =c Ans.

4.14 3-D CLIPPING

We know that, in two-dimensional coordinate systerm, the concepts of window are
served as clipping boundary. But in threé-dimensional coordinate system, the concept
can be extended to a clipping volume or view volume. The clipping volume can be either
a box (rectangutiar parallelepiped) or transform of vision (a truncated pyramidal
volume). The box is normally used for parallel projections, where the transform of
visions is used for perspective projection.

Graphically it is represented as follows :

Y Topplane

i .
Back plane- / —+—= Right plang

Left plane —-—4— 7 X
Botiom plane
]
Front plane
zZ
Fig. 4.15

We can make use of Cohen and Sutherland end-point code for identifying totally or
partially visible lines. Here we can use 6 bit end-point code. Now starting from left to
right (First bit is leftmost bit)., we have the bit setting as indicated below:

Bit 1 is set if the point is behind the volume.

Bit 2 is set if the point is in front of the volume.

Bit 3 is set if the point is abové the volume.

Blll 4 is set if the point is below of the volume. 3-D Transformation
Bit 3 is set if the point is right of the volume.
Bit 6 is set if the point is left of the volume.

|
The summary of the end-bit code setting is as follows :
1 2 3 4 5 &

Bit
Behind Froni Above Below Right Lefi
As anexample, a region code of 101000 identified a point as above and behind the view NOTES

volume and the region code 000000 indicates a point within the view volume.

A]me segment can be immediately identified as completely within the view volume if
both end-points have a region code of 000000. If either end-point of a line segment does
not havéa region code of 000000, we perform the logical AND operation on the two end-
p?‘mt codes. If the result of this AND operation is nonzero then both end-points are
outS1de the view volume and line segment is completely invisible. On the other hand if
the resutt of AND operation is zero, then the line segment is partially visible. It this case.

it !S necessary to determine the intersection of the line and the clipping volume.

4.15 THREE-DIMENSIONAL MIDPOINT ALGORITHMS

Algorithm

Find the location of end points {end-point codes) of line segments with respect
to display volume.
. Check visibility of each line segment.

(@ If codes for both end points are zero, then the line is completely visible.
Hence draw the line and go to step-4.

._._,.____,__
T g - |

(B If codes for end points are not zero and the logicalt AND operation of them
is also nonzero, then the line is completely invisible. So reject the line and
g0 10 step-4.

(0 If codes of both end points do not satisfy the conditions in 2{(a) and 2(b)
then the line is partiatly visibly.

3. Divide the partially visible line segment in equal parts and repeat step-1 and
L step-2 for subdivided line segments until you got completely visible and com-
i pletely invisible line segments. Draw the visible line segment and discard the
! invisible one.

:
4. Stop.

Exam ple. Obtain transform matrix for rotation about the line joining two points {0, 0, 0) and (1.
I, {) with the angle of rotation 45° in outer clockwise area.

Solhtion
Slep 1. Align the line with Z-Axis

j[P’ = R_}’(_ez RX[B}’ *P [Al
Slep 2. Perform the Rotation
- P”=Rzyg " P’ -~ {B]
Stép 3. Back Alignment
P = Rxg) "Ryg, *P” : - 1C]

From equation [A], [B]. and [C}; we have
P”= Rx_q,) *Ryp,) " Rzusy *Ryie,) "Rxg) *P
P = M*P

’{ i Self-Instructionaf Material 127

Computer Graphics

NOTES

128 Sell-Instructional Material

Now by comparing the values we get

M= Rxig, " Ryp,) " Rzusy " Ryis,) " Rxg,) - D
a=1,b=1¢=1

sin@, = b = ! = L
e)T

8,= 45°

s5in O —(c = L = L
- Ja2+b2+czj_ \/1+1+1 - ﬁ
‘ Joi+e) J1+1 [2]

cos O, = = o
Jawot vt | (J1+1+1

3

Now with the help of equation {D] we can directly find the values of the Matrix. Ans.

SUMMARY

Transformation is a process carried out by means of transformalion these objects, or
changing the size of the abjeci or changing the orientation of the object or may be any
combination af these.

Translation is a process of changing the position of-an object.
Scaling is a transformation. which either magnifies or reduces the size of the object.
In the rotation, we try to rotate lthe object by a given angle.

In mirror reflection, we need to know the reference plane, ie. plane about which the
reflection is to be laken.

Tilting is equivalent to rolalion about same Axis by some angle 8 lotlowed by rotation
about some other Axis by some olher angle 4.

Projection is a process of representing a Lhree-dimensional object or scene into two
dimensional medium, ’

Natural object can be shown by 3.D.

For Rotation about an arbitrary Axis we first translate it to the arigin. then atign the
Axis on the Z-Axis and then rotate by a given angle and then Back Alignment.

There are different viewing parameters such as the view reference point, view plane
norinal vector, view distance elc.

For 3-D Clipping Sutherland Cghen algorithm are used.

The Shape beltween (he lront plane and Lhe back plane is called view volume, which
are used for 3-D Clipping.

REVIEW QUESTIONS

1. Derive the Matrix for the rolation about Z-Axis by an angle 6.
. Find Matrix for rolation aboul any arbitrary line by angle 8, whose direction vector V = a/

+ bj+ ck

. Rotate a cube by angle 450 about Y-Axis whose coordinates are A0, 0, 0), B, 1, G),

C{. 1. 1). (0. 0, 1), E{1.0,Q), F(1. 0. 7)., G(1. 1. 8. H{L. 1. 1} and {ind the coordinate
after rotation.

. Differentiate belween Parallel and Perspective Projection with suilable example.
. Derive the 3-D wansformation matrix to (ransform World Coordinate 1o Viewing

Coordinale.

e N P 1o et
LT AT b T Y — — L=T ~ - B B

"8 » []

toed

. Define Paraltel Projection with suitable example,

. Define Perspective Projection with suitable exaniple.

- Explain various Lypes of Parallel Projection with suitable example.

. Explain various types of Perspective Projection with suilable example.

Why we need 3-D Clipping? Explain in detail.

. Write shori note on the [ollowing:

(8 3-D Clipping

(b} 3-D Scaling’

(r) Perspective Projection

(d) Parallel Projection

(£} "3-D Rotation .
Write a routine 10 implement rotations by any specified angle in a frame butter block,
Derive the 3-I transformation matrix for reflecting a point about a plane.

Write an algorithm 1o display a cube on Lhe screen and rotate it through any angle.
The distortion of the image should be minimum before and after Rotation.

. Give the mathematical description of the Perspective Projection.

FURTHER READINGS

Computer Graphic: V.K. Pachghare, Laxmi Publications, 2007, Second edition.

Computer Graphics: Prabhakar Gupla, Vineet Agarwal and Manish Varshney, Laxmi
Publications, 2011.

Computer Graphics: Rajiv Chopra, $. Chand Publisher, 2011,

Computer Graphics: C.5. Verma, Ane Books, 2011.

Computer Graphics: Pradeep K. Bhatia, LK. International, 2009, pbk. Second Edition.
Computer Graphics: Ruchi Mishra, Glabal Vision Publisher, 2315

3-D Translormation

NOTES

Sell-instructional Material 129

Computer Graphics

NOTES

UNIT V

HIDDEN LINES, SURFACES
\ CURVE GENERATION
AND ANIMATION

5.0 Learning Objectives
5.1 Hidden Surface Algorithms
5.2 Techniques for Efficient Visible Surface Algorithms
5.3 Coherence
5.4 Back Face Removal
5.5 Z-Buffer Algorithm
5.6 Scan-Line Algorithm
5.7 Painter’'s Algorithm i
5.8 Warnock's Area Subdivision Algorithm
5.9 Binary Space Partitioning
5.10 Comparison of Algorithms
53.11 Curve Generation
5.12 Affine Invariance
5.13 Convex Combination
5.14 Convex Set
5.15 Convex Hull
9.16 Order of a Curve
5.17 Degrees of Freedom
5.18 Legrange Interpolated Curves l
5.19 Bezier Curve ‘
5.20 B-Spline Curves
5.21 Hermite Spline
5.22 The Fractal Magic
5.23 Fractal Geometry
5.24 Iierative Formation
5.25 Introduction to Computer Animation
5.26 Perception
5.27 The Early Days of Animation
5.28 Disney
5.29 Other Media for Animation "
5.30 Animation Production
5.31 Time
5.32 Computer Animation: Films and Videos
5.33 Computer Animation Software
5.34 Macromedia Flash
5.35 Giff Animator
5.36 Sound Animation
o Summary I

130 Self-Instructional Material

s Review Questions
o Further Readings

l

510 LEARNING OBJECTIVES

|
AFfter going through this unit, you should be able to:

+ explain hidden surface algorithms

e explain fractals

e discuss about generation of curves

» describe about rendering and animation.

5.1 HIDDEN SURFACE ALGORITHMS
I

A'major part of rendering (making images more realistic) is the visible surface problem,
i.e., only display those surfaces which should be visible.

Graphically it is represented as follows:

Fig. 5.1

Thlls was one of the major areas of activity in computer graphics and many different
dlgorllhms were developed. The algorithms can be divided into two classes:

Objecl space————— Word Coordinates
lm’atge space————— > PDC Coordinates

H]dden Surface Algorithms are usually image space or a combination of object and
1mage space. Below are discussed some of the many visible surface determination
algor:thms

l
Obiect Space Method

Ob_]LC{ space method is implemented in the physical device coordinated system in which
objecls are described. It compares objects and parts of objects to each other within the
scene definition to determine which surfaces, as a whole we should label as visible.
Ob_]ECI space methods are generally used in Line-display algorithms.

Iange Space Method

Image space method is implemented in the screen coordinate system in which the
objects are viewed. In an image space algorithm, visibility is decided peini by point at
each pixel position in the view plane, Most hidden line/surface algorithms use Image
Space Methods.

5.2H TECHNIQUES FOR EFFICIENT VISIBLE SURFACE ALGORITHMS

We have seen that there are two basic approaches used for visible surface detection
wlhich are as follows:

1. Object Precision Algorithm

2: Image Precision Algorithm.

In both the algorithms we require to perform a number of potentially costly operations
such as determination of projections of objects, whether or not they intersect and where

Hidden Lincs, Surfaces Curve
Generation and Animation

NOTES

Self-Instructional Material 131

Computer Graphics they intersect. closest object in case of intersection and so on. To create and display
piciure in minimum time we have to perform visible surface algorithms more efficiently.

The techniques to perform visible surface algorithms efficiently are discussed in further
sections.-

5.3 COHERENCE

NOTES The issue of coherence is often mentioned in relation to hidden surface removal, since
many of these algorithms make use of it in some fashion. it does have widespread
application to many areas of computer graphics. Coherence denotes similarities
between items or entities. It describes the extent to which these items or entities are
locally constant. In many situations properties do not change drastically but rather ina
smooth or continuous way. Coherence is based on the principie of Jocality, whereby
“nearby” things do have the same or similar characteristics. In thefield of computer
science and computer graphics coherence properties have been exploited in a variety of
different methods and techniques. With coherence processing of data can be accelerated
considerably, e.g., hidden line/hidden surface removal.

Data can be stored more efficiently by eliminating redundancies due to coherence. e.g..
run length encoding of raster images. Sorme approximate or incrementai techniques are
only useful in coherent situations, e.g., Newton iteration to determine the roots of a
polynomial. In a coherent situation incremental methods can be designed that process
an item by reusing the results obtained for a similar {coherent) item. Exploiting
coherence leads to aigorithms based on an incremental application of very simple
operations that in many cases can use “integer logic” to replace time-consuming
Noating-point arithmetic.

Types of Coherence

In this section a survey of different types of coherence is given. Some of these types of
coherence are not mutually exclusive and they are overlapping in the sense that in
certain situations they can be used interchangeably.

1. Scan-line coherence: Scan-line algorithms for visible surface determination
have been one of the earliest examples in computer graphics that make use of
coherence properties. With scan-line algorithims an image is generated sequen-
tially, one scan line at a time. The fact that there are relatively few changes from
one scan line to the next and almost the same objects {e.g.. polygons) are visible
on consecutive scan-lines is called scan-line coherence. Therefore a scan-line is
processed by only updating the informatien of the previcus scan-line.

2. Span coherence: Coherence does not only exist between consecutive scan lines
but is usually present within a single scan-line too. Spans are poriions of a scan-
line with some constant property, e.g.. the same object is visible over a given
span. All scan line based algorithms (e.g.. hidden surface removal, polygon
filiing) do exploit span coherence, which is given between adjacent spans and
within a single span as well.

3. Depth coherence: Depth coherence expresses the fact that the depth or distance
to the viewer at some surface poinl changes gradually. Adjacent paris of a
surface are usually close in depth. Therefore the depth at some surface point can
be efficiently calculated by incrementally updating the depth information of an
already processed nearby surface point. Furthermore the depth ordering of
surfaces at one pixel is likely to be similar to the ordering at adjacent pixels. An
incremental update operation is again feasible.

132 Self-Instructional Material

p—al Y

= S

. Area coherence: Area coherence follows from image coherence and is given if

adjacent pixels of a raster image do have the same or similar colour or intensity
values. This situation arises if, for example. a group of pixels is covered by the
same object or the same visible surface. In area coherent portions of an image
the calculation of one pixel value allows for the calculation of values of nearby
pixels with significantly less computation. Warnock's area subdivision algo-
rithm for visible surface determination of a scene consisting of polygons is a
prominent example of 2 method that makes use of area coherence.

Object coherence: Object coherence is based on some known relationships
hetween objects or between parts of the same object. Objects may be disjoint, may
be closely ciustered or may consist of collections of low-level geometry, which
usually are connected, smooth and bounded (e.g., polygons. surfaces}. Local
neighborhoods of space are likely to be cccupied by the same objects. Depending
on the given relations, manipulations like clipping, sorting, comparison, or
intersection can first be performed at the object level to reduce the complexity
and volume of calculations on low-level geometry.

Spatial coherence: Spatial coherence describes spatial homogeneities. These are
a consequence of constant or slow varying relationships in the spatial arrange-
ment of objects or data. Volume data like flow fields of a viscous fluid often
exhibit a high degree of homaogeneity. Considering the spatial arrangement of
objects, spatial coherence is somewhat similar te object coherence.

. Temporal coherence: Temporal coherence occurs whenever a dynamicenviron-

ment changes smoothly over time, e.g., small viewpoint and/ or object movement
{object space temporal coherence). Discretization of a temporal coherent situa-
tion allows the calculation of the relevant information by using results obtained
for previous time steps. Temporal coherence has been used in a variety of
methods for accelerating the calculation of animation sequences. Often only
restricted situations with high temporal coherence are handled by these tech-
niques. Restrictions can be one of the following: Fixed viewpoint or restricted
camera movenient. fixed light sources, restricted class of objects like planar or
convex objects etc.

Frame coherence: Frame coherence denotes the fact that successive frames of an
animation sequence or video sequence are likely to be very similar if the differ-
ence in time is small, i.e., the projection of an environment tends to change
continuously over time. Frame coherence is an immediate consequence of tem-
poral coherence and object coherence and may be considered to be an image
space temporal coherence. Frame coherence allows an efficient calculation and
storage of video sequences.

Image coherence: Image coherence is the view-dependent analogue to chject
coherence. It results from the transfer of object coherence properties to the image
plane by well-behaved projections, e.g., orthogonal or perspective projections, In
the 2-D image plane there is at least the same degree of connectedness and
smoathness as among the original 3-D objects. Local constancy of object space
translates to local constancy in image space with only gradual changes. Some
additional coherence is due to the projection technique itself. A given part of the
image plane may be influenced by only a small subset of the items in object
space.

Ray coherence: Tracing rays through an object environment has been used exten-
sively in computer graphics for image rendering puirposes. The classical ray-tracing
approach has been as follows: for each pixel of an image a ray is cast from the eye
point into object space 1o determine the intersection point of the first visible object.
Ta account for global illumination effects an approximation to the light distribution

Hiddan Lines. Surfaces Curve
CGeneration and Animation

-

NOTES

Self-Instructional Material 133

Computer Graphics

NOTES

134 Self-Instructional Material

in the object scene is done by recursively casting further rays from this point of
intersection. Depending on the surface properties of the intersected object. rays are
cast in the direction of reflection and refraction.

Shadow calculation is done by tracing rays from the point of intersection to the
various light sources. Therefore, a ray tree is constructed to calculate the colour
information for each pixel. Due to the spatial coherence and object coherence of
the scene, similar rays, i.e., rays with similar origin and dircction, often have
almost the same behavior. Similar rays often intersect the same object; the points
of intersection are close together and so on. This property is called ray coher-
ence. The similarity between ray trees is analogously called ray tree coherence.
One of the major drawbacks of ray tracing has been its excessive computational
cost. An extensive amount of research has been done 10 accelerate ray tracing
by taking advantage of the various types of coherence that are inherent in the
raytracing technique.

11. Other types of coherence: The following less frequently used types of coherence
are listed only for reasons of completeness: cell coherence, cluster coherence,
cube coherence, data coherence, edge coherence, external coherence, face coher-
ence. frustum coherence, geometric coherence, hierarchical coberence, implied
edge coherence, intervisibility coherence, invisibility coherence. objective coher-
ence, palch-to-patch coherence. path coherence. predictive coherence, screen-
area coherence, shadow coherence. space coherence, surface coherence and
volume coherence,

Data Structures for Coherence

Some specific data structures have been developed that are well suited to exploit
coherence properties. Only few examples are shortly mentioned here.

» A grid is a subdivision of 3-D space into regu\lar cubical elements to exploit
object and hierarchical coherence.

« An octree describes an adaptive hierarchical subdivision of 3-D space.

« The BSP-tree (Binary Space Partitioning) is a hierarchical data structure de-
signed for storing polygonal objects.

« CSG (Constructive Solid Geometry) defines an object through a binary tree. A
CSG trec usually contains an efficient bounding volume hierarchy (hierarchical
coherence).

+ Many data structures utilize subdivisions to reduce the manipulation cost from
linear to logarithmic, such as interval trees. segment trees and range trees.

Spatial Partitioning

In this technique, subdivision rule is apptied to break down a large problem into a
number of smaller ones, In this objects and their projections are assigned to spatically
coherent groups as a preprocessing step. This partitioning speed up the process of
determining which object intersects with a projector. Because now it is necessary 1o test
only the objecis lying within the partitions which intersect with projector.

5.4 BACK FACE REMOVAL

A simple object space algorithm is back face removal (or back face cull) where no faces
on the back of the object are displayed. Since in general about half of the faces of objects
are back faces this algorithm will remove about half of the total polygons in the image.

|

i

G‘raphica[]y itis represented as follows:

¥
—)
N Remember
' Y
m N=A; +B, + Cx
2
Back face
X
VRP
Fig. 5.2(a)

Look at a left handed viewing system

IfC >0 then Nis in the direction of +z, and it faces away from the VRP. therefore, if C >0
then it is a back face {for a left handed system}.

For aright handed system it is graphically represented as follows :

¥

Right
handed

._)
If ¢ <0 then Nin
5 direction of — 2,

faces away from VRP

VRP
Fig. 5.2(b)

It is1 just the opposite condition for a right handed viewing system. Therefore. if C < 0
then a back face in a right-handed system.

So‘fhe algorithm (for left-handed system)

1 Compute N for every face of Object

21.| If C (z component) > 0 then a back face and don't draw
Note that we must be able (o identify the polygons for the object.

This simple method is only correct for an orthographic projection. For a perspective
projection, it is a little more complicated. For the scene below, the visible surfaces are
dlfferent for orthographic or perspective projection. The sides will be invisible for an
orthT(Jgraphlc projection. but ot for a perspective projection.

For“'-l perspective projection, we must determine if the Center of Projection (COP) is

inside or outside of the planes of the polygons of the object. if the COP is inside then that
LU ‘s ; . . e rs

plane is not visible. if the COP is outside then it is visible.

There are two methods to compute this

1. Put COP into plane equation and determine if inside or outside.

NOTE W Must compulte plane equation before the perspective transformation.
2 1 the angle between the plane normal (N) and the vector from ahy point on the

" plane to the COP, V is > 90° (N'V < 0) then that plane is not visible.

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Self-Tnstructional Material 135

Computer Graphics

NOTES

136 Seif-Instructional Material

Graphically it is represented as follows:

Polyhedren

A /
Image plane

Projectors

COP
Fig. 5.2(c)

Limitations on back face removal algorithm

1. It can only be used on solid objects modeled as a pelygon mesh. This is the most
general modeling construct for scan-line graphics systems. Even if objects are
defined in a different manner, e.g., by parametric cubic patches or implicit
equations, the renderer usually converts everything to polygons to render.

2. It works fine for convex polyhedra but not necessarily for concave polyhedra as
shown below in the example of a partially hidden face, that will not be eliminated
by back face removal.

.iven if we use another algorithim for visible surface determination, the back face cull is
a good pre-processing step., once it removes about half of the polygons in the scene.
Also, for color shading we must compute the normal for all of the polygons anyway.

5.5 Z-BUFFER ALGORITHM

N

The basic idea is 10 test the z-depth of each surface to determine the closest (visible)
surface. Declare an array zbuffer(x. y) with one entry for each pixel position. Initialize
the array to the maximum depth. So initialize all values to maximum depth. Then the
algorithm is as follows:
for each polygon P
for each pixel (x, ¥} in P
compute z_depth at x, ¥
if z_depth « z_buffer (x, y) then
set_pixel (x, y,.color)
z_buffer (x, y) = z_depth
The ecasiest way to achieve hidden-surface remaoval is to use the depth buffer {sometimes
called a z-buffer). A depth buffer works by associating a depth, or distance from the
viewpoint, with each pixel on the window. [nitially, the depth values for all pixels are
set to the largest possible distance, and then the objects in the scene are drawn in any
order. Graphical calculations in hardware or software convert cach surface that’s
drawn to a set of pixels on the window where the surface will appear if it isn't obscured
by something else. In addition, the distance from the eye is computed. With depth
buffering enabled, before each pixel is drawn, a comparison is done with the depth
value already stored at the pixel.

If the new pixel is closer to the eye than what's there. the new pixel’s colour and depth
values replace those that are currently wrirten into the pixel. [Fthe new pixel’s depthis
greater than what's currently there, the new pixel would be obscured. and the colour

™

il
|
jt
li ol e s o o
and depth information for the incoming pixel is discarded. Since information is

discarded rather than used for drawing. hidden-surface removal can increase your
pel formance.

56 SCAN-LINE ALGORITHM

I
T]he scan-line algorithm is another image-space algorithm. It processes the image one
scan- -line at a time rather than one pixel at a time. By using area coherence of the
polygon the processing efficiency is improved over the pixel oriented method.

Usmg an active edge table. the scan-line algorithm keeps track of where the projection
beam is at any given time during the scan-line sweep. Whes it enters the projection of a
p?lygon an IN flag goes on, and the beam switches from the background colour to the
colour of the polygon. After the beam leaves the polygon’s edge, the colour switches
back to background colour. To this point, no depth information need be calculated at all.
However when the scan-line beam finds itself in two or more polygons, it becomes
ueicessary lo perform a z-depth sort and select the colour of the nearest polygon as the
painting colour.

Accurate bookkeeping is very important for the scan-line algorithm. We assurne the
scene is defined by at least a polygon table containing the (A, B, C, D) coefficients of the
pllalne of each polygoen, intensity/colour information, and pointers to an edge table
spermfymg the bounding lines of the polygoin. The edge table contains the coordinates of
thé two end points, pointers to the polygon table to indicate which polygens the edge
bolunds and the inverse slope of the x-y projection of the line for use with scan-line
algonthms In addition 1o these two standard daia structures, the scan-line algorithm
|eql.:1re5 an active edge list that keeps track of which edges a given scan-line intersects
during its sweep. The active edge list should be sorted in order of increasing x at the
pomt of intersection with the scan line. The active edge list is dynamic. growing and
bhnnklng as the scan line progresses down the screen.

In Lhe following figure scan-line S; must deal only with the left-hand object. S, must plot
bot!'l objects. but there is no depth conflict. S; must resolve the relative z-depth of both
objgz‘ecls in the region between edge E; and E;. The right-hand object appears closer,

|
E Fig. 5.3

Thel active edge list for scan line S, contains edges E; and E,. From the left edge of the
wewport to edge E,. the beam paints the background colour. Atedge E|, the IN flag goes
up for the left- hand polygon. and the beamn switches to its colour until it crosses edge E,.
at Whlch point the IN flag goes down and the colour returns 1o background.

For scan-line 5,, the active edge list contains E|, E,, Eg. and E;. The IN flag goes up and
down twice in sequence during this scan. Each time it goes up pointers identify the
appropriate polygon and look up the colour to use in painting the potygon.

For scan line S,. the active ¢dge list contains the same edges as for S,, but the order is

altered, namety E,| E;. E;, E. Now the question of relative z-depth first appears. The IN

flagigoes up once when we cross E; and again when we cross Eg, indicating that the
r

HMidden Lines. Surfaces Curve
Generation and Animation:

NOTES

Self-Instructional Material 137

Computer Graphics

NOTES

138 Self-Instructional Material

projector is piercing two polygons. Now the coefficients of each plane and the (x.) of
the E edge are used to compute the depth of both planes. In the example shown the z-
depth of the right-hand plane was smaller, indicating itis closer to the screen. Therefore
the painting colour switches to the right-hand polygon colour which it keeps until edge
Es-

Note that the technique is readily extended to three or more overlapping polygons and
that the relative depths of overlapping polygons must be calculated only when the IN
flag goes up for a new polygon. Since this occurrence is far less frequent than the number
of pixels per scan-line, the scan-line algorithm is more computationally efficient than
the z-buffer algorithm.

The scan-line hidden surface removal algorithm can be summarized as:

1. Establish the necessary data structures.
{(a) Polygon table with coefficients, colour, and edge pointers.
(B Edge table with line end points, inverse slope, and polygon pointers,
{d Active edge list, sorted in order of increasing x.
{d) An IN flag for each polygon.
2. Repeat for all scan lines:
(a) Update active edge list by sorting edge table against scan line y value.
(B Scan across, using background colour, until an IN flag goes on.
(0 When I polygon flag is on for surface P, enter intensity {colour) into refresh
buffer.
(d When 2 or more surface flags are on. do depth sort and use intensity 1, for
surface n with minimum z-depth.

(& Use coherence of planes to repeat for next scan-line.

The scan-line algorithm for hidden surface removal is well designed 1o take advantage
of the area coherence of polygons. As long as the active edge list remains constant from
one scan to the next, the relative structure and orientation of the polygons painted
during that scan does not change. This means that we can “remember” the relative
position of overlapping polygons and need not recompute the z-depth when two or
more IN flags go on. By taking advantage of this coherence we save a great deal of
computation.

5.7 PAINTER’S ALGORITHM

The idea behind the Painter's algorithm is to draw polygons far away from the eye first,
followed by drawing those that are close to the eye. Hidden surfaces will be written over
in the image as the surfaces that obscure them are drawn.

The concept is to map the objects of our scene from the world model to the screen
somewhat like an artist creating an oil painting. First she paints the entire canvas with
a background colour. Next, site adds the more distant objects such as mountains, fields,
and trees. Finally, she creates the foreground with “near” objects 1o complete the
painting. Our approach will be identical. First we sort the polygons according to their z-
depth and then paint them to the screen, starting with the far faces and finishing with
the near faces.

The algorithm initially sorts the faces in the objeci-into back to front order. The faces are
then scan converted in this order onto the screen. Thus a face near the front will obscure
a face at the back by overwriting it at any points where their projections overlap. This
accomplishes hidden-surface removal without any complex intersection calculations
between the two projected faces.

|
/
T'lltle algorithm is a hybrid algorithm in that it sorts in object space and does the final
r?ndering inimage space.

The basic algorithm is as follows:

1[1. Sort all polygons in ascending order of maximum z-values.

i2. Resolve any ambiguities in this ordering.

3. Scan convert each polygon in the order generated by steps (1) and (2).

The necessity for step (2} can be seen in the simple case shown in following figure.

i
|
|
f

| A
B

2 [Viewing direction
!

Fig. 5.4 Ambiguities in the painter’s algorithm

B p;recedcs A inorder of maximum z but A should precede B in writing order. At step (2)
the ordering produced by (1) must be confirmed. This is done by making more precise
compansons between polygons whose. z-extents overlap. Assume that polygon P is
LUI‘I ently at the head of the sorted list, before scan converting it to the frame-buffer it is
tested against each polygon Q whose z-extent overlaps that of P. The following tests of

incr reasing complexily are then carried out:

| If the x-extents of P and Q do not overiap then the polygons do not overlap,

; hence their ordering is immaterial.

. If the y-extents of P and Q do not overlap then the polygons do not overlap,
hence their ordering is immaterial.

If P is wholly on the far away side of Q then P is written before Q.
If Q is wholly on the viewing side of P then P is written before Q.

If the projections of P and Q do not overlap then the order P and Q in the list is
immaterial.

e) N e O

i
d|
|

If any of these tests are satisfied then the ordering of P and Q) need not be changed
Ho‘xg\mver if all five tests fail then it is assumed that P obscures Q and they are
mterchanged in the list. To avoid looping in the case where P and Q inter-penetrate Q
must be marked as having been moved in the list. When polygon QQ which has been
marked fails all tests again when tested against P then it must be split into two polygons
and each of these polygons treated separately. (is split in the plane of P. Often the last
test Twll not be done because it can.be very complex for general polygons.
I

WARNOCK’S AREA SUBDIVISION ALGORITHM

joh;q Warnock proposed an elegant divide-and-congquer hidden surface algorithm. The
algorithm relies on the area coherence of polygons to resolve the visibility of many
polygons inimage space, Depth sorting is simplified and performed only in those cases
involving image-space overlap. Warnock's algorithm classifies polygons with respect
to the current viewing window into trivial or non-trivial cases. Trivial cases are easily
handled. For nontrivial cases, the current viewing window is recursively divided into
four ‘equal subwindows. each of which is-then used far reclassifying remaining

Hidden Lines. Surfaces Curve
Generation and Animation

NOTES

Self-instructional Material 139

Cemputer Graphics

NOTES

140 Self-Instructional Material

|
|

polygons. This recursive procedure is continued until all polygons are trivially
classified or until the current window reaches the pixel resolution of the screen. At that
point the algorithm reverts to a simple z-depth sort of the intersected polygons, and the
pixel colour becomes that of the polygon closest to the viewing screen,

All polygons are readily classified with respect to the current window into the four
categories

which are as follows: i

1. Surrounding Polygon: One that completely encloses the shaded area of interest.

Graphically it is represented as follows:

Fig. 5.5(a) Surrounding

2. Overlapping or Intersecting Polygon: One that is partly inside and partly
outside the area.

Graphically it is represented as follows:

Fig 5.5(b) Interlacing or overlapping

3. Inside or Contained Polygon: One that is completely inside the area.
Graphically it is represented as fotlows:

Fig 5.5(c) inside or contained

4. Qutside or Disjoint Polygon: One that is completely outside the area.
Graphically it is represented as follows:

Fig. 5.5(d) Outside or disjoint

The classification scheme is used to identify certain trivial cases that are easily handled.
These " easy choice tests™ and the resulting actions include:

. For polygons outside from the window, set the colour/intensity of the window
equal to the background colour.

There is only one inside or intersecting polygon. Fill the window area with the
background colour then render the polygon.

There is only one surrounding polygon. Fill the window with'the polygon's
colour.

,.___....._.__-_F__,-...-_,._;_{'T.._,__.r_d._._._.!\)v_ ety

If more than one polygon intersects, is inside, or surrounds, and at least one is

a surrounding polygon.

(3 Is one surrounding polygon, P, in front of all others? If so, paint window
with the colour of P. The test is: Calculate the z-depths for each polygon
plane at the corners of the current window. If all four z-depths of the P plane

are all smaller than any z-depths of other polygons in the window, then P
is in front.

If the easy choice tests do not classify the polygon configuration into one of these four
tri\Fia] action cases, the algorithm recurs by dividing the current window into four equal
5ubw1ndows Rather than revert to the complex geometrical tests of the Painter's
algonthm Warnock’s algorithm simply makes the easy choices and invokes recursion
for; non-trivial cases.

A nlotewor[hy feature of Warnock's algorithm concerns how the divide-and-conquer
area subdivision preserves area coherence. That is, all polygons classified as
sm;lloundmg and outside retain this classification with respect to all subwindows
ger{nserated by recursion. This aspect of the algorithm is the basis for its efficiency. The
algclymhm may be classified as a radix four quick sort. Windows of 1024 x 1024 pixels
may be resolved to the single pixel level with only ten recursive calls of the algorithm.

Wh{l& the original Warnock algerithm had the advantages of elegance and simplicity,
thc!performance of the area subdivision technique can be improved with alternative
subdivision strategies. Some of these include:
1 ! Divide the area using an enclosed polygon vertex to set the dividing boundary.
2; Sort polygons by minimum z and use the front polygon as the window bound-
h ary.
i!

5.9] BINARY SPACE PARTITIONING

Bingry space partitioning {BSP) is a method for recursively subdividing a space into
convex sets by hyperplanes. This subdivision gives rise to a representation of the scene
by mieans of a tree data structure known as a BSP tree. In simpler words. it is a method of
brealfing upintricately shaped polygons into convex sets, or smaller polygons consisting
enurely of non-reflex angles (angles smaller than 180°). For a more general description
of space partitioning, see space partitioning.

Ongma]ly this approach was proposed in 3-D computer graphics to increase the
rendenng efficiency. Some other applications include performing geometrical
operations with shapes (constructive solid geometry) in CAD., collision detection in
robotics and 3-D computer games, and other computer applications that involve
handling of complex spatial scenes.

In computer graphics it is desirable that the drawing of a scene be hoth correct and quick. A
simple way to draw a scene correctly is the painter’s algorithm: draw it from back 1o
front painting the background over with each closer object. However, that approach is

Hidden Lines. Surfaces Curve
Generation and Anfination

NOTES

Self-Instructional Material 141

Computer Graphics

NOTES

142 Self-lnstructional Material

quite limited since time is wasted drawing objects that will be overdrawn later. and not
all objects will be drawn correctly.

Z-buffering can ensure that scenes are drawn correctly and eliminate the ordering step
of the painter’s algorithm, but it is expensive in'terms of memory use. BSP trees will split
up objects so that the painter’s algorithm will draw them correctly without need of a
Z-buffer and eliminate the need to sort the objects as a simple tree traversal will yield
them in the correct order. It also scrves as base for other algorithms, such as visibility
lists, which seek to reduce overdraw.

The downside is the requirement for a time consuming pre-processing of the scene,
which makes it difficult and inefficient to directly implement moving objects into a BSP
tree. This is often overcome by using the BSP tree together with a Z-buffer, and using the
Z-buffer to correctly merge movable objects such as doors and monsters onto the
background scene.

BSP trees are often used by 3-D computer games, particularly first-person shooters and
those with indoor environments. Probably the earliest game to use a BSP data structure
was Doom. Other uses include ray tracing and collision detection.

Generation

Binary space partitioning is a generic process of recursively dividing a scene into two
until they satisfy one or more requirements, the specific method of division varying
depending on its final purpose. For instance. in a BSP tree used for collision detection
the original object would be partitioned until each part becomes simple enough to be
individually tested, and in rendering it’s desirable that each part be convex so that the
painter’s algorithm can be used.

The fina! number of ohjects will inevitably increase since lines or faces that cross the
partitioning plane must be split into two, and it is alsc desirable that the final tree
remains reasonahly balanced. Therefore the algorithm for correctly and efficiently
creating a good BSP tree is the most difficult part of an implementation. In 3-D space.
planes are used 1o partition and split an object’s faces; in 2-D space lines split an object’s
segments.

The following picture illustrates the process of partitioning an irregular polygon into
a series of convex ones. Notice how each step produces polygons with fewer segments
until arriving at G and F, which are convex and require no further partitioning. ln this
particular case, the partitioning line was picked between existing vertices of the
polygon and intersected none of its segments. If the partitioning line intersects a
segment, or face in a 3-D madel. the offending segment(s) or face(s) have to be split into
two at the line/plane because each resulting partition must be a full. independent
3

abject.
2. a.
(A) Q. ©
® o

Fig. 5.6

-

ad

©

Q
@96
& ©

The explanation of the above figure is as follows:

l:r 1. A is the root of the tree and the entire polygon

I 2. A is split into B and C

||3 B is split into D and E

| 4. D is split into F and G, which are convex and hence become leaves on the tree.

BSP Tree

A‘lBinar_y Space Partitioning (BSP) tree represents a recursive. hierarchical partitioning,
O{lsubdivié;ion, of n-dimensional space intg convex sub-spaces. BSP tree construction is
a process which takes a subspace and partitions it by any hyperplane that intersects the
in'['terior of that subspace. The result is two new sub-spaces that can be further
p?rtltioned by recursive application of the method. A “hyperplane” in n-dimensional
space is an n-1 dimensional object which can be used to divide the space into two half-
spaces For example, in three-dimensional space. the "hyperplane” is a plane. In twa
dl‘?lensmna] space, a line is used. BSP trees are extremely versaltile, because they are
powerful sorting and classification structures. They have uses ranging from hidden
surface removal and ray tracing hierarchies te solid modeling and robot motion
plalnmng BSP trees are closely related to Quadtrees and Octrees. Quadtrees and Octrees
are space par titioning trees which recursively divide sub-spaces into four and eight
new sub-spaces. respectively. A BSP Tree can be used to simulate both of these
structures.
b

i
BSP Tree Construction

I _
Gi\fen aset of polygons in three-dimensional space, we want (o build a BSP tree which
contains all of the polygons. For now. we wil ignore the question of how the resulting
I.r(f'ﬁ: is going to be used. The algorithm 1o build a BSP tree is very simple:

l Select a partition plane.
2 Partition the set of pelygons with the plane.
3 Recurse with each of the-two new sets.

’l"hf,E choice of partition plane depends on how the tree will be used, and what sort of
efﬁc;ency criteria you have for the construction. For some purposes, it is appropriate to
choose the pariition plane from the input set of polygons. Other applications may
beneﬁl maore from axis ailigned orthogonal partitions. In'any case, you want 1o evaluate
how your choice will affect the results. It is desirable to have a balanced tree, where each
ledfl contains roughly the same number of polygons. However, there is some cost in
achllevmg this. If a polygon happens to span the partition plane, it will be split into two
or more pieces. A poor choice of the partition plane can result in many such splits, and
a marked increase in the number of polygons. Usually there will be some trade off
bet\tfveen a well balanced tree and a large number of splits, Partitioning a set of polygons
w:th a plane is done by classiiying each member of the set with respect to the plane. If a
polygon lies entirely to one side or the other of the plane, then it is not modified, and is
added to the partition set for the side that it is on. If a polygon spans the plane. it is split
intojtwo or more pieces and the resulting parts are added (o the sets associated with
either side as appropriate. The decision to terminate tree construction is, again, a matter
of the specific application. Some methods terminate when the number of polygonsina
leaf node is below a maximum value. Other methods continue until every polygon is
placed in an internal node, Another criteria is a maximum tree depth.

Partitioning a polygon with a plane is a matter of determining which side of the plane
the polygon is on. This is referred to as a front/back test. and is performed by testing
cach point in the polygon against the plane. If all of the points lie to one side of the plane,
then the entire polygon is on that side and does not need to be split.

Hidden Lines, Surfaces Curve
Genieration and Animation

NOTES

Self-Instructional Material 143

Compurer Graphics

NOTES

144 Self-Instructional Material

If some points lie on both sides of the plane, then the polygon is split into two or more
pieces. The basic algorithm is 10 loop across all the edges of the polygon and find those
for which one vertex is on each side of the partition plane. The intersection points of
these edges and the plane are computed, and those points are used as new vertices for
Lthe resulting pieces,

Classifying a point with respect to a plane is done by passing the (x, y. z) values of the
point into the plane equation, ax + by + cz + d = 0. The result of this operation is Lhe
distance from the plane to the point along the plane’s normal vector. It will be positive if
the point is on the side of the plane pointed to by the normal vector, negative otherwise.
If the resultis 0, the point is on the plane. For those not familiar with the plane equation,
the values a, b. and ¢are the coordinate values of the normal vector. The value of d can be
calculated by substituting a point known to be on the plane for X, y, and zinto the plane
equation.

Convex polygons are generally easier 1o deal with in BSP tree construction than concave
ones, because splitting them with a plane always results in exactly two convex pieces.
Furthermore, the algorithm for splitting convex polygons is straightforward and robust.

Hidden Surface Removal Using BSP :

Probably the most common application of BSP trees is hidden surface removal in three
dimensions. BSP trees provide an elegant. efficient method for sorting polygons via a
depth first tree walk. This fact can be exploited in a back to front “painter’s algorithm”
approach to the visible surface problem, or a front to back scan-line approach. BSP trees
are well suited to interactive display of static (not moving) geometry because the tree can
be constructed during a preprocessing stage. Thien the display from any arbitrary
viewpoint can be done in linear time.

One reason that BSP trees are so elegant for the painter’s algorithm is that the splitting
of difficult polygons is an autamatic part of tree construction. To draw the conients of the
tree, perform a back to front tree traversal, Begin at the root node and classify the eye
point with respect to its partition plane. Draw the subtree at the far child from the eye,
then draw the polygons in this node, then draw the near subtree. Repeat this procedure
recursively for each subtree.

When building a BSP tree specifically for hidden surface removal, the partition planes are
usually chosen from the input polygon set. However, any arbitrary.plane can be used if
there are no intersecting or concave polygons. If the eye point is classified as being on the
partition plane, the drawing order is unclear. This is not a problem if the rendering routine
is smart enough to not draw polygons that are not within the viewing frustum. It is possible
to substantially improve the algorithm by inchuding the viewing direction vector in the
computation. You can determine that entire subtrees are behind the viewer by comparing
the view vector to the partition plane nermal vector.

5.10 COMPARISON OF ALGORITHMS

The following are the comparisons between back face removal aigorithim, Painter’s
algorithm, Warnock algorithm and Z-Buffer algorithm,

o Backface removal algorithm is fast. but insufficient by itself.
» Painter’s algorithm is device independent.

!
5]‘1 1 CURVE GENERATION Hidderi Lines, Surfaces Curve
It

Generation and Anfmation

The lerm computer graphics was often associated with creation of realistic scenes and
ammattd images. With the advenct of both computers and applied mathematics more
ambitious applications of computer graphics were sought in the last few decades.
Tci)day one of the most important areas where coniputer graphics plays a central role is
Compu!c: Aided Design (CAD} and Computer Aided Manufacture (CAM). Both CAD and
CAM are extensively used in a large number of areas, including aerospace, automotive
engmeenng marine engineering, civil engineering, and electronic engineering. The NOTES
successful applications of computer graphics in engineering is largely due to the
prog: ess of Computer Aided Geometric Design {(CAGD) which provides the mathematical
basv; for describing and processing geometric shapes and data. The term geometric
m’?dehng (which includes curve modeling, surface modeling. and solid modeling) is often
used as the synonym of computer aided geometric design, although some authors argue
lhat geometric modeling means the building up of computer representations of complex
Shapes from representations of similar components.

The most promising description method of geometric shape is the parametric curves
ancl surfaces. The theory of parametric curves and surfaces are well understood in
dlgebralc geometry and differential geometry. However, their possibilities and
dvanrages for representing geometric entities ina CAD environment were not known
unul the late 1950s. The major breakthroughs in CAGD were undoubtedly the theory of
Ferguson curves and patches, Coons patches, Bézier curves and surfaces, later
Combmed with B-spline methods. Today. Bézier and B-spline representations of curves
and surfaces have been the industrial standard. In this chapter. we shall briefly review
(11ff<,rem curve representation methods and tell you why the parametric representation
ofcm ves is of most importance. Then, we shall discuss the mathematics on Bézjer and
B- §plme curves, which is the foundation of surface and solid maodeling. Curves are one
of the most essential objects to create high-resolution graphics. While using many smail
polvlmes allows creaiing graphics that appear smooth at fixed resoiutions, they do not
pr else: ve smoothness when scaled and also require a tremendous amount of storage for
any high-resolution image. Curves can be stored much easier, can be scaled o any
resolullon without losing smoothness, and most importantly provide a much easier
way to specify real-world objects.

All of the popular curves used in graphics are specified by parametric equations.
Ins1[ead of specifying a function of the form y = f{x}. the equations y = fy{u) and x = fx{u}
are'used. Using parametric equations allows curves that can double back and cross
themsc]ves which are impossible 10 specify in a single equation in the y = fix) case.
Parametnc equations are also easier to evaluate: changing v results in moving a fixed
chstance along the curve, while in the traditional equation form much work is needed to
determme whether to step through x or y, and determining how large a step to take
baeed on the slope.

T
i

5.12 AFFINE INVARIANCE

I
A curve is said to be Affine Invariant if the coordinate system it is represented in can

change without affecting the relative geometry of the curve. This can be seen by the fact
thatithe geometry of the curve remains consistant when the curve is rotated, scaled. or
trar}sla(ed.

5.13 CONVEX COMBINATION

Given a set of points Py P.......P,, we can form.an affine combination of these poinis

by selecting constants o, o,....., O, O..... .0, (where o, ay,....., &, = 1) and write

Self-Instructional Matcrial 145

Computer Graphics

NOTES

146 Self-Instructional Material

P=agPy+ o4P+. ..o+t P,
If each &, is such that 0 < = o< = |, then the point P is called a convex combination of the
points Py Py,P, '
Example : Point on a Line Segment
To give a simple example of this, consider two points Pyand P,. Any point P on the fine
passing through these two points can be written as follows:

P=(1-t)Py+tP
orequivalently

P= G‘DPD + a‘lpl
Where oy + ¢, = 1. The points Q = 1/3Py+ 2/3P, and R = - 2/3P¢ + 7/5P, in the following
figure are affine combinations of Pyand P,.

Graphically it is represented as follows:

Py - ‘,.—"é'
Fig. 5.7

The point Q is a convex combination since 0 < = ¢, o; < = 1. Any point on the line
segment joining Py and P, and can be writien as a convex combination.

5.14 CONVEX SET

Given any se1 of points, we say that the set is a convex setif given any points Py, P......P,
in the set, any convex combination of these points is also in the set.

The following figure illustrates both a convex set {on the left} and a non-convex set
{on the right).

Fig. 5.8
Since any convex combination of poeints from a convex set must lie in the set, then
certainly the straight line joining any two points of the set must also be completely in the

set. This concept is actuatly quite intuitive, in that if one can draw a straight line between
two points of the set that is not completely contained within the set, the set is not convex.

5.15 CONVEXHULL

Given a set of poinis Py, Py...... P, The set of all points P that can be written as convex
combinations of Py, Py,..... P, is called the convex hull of the set. It is easy 10 see that this
convex hull is necessarily a convex set-but, it turns out that it is the smallest convex set
that contains Py, P,.......P,. (If there were a convex set C smaller than the convex hull
that contained the points, then we could find a point Q in the convex hull, but not in the
set C. But since each of the P, is in both sets, and the point Q is a convex combination of
the P, it must also be in the convex hull as well as in C.) The following figure illustrates
the convex hull of a set of six points:

1

'
' \

We note that one of the six points does not contribute to the boundary of the convex hull.
I1f one looked closely at the coordinaies of P,. one would find that this point could be
written as a convex combination of the other five.

I’lll‘ellmmary Definition: A subset S of the ptane is called convex if and only if for every

pair of points p, ¢in §. the line segment pq is completely contained in S.

|
|

Fig. 5.9
I

Ccinvex Hull Definition #1: The convex hull CH(S) of a set S is the smallest convex set
1}a?t contains S.

i .
anvex Hull Pefinition #2: The convex hull CH(S) of a set S is the intersection of all
convex sets that contain .

C(i)Invex Hull Definition #3: The convex hull CH(S) of a sel § is the unique convex
polygcm which contains S and alil of whose vertices are points from S,

| |

5,16 ORDER OF A CURVE

T]"I{. order of a curve deals with the number of degrees of freedom that are necessary (o
umque]y define that curve. In general the order of a curve equals the degrees of freedom
of| t!lat curve. The "Degree” of a curve (dealing with the polynomial degree of the
functions that define the curve) is NOT related to the * “degrees of freedom” of the curve.

We can say in our language that the degree = (Order-1)’
[
The following table shows the relationship between order, degree and the name.

Order Degree Name

il 0 Constant

2'14' 1 Linear

3H 2 Quadratic

4 3 Cubic

5;; 4 Quartic
F.xa[mple

ForEB Splines, the order of the curve specifies the number of control points that affect the
parametr ic point on the curve. This can be seen by lookmg at the convex hull that
surrounds that point. Notice that for an order 2 curve, the convex hull is actually a straight
lmeiFor anorder 3 curve. the convex hullis a triangle, and for an order 4 curve, the convex
hul_l\can be a quadrilateral.

5.17 DEGREES OF FREEDOM

A “degree of freedom” is one piece of information used to describe a curve. The more
degrees of freedom a curve has, the more complex it can be.

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Selfl-Instructional Material 147

Conipuier Graphics

NOTES

148 Self-Instructional Material

Example:
How much information is needed to describe a straight line (lines ave simple curves) ?

The answer is two pieces of information, ie.: two points. Therefore a line has two
degrees of freedom.

5.18 LEGRANGE INTERPOLATED CURVES

The goal of LeGrange interpotation is to create a smooth curve that passes through an
ordered group of points. When used in this fashion, these points are called the control
points. The general idea, as with all curve algorithms, is to use the control points to
generate parametric equations. To draw the curve, all thatis then needed is to step
through u at some small amount. drawing straight lines between the calculated points.
The smaller the step size the more smooth the curve will appear. The step size can be
calculated based on the amount of pixels available in the gutput image.

To do LeGrange interpolation, we wish to specify a curve that will pass through any
number of control points. The curve's function can be construcied as a sum of terms, one
for each control point”

fx{u) = sum from i = 1 to n of x[i] B[i]l (u)

fy(u) = sum fxom i = 1 to n of y[i] B[il (w)
Each function Bfi}{u) specifies how much the ith control point effects the position of the curve.
This can be thought of as a function specifying how much the ith control point draws the
curve towards it. The name for these functions are blending functiens. [f for some control
point i the value of this function is | and for every other controt point the value of this
function s 0, the curve will go through i at that value.

To achieve the goal of LeGrange interpolation, getting a curve that passes through all
the specified control points, the blending functions must be defined so that the curve
will go through each control point in the proper order. This can be done by creating
blending functions where the first control paint is passed through (has total control) at
u=- 1, the second control point is passed through at u =0, the third at u= 1, and sc on.
A mathematical expression that does so is:

ulu-1)(u=-2)... [u- {(n-2)]

At v = -1 this expression is:

-1-2(-3...0-m

So dividing the first by the second gives us 1 when u = -1, and gives us 0 when uis a
whole number greater then - 1 and less then or equal to n. Using this method for the

other blending functions gives us the same type of behavior for the other control points.
This function defines the LeGrange interpolation blending functions.

Bl (1) = (+ 1)) -1 Ju— (=3 [u—-=D]...[u-(—2)]
(-DE-2)(=-3).. (YY) .. (i —m)
To draw a curve using this, it is necessary (o decide how many contre!l points we will

use for the basis of the curve, and then calcuiate the blending functions Bj 1]{u) 10 Bin|{w),
where n is the number of control points. The final functions for x. y, and z are then:

% = x[1] BI11(uw) + x[2] B{2} (u) + x[3] Bi31{uw) + . . . + xin]
BIn) (u)
y = vI[1} BI1]l (u) + y[2] BIl2]{u} + v[3] B[3l(uw) + . . . + yInl
B[n] (u)

Where x|i] is the x coordinate of the ith control point, and y(i] is the y coordinate of the
tlh control point.

The number of control points used is most commonly 4. In this case, the calculated curve
1s particularly good between the second and third control points (0 < = u< =1). Thus to
draw a full LeGrange interpolated curve using many control points, it is common to
work with sets of four points. First start with the first through fourth control points, and
step through u from Oto 1 in siall steps, drawing straight lines between each. When u=
Lis reached, switch to using the second through fifth controi points. Now step through
u. from 1o lin small steps again. Repeat this, each time shifting down along the control
promts in the curve by one point until the end of the curve is reached. At this point all of
the curve will have been drawn, except for the first and last segments (the curve between
tl}e first and second control points and the curve between the second to last and last
Loptrol points}. These can be deait with as special cases, calculating from- i <=u<=0
us1ing the first four contro! points and 1 < = u < = 2 using the last four control points.

Some sample LeGrange interpolated curves appear below :

| (c) (d)
| Fig. 5.10

The last two of the above images shows why LeGrange interpolated curves are not
usua]ly used in graphics. Although the control points form a straight line, the curve
WIgg]es between the control points. This results because the blending functions sum to
| at the control poinis, but do not necessarily do so at fractional values. To eliminate the
WIggle we would need 1o dividing the value of each blending function by the sum of the
biendmg function values before using them. However, there is also another problem.
Whl]e each section of the curve connects to the next section at a control point, the slopes
for the connected curves at the control point may be different. This results in the ability
to hiave corners at control peints. This results because while at control points only that
con{tl ol point has control, at any other part of the curve all points have some control. The
third problem is that the LeGrange curve goes outside the convex hull of the control
poiﬁts. This means that clipping LeGrange curves must be done with every single line
segment drawn, instead of clipping the control peints and then just drawing the curve,
This'{adds much computation.

5.19 BEZIER CURVE

Qur first question is: why do we need new forms of parametric curves ? An immediaie
answer is that those parametric curves discussed in the previous unit are not very
geometric. More precisely. given such a parametric form it is difficult to know the
underlying geometry it represents without some further analysis. The coefficients of the

Hidden Lines, Surfaces Curve
Ceneration and Animation

NOTES

Self-Instructional Material 149

Computer Graphics

NOTES

150 Self-Instructional Material

equations do not have any geometric meaning, and it is almost impossible to predict the
change of shape if one or more coefficients are modified. As aresult, designing a curve
that follows certain cutline is very difficult.

In practice, designers or users usually do not care about the underlying mathematics
(and equations. of course). They are more or less focusing on getting their jobs done. To
do so, a system that supports users to design curves must be

1. Intuitive: We expect that every step and every algorithm will have an intuitive
and geometric interpretation.

2. Flexible: The system should provide the users with more control for designing
and editing the shape of a curve. The way of creating and editing a curve should
be easy. intuitive and geometric rather than by manipulating equations.

3. Unified: The way of representing, creating and editing different types of curves
{e.g.. lines, conic sections and cubic curves) must be the same. That is, it does
not require different techniques for manipulating different curves (ie.. conics
and cubics).

4. Invariant: The represented curve will not change its gcometry under geometric
transformations such as transkation, rotation and affine transformations.

5. Efficiency and Numerical Stability: A user of a curve design system may not care
about the beauty of the underlying geometry: but, he/she expects the system to
deliver the curve he/she wants fast and accurately. Moreover, a large amount of
computations witl not "distort” the shape of the curve (ie.. numerical stability).

This unit focuses on some techniques for curve design that can fulfill the above criteria.
We shall discuss Bézier curves here, and B-spline and NURBS curves in the next two
units. The unified theme of these techniques consists of the following advantages:

1. A user layouts a set of controf peints for the system to come up with a curve that
moce or less follows the trend of the set of control points.

2. A user can change the positions of some control poinis and some other char-
acteristics for modifying the shape of the curve. No equation is required. because
the equation of a curve is usually not stored.

3. If necessary. a user can add control points and other vital information without
changing the shape of the curve. In this way, a user has more freedotn of editing
a curve because adding contrel points and other information increases the
degree of freedom of the curve.

4. A user can even break a curve into two pieces for "micro” editing and then join
them back into one piece.

5. There are very geometric, intuitive and numerically stable algorithms for finding
points on the curve without knnowing the equation of the curve.

6. Once you know curves, the surface counterpart is a few steps away. More
precisely. the transition from curve to surface will not cause much difficulty,
since what you learn for curves applies directly to surfaces.

We shal! start with the most fundamental one in this unit: the Bézier curves. Bézier
curves were discovered simultaneously by Paul de Casteljau at Citroen and Pierre E.
Bézier at Renault around late 50s and early 60s. Basis splines. or B-splines for short,
were known and studied by N. Lobachevsky whose major contribution (o mathematics
is perhaps the so-called hyperbolic (non-Euclidean) geometry in late eighteenth century.
However. we shall adopt a modern version developed by C. de Boor, M. Cox and L.
Mansfield in late 70s. Note that Bézier curves are special cases of B-splines.

Both Bézier curves and B-splines are polynomial parametric curves. As discussed in the
previous unit, polynomial parametric forms cannot represent some simple curves such
as circles. As a result, Bézier curves and B-splines can only represent what polynomial

|i
pa1 ametric forms can. By introducing hotnogeneous coordinates making them rational,
Bezrer curves and B-splines are generalized to rational Bézier curves and Non-Uniform
Rauona[B-splines. or NURBS for short. Obviously, rational Bézier curves are more
pOWerful than Bézier curves since the former now can represent circles and ellipses.
Slmllarly NURBS are more powerfu! than B-splines. The relationship among these four
typeg of curve representations is shown as follows :

h
I NURBS

Rational bezier

i

S Fig. 5.11

I} . s
Construction of Bézier Curves

¥
Gi\';en n+] pointsPy, P, P,, ... and P, in space, the controf peints, the Bézier curve defined
by these contro! points is

\', Clup = iBm ()P,

where the coefTicients are defined as follows:
h

n! if1_4n-i
]l B, 0= mu (l u)

Therefore the point that corresponds to von the Bézier curve is the “weighted ™ average
of al] control points. where the weights are the coefficients B, ;(u}). The line segments
P[,II’ PP, ... P,_ P, called legs, joining in this order form a controf polyline. Many
authors prefer to call this control polyline as control polygon. Functions B, {u), 0<=i<
=1 'are referred to as the Bézier basis functions or Bernstein polynomials.

Nott, that the domain of u s [0,1]. As a result, all basis functions are non-negative. In the
above. since vand ican both be zeroand sodo 1 - vand n—i. we adopt the convention that
0°i 1s 1. The following shows a Bézier curve defined by 11 control points, where the blue dot
isa pomt on the curve that corresponds to u—{] 4. As you can see in the figure, the curve more
or less follows the polyline.

Fig. 5.12

Properties of Bézier Curve

The following properties of a Bézier curve are important:

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

] Self-Inscructional Malterial 151

Computer Graphics

NOTES

‘ 152 Self-Insuructional Material

. The degree of a Bézier curve defined by n + 1 control points is i: [n each basis

function. the exponent of u is i + (n - i} = n. Therefore, the degree of the curve
is n.

. C{u) passes through Py and P, This is shown in the above figure. The curve

passes though the first and the tast control point. Please verify this yourself with
some simple algebraic manipulation.

. Non-negativity: All basis functions are non-negative. We have mentioned this

earlier.

. Partition of Unity: The sum of the basis functions at a fixed v is 1. It is not

difficult to verify that the basis functions are the coefficients in the binomial
expansion of the expression t = {u+ (1 ~ ¢))". Hence, their sum is one. Moreover,
since they are non-negative, we conclude that the value of any basis function is
in the range of 0 and L.

B4,0{u) B4,aw) /T]

B4,1{u} B4.2(uv) B43(

g —————=4

Fig. 5.13(a) Fig. 5.13(b)

In the left figure above, we have a Bézier curve defined by five control points. Its
five basis functions are functioris in u as shown in the right figure above. The
figures show v =0.5 and all five basis functions. The right-most vertical bar shows
the way of partitioning 1 into five intervals and hence the name of partition of
unity. Note that the color of a partition is identical to the color used to draw its
corresponding basis functions.

Since all basis functions are in the range of 0 an 1 and sum to one, they can
be considered as weights in the computation of a weighted average. More
precisely, we could say "to compute C{u). one takes the weight B, (u) for control
point P; and sum them together.”

. Convex Hull Property: This means the Bézier curve defined by the given n + |

control points ties compietely in the convex hull of the given control points. The
convex hull of a set of points is the smallest convex set that contains all points.
In the following figure. the convex hull of the 11 control points is shown in color
gray. Note that not all control points are on the boundary of the convex hull.
For example. control points 3. 4, 5, 6, 8 and 9 are in the interior. The curve,
except for the first two endpeints. lies completely in the convex hull.

Fig. 5.13(c)

This property is important because we are guaranteed that the generated curve
will be in an understood and computable region and will not go outside of it.

— pemphlr v

6. Variation Diminishing Property: If the curve is in a plane. this means no suaight
line intersects a Bézier curve more times than it intersects the curve's cantrol polyline.
Take a look at the above figure. The yellow line intersects the curve 3 times and
the polyline 7 times; the magenta line intersects the curve 5 times and the
polyline 7 times; and the cyan line intersects the curve and its polyline (wice.
You could draw other straight lines to verify this property.

Fig. 5.13(d)

If the curve is a space curve, replacing “line” with "plane” will suffice. Special
cases may occur: however, it will not be a difficult task to come up with a proper
counting scheme that takes these special cases into consideration.

So, what is the meaning of this property? It tells us that the complexity
(ie.. turning and twisting} of the curve is no more complex than the control
polyline. in other words, the control polyline twists and turns more frequently
| than the Bézier curve does, because an arbitrary line hits the control polyline
more often than it hits the curve. Take a look at the above figure,the control
polyline is more complex than the curve it defines.

7. Affine Invariance: If an affine transformation is applied to a Bézier curve, the
l result can be constructed from the affine images of its control points. This is a
Il nice property. When we want to apply a geometric or even affine transformation
to a Bézier curve, this property states that we can apply the transformation to
control points. which is quite easy. and once the transformed control points are
obtained the transformed Bézier curve is the one defined by these new points,
Therefore. we do not have to transform the curve.

What If the Domain of u Is Not [0.1]2

Someumes the domain of a Bézier curve is [a, b] rather than [0, 1). Thus, a change of variable
is reqmred What we should dois simply converting a uin [a. bl toanew win 0, 1] and using
thzs]';_ 1in the basis functions. Converting g 1o {0, 1] can be done as follows:
N u-—a
i U=

! - b-a

r

P]uggiﬁg this iinto the basis function B, ;(u) gives the following:

B n! u—ai l_u—a i
nilt) = M=)\ b—a b—a

These new basis functions define a Bézier curve on the domain of [a, b].

Hidden Lines, Surfaces Curve
Ceneration and Animation

NOTES

Scif-instructional Material 153

Computer Graphics

154 Self-Instructional Marterial

Moving Control Points

Changing the position of a control point will change the shape of the defined Bézier
curve. Qur question is:

How does the shape of the curve change if a control point is moved Lo a new position?

Suppose a control point Py is moved te a new position P+ v, where vector v gives both
the direction and length of this move. This is shown as follows:

®
PtV

Pk
Fig. 5.14(a)

Let the ariginal Bézier curve be as follows:

Clu) = z B, ; (1} P;
i=0

Since the new Bézier curve is defined by Py, Py. ..., P, + v, ..., P, its equation D{u} is

k-1 n
D{U) = ZBJM’ (H)PI + Bn,k (1{) (Pk + 't')) + Z Bn,i (H)Pr
i=0 i=k+1

= ZB,,,,- (#)P; + B, (w)v

i=0
= C(u} + B, (u)v /

[n the above. since only the k-th term uses a different control point P, + v, after regrouping
we know that the new curve is the sum of the original curve and an extra term B, (1) v.
This means:

The corresponding point of v on the new curve is obtained by translating the
corresponding point of u on the original curve in the direction of vwith a distance of
| B, (lupv].

More precisely, given a u, we have point C(u) on the original curve and D(u) on the new
curve and D(u) = C(u) + B, {u) v. Since v gives the direction of movement, D(u) is the result
of moving C{u) in the same direction. The length of this translation is, of course. the
length of vector B, ,(u)v. Therefore, when B,,,(u) reaches its maximum, the change from
C(w) to D(u) is the largest.

The following figure illustrates this effect. Both the black and red curves are Bézier
curves of degree 8 defined by 9 conirol points. The black one is the original curve. If its
control point 3 is moved to a new position as indicated by the blue vector, the black
curve changes to the red one. On each of these two curves there is the point
corresponding 16 u=0.5. [t is clear that C(0.5) moves in the same direction to D(0.5). The
distance between C(0.5) and D(0.5) is the length of vector By ;(0.5)v = 81/(31(8 - 3)1} x
0.5%(1 ~ 0.5)%8 3v = 0.22v. Hence. the distance is about 22% of the distance between the
original control point 3 and the new control point 3 as shown in the figure.

Fig. 5.14(b)

We can obtain one more impaortant conctusion from the above discussion. Since B, (1) is

non-zero in the open interval {0.1), B, {t) v is not a zero vector in (0, 1). This means that
1

except for the two endpoints C(0) and C(1) all points on the original curve are moved to new

loc1?uons Therefore, we have

Cl‘langing the position of a control point causes the shape of a Bézier curve to change
globally.

Derivatives of a Bézier Curve

To f:ompule tangent and normal vectors at a point on a Bézier curve, we must compute
the first and second cerivatives at that point. Fortunately, computing the derivatives at
a pomt on a Bézier curve is easy.

Reﬁall that the Bézier curve defined by n + 1 control points Py, Py, P, has the following
equation:

Cluy= i B, ;(1)F;
i=0

wh'::%re B, {uw) is defined as follows:
!

o W (1)

!(n—:

Bm(”)

Smce the cantrol poinis are constants and independent of the variable v, computing the
derwatlve curve C’(u) reduces to the computation of the derivatives of B, (u}’s. With
somle simple algebraic manipulations, we have the lollowing result for B',, (u):

I

i L B4 = B0} =By o)~ By ()

i
Thelrl'l. computing the derivative of the curve C(u) vields:

d%‘c(”) = C'lu)= Z B,-1.(n) {”(an'-— Pi)}

LetQyp=n(P)- Py, Qy=n(P,- P}, Qy=n(P3-Py)....Q,_ =n(P, - P,_,). The above
equation reduces to the following:

n-1
= z B, _1:(1)Q;

i={
Therelore, the derivative of C(u} is a Bézier curve of degree n - 1 defined by ncontrol
points n(P, - P}, (P, - P}, n(Py - P;). ... n(P,- P, _,}. This derivative curve is usually

Hidden Lines, Surfaces Curve
Generation and Animation

Sell-Instructional Material 155

Computer Graphics

‘NOTES

156 Self-Instructional Material

referred to as the hodograph of the original Bézier curve. Note that P; | - P, is the
direction vector from P;1o P, | and n(P;, - P) is ntimes longer than the direction vecior.
Once the control points are known, the control points of its derivative curve can be
obtained immediately. The left figure below shows a Bézier curve of degree 7 and the
right figure shows its derivative which is a degree 6 Bézier curve.

1 .
=SS
Hedograph

u=05

Fig. 5.15

Degree Elevation of a Bézier Curve

Many applications that involve two or more Bézier curves require all involved curves to
have the same degree. Moreover, although higher degree Bézier curves require longer
time to process, they do have higher flexibility for designing shapes. Therefore, it would
be very helpful to increase the degree of a Bézier curve without changing its shape. Note
that “without changing the curve’s shape” is the key point: otherwise, just increasing the
degree of a Bézier curve does not make any practical sense. Increasing the degree of a
Bézier curve without changing its shape is referred to as degree efevation. In what follows,
only an algorithm will be discussed.

Suppose we have a Bézier curve of degree ndefined by n+ 1 control points Py, Py, Py, ... P,
and we want 1o increase the degree of this curve 10 n+ | without changing its shape. Since a
degree nn+ 1 Bézier curve is defined by 11 + 2 control points, we need to find such a new set
of control points. Gbviously, Pyand P, must be in the new set because the new curve also
passes through them. Therefore, what we need is only nnew control points, Let the new
set of control points be Qg Q. Q;. ... Q, . |- As mentioned above, Qy=P;and Q,,, | =P,
The other control points are computed as follows:

Q= — P,._,+(1—-—’—}P,- l<ign

n+l1l n+1

If you are not comfortable with the above general formula, the following are formulae for
each control points from Q, te Q,.

¢
1 1
= P+|1- P
Q n+1 ° \ n+1} !
2 2
= P+1- B
&=7h n+l] 2
3 (3
= +il- P
Qs n+l 2 L 11+1J 3
n—1 n=-1
=——P ,+|1- P
Qn-t n+l "2 (n+1] n=l
H i
=—0"P 1-—IP
Qn n+1 " (n+1) "

|

Each leg of the original polyline contains exactly one new control point. More precisely.
leig P;_P; coniains new control point Q. Recall from the discussion of de Casteljau’s
algorzthm that a point C onaline segment AB that divides ABinaratioof u: 1 - ucanbe
wr:tten as C= (1 - v)A + uB. From the formulae for the new control points, we see that Q,
d‘mdes the segment P;_ \P; in a ratio of 1 - i/(n + 1):i/(n + 1). However, unlike de
Clejlsteljau's algorithm, this ratio is not a constant but varying with the value of i. This
computalion is very similar to that of de Casteljau’s algorithin, though.

Ortmce the new set of control points is abtained, the original set can be discarded. Since
each leg of the original contrel polyline contains a new control point, the process of
replacmg the old set with the new one can be viewed as cuiting off the corners at the
Ungmal control points. The following figure iltustrates this corner-cutting effect. The
Fgure shows a Bézier curve of degree 4 whose control points are shown in red rectangles
and control polyline in blue dashed line segments. After increasing its degree to 5, the
m??v control polyline is shown in solid line segments. It is clear that all corners are cut.
Thre left table gives the ratio on each leg of the original control polyline.

‘ i | 1-ifn+)
| 0.8
2 0.6
3 0.4
! 4 0.2
{a}

\Ioie that degree elevation can be used repeatedly as long as your system permits. Note
alsb that as the degree increases the number ol contro! points increases. Moreover, the new
cor;n}llol polyline moves toward the curve. In the {ollowing figures. we start with a Bézier
curve of degree 6 with 7 control points. Then, its degree is increased 1o 7, 8, 10. 15 and 29.
As you can see from the figures, the shape of the curve is not changed as its degree
incfeases and the control polyline moves closer and closer to the curve, Eventually, as the
deg]ree keeps increasing to infinity, the control polyline approaches 1o the curve and has
it as| a limiting position.

L

‘ Degree =6 3 Degree = 7

4

(b

Degree = 8

Hidden Lines. Surfaces Curve
Generation and Animation

NOTES

Sell-Instructional Material 157

Computer Graphics

NOTES

158 Self-Instructional Material

Degree = 15 , 8 Degree = 29 1a 13 12 11 10

Fig. 5.16
Examples:

The pink lines show the control point polygon, the grey lines the Bézier curve.

The degree of the curve is one less than the number of control points, so it is a quadratic
for 3 control points. It will always be symmetric for a symmetric control point
arrangement.

The curve always passes through the end points and is tangent to the line between the
last two and first two control points. This permits ready piecing of multiple Bézier
curves together with first order continuity.

The curve always lies within the convex hull of the control points. Thus the curve is
always “well behaved”™ and does not oscillating erratically.

Closed curves are generated by specifying the first point the same as the last point. If the
tangents at the first and last points match then the curve will be closed with first order
continuity. In addition, the curve may be pulled towards a control point by specifying it
multiple times.

| . s .
ITpIementatlon of Bézier Curves Using C Language C Source

i
]|‘ Three control point Bézier interpolation
li mu ranges from 0 to 1, start to end of the curve
7
XYZ Bezier3(XYZ p,XYZ p,, XYZ paydouble mu)
{
! double muml,mumiz,mu?2;
|| XYZp;
Il mu2=mu* mu;
mumi=1-mu;
1| mumi2 =muml* mumi;
px=px*mumil2 +2* p,x “ muml * mu + py.x ¥ mu2;
Py =Py * muml2 +2 7 poy * mumil * mu+ p3y * mu2;
pz=ppz*mumli2+2*p,z*muml * mu+ pzz* mu2;
return(p);

N S

Four control point Bezier interpolation
mu ranges from 0 to 1, start to end of curve

XTZ Bezierd(XYZ py, XYZ py, XYZ p3, XYZ p,double mu)
{

fdouble muml,mum]l3,mu3;

XYZp;

jt‘numl =1 -mu;

muml3 munl * muml * muml;

[mu3 =mu * mu * mu;

p-x =mumi3*p;x + 3'mu'muml*mumPp;,.x + 3¥mutmutmum1*pa.x + mu3tpgx;
‘p y = muml3*p,y + 3*mu*muml*mum*p,.y + 3* mu*mutmum1*p;., + mud*p,. y,
p z=muml3*p,.z + 3*mu*muml*mum1*p,.z + 3*mu*mu*mum1*p,;.z + mud*p,.z
return(p};

l

HIRE

1}
f* !I
General Bezier curve

JNumber of contrel points is n+l

Q <=mu < 1 IMPORTANT, the last point is not computed
*/
XYZ Bezier(XYZ *p,int n,double mu)
L

int k, kn,mn nkn;

doub]e blend,muk,munk;

XYZb={0.0,0.0,0.0};

Hidden Lines, Surfaces Curve
Genieration and Animation

NOTES

Self-Instructional Material 159

Compuier Graphics

NOTES

160 Self-instructional Material

muk=1;
munk = pow(1-mu,(double)n);
for (k=0;k<=n;k++) {

nn=n;
kn=k; .
nkn=n-k;

blend = muk * munk;
muk *= mu;
munk /= (1-mu);
while (nn>=1) |
blend *= nn;
nn--;
if (kn>1)(
blend /= (double)kn;
kn--;
j
if (nkn > 1}{
blend /= (double)nkn;
nkn--;
j
!
b.x += p[k].x * blend;
b.y += p[kl.y *blend;
b.z += plk].z * blend;
}
return{b);

}

5.20 B-SPLINE CURVES

Given n+ 1 control points Py, P,. ..., P, and a knot vector U={uy, 1, uy, }, the B-spline
curve of degree p defined by these control points and knot vector Uis

Cly) = iNf’p (n)P;
i=0

where N, ;()'s are B-spline basis functions of degree p. The form of a B-spline curve is
very similar 1o that of a Bézier curve. Unlike a Bézier curve, a B-spline curve involves more
information, namely: a set of n + 1 control points, a knot vector of m + 1 knots, and a
degree p. Note that n, mnand p must satisfy m= n+ p+ 1. More precisely, if we want to
define a B-spline curve of degree pwith n + 1 control points, we haveto supply n+p+2
knots uy. uy. 4, ., - Onthe other hand, if aknot vector of m + 1 knots and n + 1 control
points are given, the degree of the B-spline curve is p= m—n - 1. The point on the curve
that corresponds to a knot u;, C{uy), is referred to as a knat point. Hence, the knot peints
divide a B-spline curve into curve segments, each of which is defined on a knot span. We
shall show thal these curve segments are ail Bézier curve of degree p on the curve
subdivision page.

Although N, (u) looks like B, (4}, the degree of a B-spline basis function is an input,
while the degree of a Bézier basis function depends on the number of control points. To
change the shape of a B-spline curve, one can modify one or more of these control
parameters: the positions of control points. the positions of knots. and the degree of the
curve.

s

i‘}

I
ii}fthe kitot vector does not have any particular structure, the generated curve will not
]Eoucll the first and last legs of the control polyline as shown in the left figure below. This
type of B-spline curves is called open B-spline curves. We may want to clamp the curve
:5:0 that it.is tangent to the first and the last legs at the first and last control points,
’{;espectively. as a Bézier curve does. To do so. the first knot and the last knot must be of
multiplicity p+1. This will generate the so-calied clamped B-spline curves. See the middle
figure below. By repeating some knots and control points. the generated curve can be a
g{asedone. In this case, the start and the end of the generated curve join together forming
ali closed loop as shown in the right figure below. In this note, we shall use clamped
curve.

'Il‘lhe above figures have n + 1 control points (n=19) and p=3. Then, mmust be 13 so that
the knot vector has 14 knots. To have the clamped effect, the first p+1=4andthelast4
kfgwts must be identical. The remaining 14 — (4 + 4) = 6 knots can be anywhere in the
dié)main. In fact. the curve is generated with knot vector U=1{6,0.0,0,0.14.0.28, 0,42, 0.57.
0:71,0.85.1.1.1,1}. Note that except for the first four and last four knots, the middle ones are
almost uniformly spaced. The figures also show the corresponding curve segment on each

|
k[:)ot spai. In fact, the little triangles are the knot points.

I

\= :
1 7 8
!
I
1 (a) (b) ()
| Fig.5.17
Properties of B-spline Curves -

B-spline curves share many important properties with Bézier curves, because the former
is a'generalization of the later. Moreover, B-spline curves have more desired properties
[hz%"n Bézier curves. The list below shows some of the most important properties of B-
sp]i;ne curves,

In _%;he following we shall assume a B-spline curve C(u) of degree p is defined by n+1
control points and a knot vector U= { uy, u. u, } with the first p+ 1 and last p+ 1 knots
"cl?mped e, y=u=..= upand Uy, o=, o, =.0=).

L. B-spline curve C(u) is a piecewise curve with each component a curve of
degreec p. We know that, C{u} can be viewed as the union of curve segments
defined on each knot span. In the figure below. where n = 10, m = 14 and p=3.
| the first four knots and last four knots are clamped and the 7 internal knots are
it uniformly spaced. There are eight knot spans. each of which corresponds (0 a
curve segment. In the left figure below, these knot points are shown as triangles.
This nice property allows us to design complex shapes with lower degree
polynomials. For example, the right figure below shows a Bézier curve with the

" same set of control points. It still cannot follow the control polyline nicely even
though its degree is 10!

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Self-Instructional Material 161

Computer Graphics

NOTES

162_Seli-Instructional !_/J_gteria.f

(i} (i}
In general, the lower the degree, the closer a B-spline curve follows its conirol
polyline. The following figures all use the same contro! polyline and knots are
clamped and uniformly spaced. The first figure has degree 7, the middle one has
degree 5 and the right figure has degree 3. Therefore. as the degree decreases,
the generated B-spline curve moves closer to its control polyline.

(iti)

(iv}
Fig. 5.18(a)

2. Equality m=n+ p +1 must be satisfied. Since each contro! point needs a basis
function and the number of basis functions satisfies m=n+ p+ L.

‘3. Clamped B-spline curve C(u) passes (hrough the two end control points Py and
P,. Note that basis function Ny, () is the coefficient of control point Py and is
non-zero on [uy. t,, . Since Uy = Uy = ... = U, = 0 for a clamped B-spline curve.
N, ol N (W), ooes N ;. olu) are zero and only N, olv) is non-zero {recalt from
the triangular computation scheme). Conse quently. if u= 0. then Ny ,(0) is } and
C(0) = Py.'A similar discussion can show C(l)'= P,

4, Sirong Convex Hull Property: A B-spline curve is contained in the convex hull
of its control polyline. More specifically, if wis in knot span [, u;,). then C(u)
is in the convex hull of control points P, Py 5 (s - P. If uis in knot span
(u;. 1;,). there are only p + 1 basis functions (i.e., N, ... Ni_p. Lplt). N, o)
non-zero an this knot spar. Since Ny (1) is the coefficient of control point Py, only
p + | conurol points Py, P;_ P, .. P;_, have non-zero coefficients. Since on
this knot span the basis functions are non-zero and sum to 1. their "weighted”
average. C(u). must lie in the convex hull defined by control points P, P,y P;
_ -+ Pi_, The meaning of “strong” is that while C(u) still Jies in the convex
hull defined by afl control points, it lies in a much smaller one.

3

Fig. 5.18(b)

The above two B-spline curves have 11 control points (i.e., n = 10), degree 3 Hidden Lines. Surfaces Curve

(ie. p=3) and 15 knots {m = 14) with first four and last four knots clamped. Generation and Animation
Therefore, the number of knot spans is equal to the number curve segments. The knot
vecior is

o |t | Mo |3 | Uy (M5 [Ug (Y |Hg |Up |Wig (U [Uyp | My [ty
0 |0 |0 [0 1012102503705 (062 |0.75)087 11 |1 1 1

The left figure has u in knot span {(u,, u;) = (0.12, 0.25) and the corresponding
point (i.e. C{)) in the second curve segment. Therefore, there are p + 1 = 4 basis NOTES
functions non-zero on this knot span {i.e., Ny 5w, Ny 3(u). Ny 5{u) and N, 4{u))
and the corresponding control pointis are Py, P53, P, and P|. The shaded area is
the convex hull defined by these four points. It is clear that C{u) lies in this
convex hull.

The B-splire curve in the right figure is defined the same way. However, u is
in (ug. u5) = (0.75.0.87) and the non-zero basis functions are Ny z(u). Ny 5(u),
N; 3(u) and Ny s{u). The corresponding control points are Py, Pg, P; and Pg.
Consequentiy, as u,moves from 0 to 1 and crosses a knot, a basis functions
becomes zero and a new non-zero basis function becomes effective. As a result,
one control point whose coefficient becomes zero will leave the definition of the
current convex hull and is replaced with a new contro! point whose coefficient
becomes non-zero.

5. Local Modification Scheme: Changing the position of control point P; only
affects the curve C(u) on interval fuy, u;, ., 1. This follows from another impor-
tant property of B-spline basis functions. Recall that N, (i) is non-zero on
interval (u; u;, , ;). Il wis notin this interval. N, ,(u}P,; has no effect in computing
h C(w) since N,-_p(u) is zero. On the other hand. if v is in the indicated interval,

N;,(u) is non-zero. If P; changes its position, N, (u)P; is changed and conse-
quently C() is changed.

Fig. 5.18{c)

The above B-spline curves are defined with the same parameters as in the
previous convex hull example. We inient 1o move control point P;. The coeffi-
cient of this control point is N, ,(u) and the interval on which this coefficient
is non-zero is (U uy, 3,) = (U ug) = (0,0.37). Since u; = uy = 0, only three
segments that correspond to {u,, u,y) (the domain of the first curve segment),
(uy, ug) (the domain of the'second curve segment) and (us, g} (the domain of the
‘third curve segment) will be affected. The right figure shows the result of moving
LPZ to ithe lower right carner. As you can see, only the first, second and third
j curve segments change their shapes and all remaining curve segments stay in
i'!heir original place without any change.

i. Self-Instructional Material 163

u oo — e e - C— . — e — - FYRNE LY B

Comiputer Graphics

NOTES

This local modification scheme is very important to curve design, because we
can modify a curve locally without changing the shape in a global way. This
will be elaborated on the moeing control point page. Moreover, if fine-tuning
curve shape is required, one can insert more knots (and therefore more control
points) so that the affected area could be restricted fo a very narrow region. We
shall talk about knot insertion later.

. Cl(u) is C¥ ¥ continuous at a knot of multiplicity k. If uis not a knot, C{4) is in

the middle of a curve segment of degree pand is therefore infinitely differentiable.
If u is a knot in the non-zero domain of N, (u), since the latter is only C*~* continuous,
so does C(u).

Fig. 5.18(d)

The above B-spline curve has 18 control points (ie. n=17). degree 4, and the
following clamped knot vecior

U, fouy Ug e and u, Iy g b0 ity Hys 3 fou, Uiy Hig oty

0 0125 0.25 0.375 0.5 0.625 0.75 0.875 1

164 Self-Instructional Material

Thus, ug is a doubie knot. ug is a triple knot and u; is a quadruple knot.
Consequently, C(u) is of C' continuous at any point that is not a knot,
continuous at all simple knots. €2 continuous at ug C' continuous at g, €’
continuous at U3

All points on the curve that correspond to knots are marked with little triangles.
Thase corresponding te multiple knots are further marked with circles and their
multiplicities. It is very difficult to visualize the difference between ¢!, C*and
even C? continuity. For the C' case. the corresponding point lies on a leg, while
the C° case forces the curve to pass through a control point. We shall return to
this issue later when discussing modifying knots.

. Variation Diminishing Property:

The variation diminishing property also holds for B-spline curves. If the curve
is in a plane (resp., space), this means no straight line (resp., plane) intersects a
B-spline curve more times than it intersects the curve's control polyline.

4

Fig. 5.18(e)

[n the above figure, the blue line intersects both the control polyline and the B-spline
curve 6 times, while the yellow line also intersects the control polyline and the
B-spline curve § times. However, the orange line mtersects the contro! polyline 6
times and the curve 4 times.

. Bézier Curves Are Special Cases of B-spline Curves.

If n=p (ie. the degree of a B-spline curve is equal to n, the number of control points
minus 1), and there are 2(p + 1} = 2(n + 1) knots with p + 1 of them clamped
at each end, this B-spline curve reduces to a Bézier curve.

Affine Invariance .

The affine invariance property also holds for B-spline curves. If an affine trans-
formation is applied 10 a B-spline curve, the result can be constructed from the
affine images of its control points. This is a nice property. When we want to
apply a geometric or even affine transformation to a B-spline curve, this property
states that we can apply the transformation to control points, which is quite
easy. and once the transformed control points are obtained the transformed

B-spline curve is the one defined by these new points. Therefore, we do not have
{ o transform the curve,

!

1

S e T R e

A(Ii!vantage of Using B-spline Curves

B-spline curves require more information (i.e., the degree of the curve and a knot vector)
ana amore complex theory than Bézier curves. But, it has more advantages to offset this
shortcommg First. a B-spline curve can be a Bézier curve. Second, B-spline curves
satllisfy all important properties that Bézier curves have. Third. B-spline curves provide
more control flexibility than Bézier curves can do. For examiple. the degree of a B-spline
curve is separated from the number of contro! points. Mare precisely, we can use lower
deé: ee curves and still maintain a large nuinber of control points. We can change the
pomlon of a control point without globally changing the shape of the whole curve (local
modification property). Since B-spline curves satisfy the strong convex hull properiy,
the}lz have a finer shape control. Moreover, there are ather techniques for designing and
edltmg the shape of a curve such as changing knots.

However keep in mind that B-spline curves are still polynomiat curves and polynomial
curves cannot represent many useful simple curves such as circles and ellipses. Thus, a

genv.::rahzauon of B-spline, NURBS, is required.

|
!

11
5.21 HERMITE SPLINE

il’
In 1}1e mathematical subfield of numerical analysis, a Hermite spline is a spline curve
whei e each polynomial of the spline is in Hermite form.

I3 lerml[e curves are very easy to calculate but aiso very powerful. They are used to
smol?thly interpolate between key-points (like object movement in keyframe animation
or camera control). Understanding the mathermatical background of hermite curves will
he]p‘fyou to understand the entire family of splines. Maybe you have some experience
with 3 [} programming and have already used them without knowing that {the so called
kb- splmes. curves with control over tension. continuity and bias are just a special form
of the hermite curves).

To keep it simple we first start with some simple stuff. We also only talk about two-
dimensional curves here. If you need a 3-D curve just do with the z-coordinate what you
do with y or x. Flermite curves work in any number of dimensions.

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Self-Instructional Material 165

Comptiter Graphics

NOTES

166 Seil-instructionaf Material

To calculate a hermite curve you need the following vectors:

o P,: the startpoint of the curve
e T, the tangent (e.g.. direction and speed) to how the curve leaves the startpoint

+ P, the endpoint of the curve
o T,: the tangent (e.g., direction and speed) to how the curves meets the endpoint

T,

Fig. 5.19(a)

These 4 vectors are siimply multiplied with 4 hermite basis functions and added
together.

h,{s) = 2873 - 3572 + 1

h,(s) = -28"3 + 3s”2

hy{s) = 873 - 2872 + s

h,{s)} = s"3 - 872

Below are the 4 graphs of the 4 functions {from left to right: h), hy, hs. h;)

\‘/

1 L L

Fig. 5.19(h)
(all graphs except the 4ih have been plotted from 0.0i01,1)

Take a closer look at functions hy and hy:
+ h, starts at | and goes siowly to 0.
e h, starts at 0 and goes slowly 0 1. -

Now multiply the startpoint with h, and the endpoint with h,. Lets gofromDto 1 to
interpoiate between start and endpomt h; and h; are applied to the tangenls in the
same manner. They make sure that the curve bends in the desired direction at the start
and endpoint.

Matrix Form
All this swff can be expessed with some vector and matrix aigebra. [think the matrix-
form is much easier to understand.
Vector S: The interpolation-point and it's powers up to 3:
Vector C: The parameters of our hermite curve:
Matrix h: The matrix form of the 4 hermite polynomials:

s7 3 B 2 =2
s*2 B -3 3 =2 -1
5 = "~ O o= h:
s7 1 T
1 T,

Ta calculate a point on the curve you build the Vector $, multiply it with the matrix hand
then multiply with C.

Pitm § *h = ¢

5. 22 THE FRACTAL MAGIC

What is a Fractal?

Accordmg to B. Mandelbrot: "A rough or fragmemned geometric shape that can be
. . T . .
subdivided in parts, each of which is (at least approximately} a reduced/size copy of

the{.wholc."

I . N :
Fra(i[als are geometric figures, just like rectangles, circles and squares, but fractals have

I\, . .
special properties that those figures do not have.

/N A T A

{i) (ii} {iii)
Fig. 5.20(a)

Fractal Properties

A poml has no dimensions - no length, no width, no height, That dot is chviously way
too tglg to really represent a point. But we'll live with it, if we all just agree what a point
really is.

: |

A line has one dimension - length. It has no width and no height, but infinite length.

I. _.‘—L.-

Fig. 5.20(b)

|
4
Agalln this medel of a line is really not very good, but until we learn how to draw a line
with 0 width and infinite length, it'll have 1o do.

A plane has two dimensions - length and width, no depth.

NN

Fig. 5.20(c)
It's an absolutely flat tabletop extending out both ways to infinity.

SpaCﬁ, a huge empty box, has three dimensions, length, width, and depth, extending to
infinity in all three directions.

Fig. 5.20(d)

Ob*idl;isly this isn’t a good representation of 3-D. Besides its size, it’s just a hexagon
drawn to fool you into thinking it's a box. -

i

Hidden Lines, Surfaces Curve
Gm[craffon and Animation

NOTES

Sell-Instructional Material 167

Compuier Graphics

NOTES

168 Sell-Instructional Matcrial

Fractals can have fractional (or fractal) dimension. A fracta) might have dimension of 1.6
or 2.4. How could that be? Let’s investigate below.

Fig. 5.20(e)

Just as the images above weren't very good pictures of a point, line. plane, or space. the
drawing mean(to be the Sierpinski Triangle has limitations. Remember as we continue
that fractals are really formed by infinitely many steps. So there are infinitely many
smaller and smaller triangles inside the figure, and infinitely many holes {the black
triangles).

Let's look further at what we mean by dimension. Take a self-similar figure like a line
segment, and double its length. Doubling the length gives two copies of the original
segment. -

e | |
) {ii) (iii)
Fig. 5.20(f)
Take another self-similar figure, this time a square 1 unit by 1 unit. Now multiply the

length and width by 2. How many copies of the original size square do you get?
Doubling the sides gives four copies.

) {ii)

Fig. 5.20(g)

Takea 1 by 1 by 1 cube and double its length, width, and height. How many copiesof the
original size cube do you get? Doubling the side gives eight copies.

{i) {ii)

Fig. 5.20(h)

Let's organize our information into a table.

Figure Dimension No. of Copies
Line 1 2=2"'
Square 2 4=2°
Cube 3 §=27

4 _

1

{ . Lo
D? you see a pattern? [t appears that the dimension is the exponent - and it is! So when
we double the sides and get a similar figure, we write the number of copies as a power of
12 and the. exponent will be the dimension.

Let's add that as a row (o the table.

l Figure Dimension No. of Copies
: Line 1 2=2
Square 2 4=2¢
. Cube 3 8 =2
i Doubling Similarity d n=2°

Wel can use this to figure out the dimension of the Sierpinski Triangle because when you
double the length of the sides, you get another Sierpinski Triangle similar to the first.

Starit with a Sierpinski triangle of I-inch sides. Double the length of the sides. Now how
marly copies of the original triangle do you have? Remember that the black triangles are
holés, so we can't count them,

Doubling the sides gives us three copies, so 3 = 29, where d = the dimension.

But wait, 2 = 2!, and 4 = 22, so what number could this be? It has 1o be somewhere
between 1 and 2. right? Let’s add this to our table

Figure Dimension No. of Copies
Line 1 2=2"
Sierpinski’s Triangle ? 3=2°
Square 2 4=2¢
Cube 3 g=2°
Doubling Similarity d =2¢

So the dimension of Sierpinski’s Triangie is between 1 and 2. Do you think you couid
ﬁndTa better answer? Use a calculator with an exponent key (the key usuatly looks like
this ‘) Use 2 as a base and experiment with different exponents between 1 and 2 to see
how;c]gse you can come. For example, try 1.1. Type 2*1.1 and you get 2.143547. I'll bet
youcan get closer to 3 than that. Try 2* 1.2 and you get 2.2974, That's closer to 3, but you
can do better.

1
Thatjs how fracials can have fractional dimension

5.23] FRACTAL GEOMETRY

Almtf)llst all geomtric forms used for building man made objects belong to Euclidean
geometry, they are comprised of lines. planes, rectangular volumes, arcs, cylinders,
spheres etc. These elements can be classified as belonging to an integer dimension,
eltheql 2, or 3. This concept of dimension can be described both .intuitively and
mathematlca]ly Intuitively we say that a line is one dimensional because it only takes
liumﬁel to uniquely define any point on it. That one number could be the distance from
the start of the line. This applies equally well to the circumference of a circle, a curve, or
the bo[mdaly of any ohject.

A p]ape is two dimensional since in order to uniquely define any point on its surface we
lequlre two numbers. There are many ways to arrange the definition of these two
numbers but we normally create an orthogonal coordinate system. Other exampies of
two dimensional abjects are the surface of a sphere or an arbitrary twisted plane.

The volume of some solid object is 3 dimensional on the same basis as above, it takes
three numbers to uniquely define any point within the object.

A more mathematical description of dimension is based on how the “size” of an object
behaves as the linear dimension increases. In one dimension consider a line segment. If

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Scl-Instructional Material 169

Computer Graphics the linear dimension of the line segment is doubled then obviously the length
{characteristic size) of the line has doubled. In two dimensions, if the linear dimensions
of a rectangle for example is doubled then the characteristic size, the area, increases by
a factor of 4. In three dimensions if the lincar dimension of a box are doubled then the
volume increases by a factor of 8. This relationship between dimension D, linear scaling
[. and the resulting increase in size S can be generalised and written as

S=1P

This is just telling us mathematically what we know from everyday experience. If we
scale a two dimensional object for example then the area increases by the square of the
scaling. If we scale a three dimensional object the velume increases by the cube of the
scale factor. Rearranging the above gives an expression for dimension depending on
how the size changes as a function of linear scaling, namely

D = log(S}/log(L)

In the examples above the value of D is an integer, either 1. 2, or 3, depending on the
dimension of the geometry. This relationship holds for ali Euclidean shapes. There are
however many shapes which de not conform to the integer based idea of dimension
given above in both the intuitive and mathematical descriptions. That is, there are
objects which appear to be curves for example but which a peint on the curve cannot be
uniquely described with just one number. If the earlier scaling formulation for
dimension is applied the formula does not yield an integer. There arc shapes that lie in
a plane but if they are linearly scaled by a factor L, the area does not increase by L
squared but by some non integer amount. These geometries are catled fractals! One of
the simpler fractal shapes is the von Koch snowflake. The method of creating this shape
is to repeatedly replace cach line segment with the following 4 Jine segments.

NOTES

The process starts with a single line segment and continues for ever. The first few
iterations of this procedure are shown below.

VAN

<

-

4

(a) {b)
Fig. 5.21

This demonstrates how a very simple generation rule for this shape can generate some
unusual (fractal) properties. Unlike Euclidean shapes this object has detail at all levels.
If one magnifies an Euclidean shape such as the circumference of a circle it becomes a
different shape, namely a striaght line. If we magnify this fractal more and more detail is

170 Seif-Instructional Material

uncovered, the detail is self similar or rather it is exactly self similar. Put another way,
any magnified portion is idemtical to any other magnified portion.

5.24 ITERATIVE FORMATION

It
Fractais are often formed by what is called an iterative process

To make a fractal: Take a familiar geometric figure (a triangle or line segment, for example)
and| .operate on it so that the new figure is more “complicated” in a special way.

Then in the same way, operate on that resulting figure, and get aneven more complicated
_ﬁgure

Novir operate on that resulting figure in the same way and get an even more complicated
figure.
Do ilt1 again and again...and again. In fact, you have to think of doing it infinitely many times.
You can observe this iterative process in all the fractals that we make

-ﬁSierpinski's Triangle
ake.

5.25 INTRODUCTION TO COMPUTER ANIMATION

i
Anlma[ton is the creation of the illusion of movement by assembling a sequence of still
nnages

To a]{nmate is literally “to give life to’. "Animating’ is moving something which can't

move itself. These pictures do not reatly move — they are composed of a series of static
f

unag?s that affect the eyes at the rate of 12 to 24 images per second. The illusion of

movement is caused by a physiological affect known as "persistence of vision'.

Animation adds to graphics the dimension of time which vastly increases the amount of
1nfor¥nauon which can be transmitted. In order to animate something, the animator has
to be Sble to specify, either directly or indirectly, how the ‘thing’ is to move through time
and sif:»ace. The basic problem is to select or design animation tools which are expressive
enough for the animator to specify what he wants to specify while at the same time are
powe:it'ful or automatic enough that the animator doesn’t have to specify the details that
he is fot interested in. Obviously. there is no one tocl that is going to be right for every
an:malor for every animation, or even for every scene in a single animation. The
appr?prlateness of a particular animation tool depends on the effect desired by the
ammator An artistic piece of animation will probably require different tools that an
ammatlon intended to simulate reality.

There, are 1wo main categories of computer animation: computer-assisted animation and
computer generated animation, This book is mainty concerned with computer-generated
animation, For discussion purposes, motion specification for compuier-generated
animation is divided into two categories: low level techniques (techniques that aid the
amme{:tlor in precisely specifying motion). and high level techniques {techniques used to
describe general mation behavior) .

Low level techniques consist of techniques, such as shape interpelation algorithms. which
help the animator fill in the details of the motion once enough information about the
monio'ﬂ has been specified by the animator. When using low level techniques. the
animator usually has a fairly specific idea of the exact motion that he or she wants.

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Seif-Instructional Material 171

|

Computer Graphics

NOTES

172 Self-Instructional Material

High level techniques are typically algorithms or models used to generate a motion using
a set of rules or constraints. The animator sets up the rules of the model. or chooses an
appropriate algorithm, and selects initial values or boundary values. The system is then
set inld motion, so to speak, and the mgtion of the objects is controlled by the algoritium
or model. The model-based/algorithmic approaches often rely on fairly sophisticated
computation, such as physically based motion control.

Any technique requires a certain amount of effort from the animator and a certain
amount of effori from the computer. One of the things which distinguishes animation
techniques is whether its the animator or the computer which bears most of the burden.
Motion specification aids are those techniques which seem to require more input from
the user and fairly straightforward computation. Model-based approaches, on the other
hand, require less from the animator and more computation. But the categories are
really artificial.

Another way to characterize the difference between techniques is to look at the level of
abstraction at which the animator is working. In one extreme, at a very low level of
abstraction, the animator could color in every pixel individuaily in every frame. At the
other extreme, at a very high level of abstraction, the animator could tell acomputer to
‘make a movie about a dog’. Presumably, the computer would whirl away while it
computes such a thing. A high level of abstraction frees the animator from dealing with
all of the details. A low level of abstraction allows the animator o be very precise in
specifying exactly what is displayed when. In reality. animators want to be able to
switch back and forth and work at various levels of abstraction. The challenge to
developing animation tools is designing the tools so that animators are allowed (o work
at high levels of abstraction when desired, while providing them the ability to work at
low levels when needed.

5.26 PERCEPTION

Images convey a lot of information because the human visual system is a sophisticated
information processor. It follows, then, that moving images have the potential to convey
much more information.

When animation is recorded for later viewing, it is typcially presented in film or video
formats by recording a series of still images. This is possible because the eye-brain
assembles a sequence of images and interprets them as a continuous movement.
Persistence of motion is created by presenting a sequence of still images at a fast enough
rate (o induce the sensation of continuous motion.

The receptors in the eye continually sample light in the environment. The only
limitation on motion detection is the reaction time of those sensors and on certain
mechanical limitations such as blinking and tracking. If an object moves fast enough,
then the receptors in the eye will not be able to respond fast encugh for the brain 1o
distinguish a sharply defined. individual detail; motion blur results.

[n either film or video, a sequence of images is recorded which can be played back at
rates fast enough 1o fool the eye into interpreting them as continuous motion. Of course,
in order to save resources. this rate is kept as low as possible while still maintaining the
persistence.of motion. Under some viewing conditions such as room lighting and
viewing distance, the rate at which single images must be played back in order 1o
maintain the perception of motion varies. The image is said to flicker when the
perception of continuous motion fails o be created. The object appears as a rapid

- sequence of still images to the eye-brain.

1

!
There are actually two rates that are of concern. One is the number of images per second
thai are displayed in the viewing process, The other, is the number of different images
lh:a}t occur per second. The former is the playback rate: the latier is the sampling rate or
update rate. For example, images are always played back at 30 images per second on a
TV but in some Saturday morning cartoons there may be only six different images per
second with each image repeated five times.

I
Li

5.27 THE EARLY DAYS OF ANIMATION

Pellj'sistence of vision was discovered in the 1800s. This led to such devices as the
zoetrope, or “wheel of life.” The zoetrope has a short, fat cylinder which rotated on its
axis of symmetry. Around the inside of the cylinder were a sequence of drawings, each
one siightly different from the one next to it. The cylinder had long slits cut into its side
in between each of the images so that when the cylinder was spun a slit would allow the
eye to see the i image on the oppose wall of the cylinder. As the cylinder was spun on its
axzs the sequence of slits passing in front of the eye woutd present a sequence of images
o the eye, creating the illusion of motion.

Angther low-tech animation piece of equipment was the flipbook. The flipbook was a
1abl](:at of paper with an individual drawing on each page so the viewer could flip
through them. This was also popular in the 1800s.

The earliest hint of using a camera to make lifeless things appear to move was by Meleis
in 1890 using simple tricks, The earliest pioneers in film animation were Emile Cohl, a
Fter‘lchman who produced several vignettes, . Stuart Blackton, an American, who
actually animated ‘smoke’ in a scene in 1900 and who is credited with the first animated
cartgon in 1306, and the first celebrated animator, Winsor McCay, an American hest
known for his works Little Nemo and Gertie the Dinosaur.

The: ﬂm major technical developments in the animation precess can be traced to the
work {and patents) of John Bray starting in 1910. His work laid the groundwork for the
use of translucent cels (short for celluloid) in compositing multipie layers of drawings
intol%a final image as well as the use of grey scale (as opposed (o black and white)
d:‘a\}iings‘ Later developments by Bray and others enhanced the overlay idea to include
multiple translucent pieces of celluloid {(cels). added a peg sysiem for registration, and
the d{‘awing of the background on long sheets of paper so that panning (translating the
carnera par allel to the plane of the background) could be performed more easily.
Flusﬁher patented rotoscoping in 1913. Ratoscoping is drawing images on cells by
tI‘dCH’]]g over previously recorded live action. Bray experimented with ¢olor in one 1920
short

During this time. animation as an art form was still struggling, The first animated
charaictel with an identifiable personality is Felix the Cat by Otto Messmer which
appeared in the early 1920s in Pat Sullivan productions. In the late 1920s however, new
forces had (o be reckoned with: sound and Walt Disney.

-

——
5.28| DISNEY
T
Walt Disney was, of course, the overpowering force in the history of animation, Not only

did his studio contribute several technical innovations, hut the Disney studio. more
than anyone else, advanced animation as an art form.

[

Some of Disney’s innovations in animation technology were the use of a storyboard 1o
review the story, the use of pencil sketches to review motion, and the mutti-plane camera

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Self-Instructional Material 173

i7

Computer Graphics

NOTES

4 Self-Instructional Material

stand In addition, Disney pioneered the use of sound and coler in animation (although
not the first to use color). Disney also studied live action sequences 10 create more
realistic motion in his films. When he used sound for the first time in Steamboat Willie
(1928), he gained an advantage over his competitors.

Camera stand animation is more powerful than you might think. A camera stand allows
the parallax effect - moving of backgrounds at different rates as the ohserver pans across
an environment to create the illusion of depth - and zooming. Each of the planes can
move six directions (right. lefi, up, dawn, in, out) as well as the camera moving inand
out, By keeping the camera lens open during movement. figures can be made to appear
extruded into shapes of higher dimension, simulate motion blur. exhibit depth
attenuation.

With regard to the art form of animation, Disney perfected the ability to impart unique.
endearing personalities in his characters including Mickey Mouse, Pluto, Goofy, the
three litte Pigs. and the seven Dwarfs. He also developed mood pieces of animation
including Skeleton Dance and Fantasia. He also promoted the idea that the mind of the
character was the driving force of the action and that a key 1o believable animated
motion was the analysis of real life motion.

5.29 OTHER MEDIA FOR ANIMATION

Compuier animation is considered by many to be actually closer to other animation
technigues rather than traditional hand-drawn animation. Often it is compared 1o stop
motion animation, such as puppet animation, that builds and manipulates identifiable
objects. Other stop motion techniques are claymation, pinhead animation and sand
antmation.

in this type of animation. a physical object is manipulated, the camera takes animage of
it, the object is manipulated again, another image is taken of it, and the process repeals
to produce the animated sequence.

5.30 ANIMATION PRODUCTION

Computer animation production has horrowed most of the ideas from conventional
animation production including the use of a story board, test shots, and pencil testing.
The use of key frames and in-betweening have also been adepted in certain computer
animation systems.

Story boards have pretty much translated directly over to computer animation
production although they may be kept on a computer. They still hold the same
functional place in the animation process,

In computer animation there is usually a strict distinction between the creation of ithe
models. the specification of their motion, and the rendering process which is applied to
those modets. In conventional animation, the mode} building, motion specification, and
rendering are really all the same thing. Incomputer animation, speed-quality tradeoffs
can be made in each of the threc stages during the trial and error process that
characierizes much of animation.

A test shot in computer animation is usually a high quality rendering of a highly
detailed model to see a single frame of the fina) product. Pencil testing can be performed
either by simplifying the sophistication of the madels used. or by using low quality
and/or low resolution renderings. or by using simple motion control algorithms. Place

holde1 cubes can be rendered in wire frame to present the gross motion of rigid badies in
spa“ce and to see spacial and temporal relationships among objects. This may also
provide real-time calculation and playback of the animation. Similarly, high-quality
ren&iering of low complexity models or low-quality renderings of highty detailed
models, or some intermediate levels of both the model and the renderer can be used to
givF the animator clues to the finished product’s quality without committing to the final
conllpulauon For example, a hardware z-bulifer display can provide good turn-around
time with decent quality images before going to a ray traced image. Solids of revolution
ob]z?:cts lend themselves quite well 10 allowing for three, four or five levels of detail for a
given model. Also, smooth shading, texture mapping. specular reflection and solid
texturing can all be-options presented to the animator for a given run. To simplify
motion control, for example, simple interpolation between poses may be used instead of
inverse dynamics.

i

5.31 TIME

I : o - ‘ . .
Whe'n choreographing actiont in an animation or other production. the precise
specification of time and tempaoral relationships is important. In everyday life, time is
usually considered to be a continuous axis. In animation. however. because of the
u]mlr'iate breakdown into frames, the time axis is discrete. It is important to keep this in
mind when discussing temporal relationships of events in the animation production.

Becaﬁlse of the discrete nature of frames, there may be some ambiguity when saying, for
example, a span ends exactly when another span begins. in the discrete world, we will
takelthat to mean that a span ends on the frame before the frame that the other span
begir%s on.

5.32, COMPUTER ANIMATION: FILMS AND VIDEOS

Earl)lricomputer animation companies included Mathematical Applications Group, Inc.
(MAGI) Information International Inc. (HI, or Triple-1), Digital Productions, Digital
Effects Image West, Robert Abel and Associates, and Cranston-Csuri.

Currem computer animation companies (who also contribute significantly to research
in the area are: Pixar, Industrial Light and Magic (ILM}, Pacific Data Images {PDI},
Dlsney Xaos, Rhythm & Hues, Digital Domain, Lamb & Company, Metrolight Studios,
Boss Eilm Studios. deGraf/Wahrman. R/ Greenberg Associates. Blue Sky Productions,
SonylPictures. Cinesite, Imageworks, and Apple. {One might also include Silicon
Graphics. in that list since their equipment is used so extensively for computer
animzlation}A

Earlyion. Computer Graphics {CG} appeared in a variety of movies in which it was used
as corppute: graphics (that is, the CG was not intended to fool the audience into thinking
it was anythmg other than CG). For example, Future World (1976) and Star Wars (1977,
lmage West) fall into this category. More recently, Lawnmower Man (1992 Xaos, Angel
Stud:os} which has a segment of Hollywood's view of Virtual Reality in it, used CG in
the Sdﬁle role, although a more sophisticated example.

Tron (1982, MAGI) was a little different. The CG was still supposed to be computer-like
because the action takes place inside acomputer, But in this case, it was an integral part
of the envn onment that the actions (and actors) were taking place in. The CG was used
throughout the movie, It integrated computer animation with live action, but. since the
actionltook place in a computer, the CG didn't have to look realistic {and didn’t). This
was the first time CG was used as an integral part of @ movie.

Hidden Lines, Surfaces Cunve
CEenemtion and Amimation

NOTES

Self-Instructional Material 175

Computer Graphics

NOTES

176 Sell-Instructional Material

Along the same lines of Trenin using CG to create an ‘inside the computer” environment
is Reboot (1995, Limelight Ltd./BLT Productions). Reboot deserves special mention as
the first Saturday morning cartoon that is full three-dimensional computer-generated
animation. The action takes place inside a computer 50 they don't have to go for
‘realism’. Stiil, there are several human-like main characters and, overall, The Reboot
series is very impressive.

One main use of CG has been (o replace physical models. In this case, CG is used to
create realistic elements which are intermixed with the live action. The Last Star Fighter
(1984, Gray Demos’ Digital Productions, even the Cray X-MP was in the credits) used
computer animation instead of building models for speciat effccts. The action takes
place in space as well as on planets; CG was used for the scenes in space and physical
models were used for the scenes on a planet. It's not hard to tell when the movie
switched between CG models and physical models. There were probably 20 minutes of
CG used in the movie. This was the first time CG was used as part of the live action in
which it wasn't supposed to look computer generated. More recently. Apollo 13 (1995,
Digital Domain) used CG models of the return vehicle from the mission. In TV-land,
special note should go (o Babylen 5 (1995, Newtek). Babylon 5 is the first TV show 10
routinely use CG models as regular features of it's sci-fi show - and it's Amiga-based.

CG is also used to create "alien’ creatures. Creatures which are supposed to be realistic,
but don't have to match anything that the audience is familiar with. The Abyss (1989,
ILM) is one such movie in which CG is used to effect an alien creature which is
integrated with the rest of the live action. Some of the CG in Terminator I served asimilar
purpose as well as Casper {1995, ILM). Species (1995, Boss Film Studios). Mighty
Morphin’ Power Rangers (VIFX), Sexy Robot (TV Cemmercial, Abel).

More chatlenging is the use of CG to create realistic models of creatures that are familiai
to the audience. furassic Park (1993. [1.M) was the first to completely integrate use of CG
character animation in which the graphics were designed so as to blend in with the live
action so that it was difficult 1o tell what was computer generated and what wasn't.
Jumanji (1995, [ILM) does the same thing with it’s incredible modeling of animats. To a
lesser extent, Batman Returns (1995, Digital Domain) also does the saine thing by providing
‘stunt doubles’ of Batman in a few scenes. CG was used 1o create the face of RoboCop 2
(1990, deGraf/Wahrman) and animated skeletons in Total Recall (Metrolight) as well.

Another popular CG technique for special effects is the use of particle systerns. One of
the best examples is in Star Trek {I: The Wrath of Khan (LucasFilim computer division, later
ILM) in which a wall of fire sweeps over the surface of a planet. Another example is
Lawnmower Man in which a character disintegrates into a swirl of small balls. A more
recent example from television is in the opening sequence of Star Trek: Deep Space Nine
(1995) to model a comet’s tail. Twister also uses particle systems to simulate a tornado.

Of course, one use of compuler animation is simply to ‘do animation.” By that I mean
computer animation is used to produce animated pieces which would otherwise be
done by more traditional means - essentially 3-D cartoons (aithough the term cheapens
the idea somewhat). Although I'd like to restrict my topic to 3-D computer animation, |
suppose that morphing should be mentioned. This is essentially a 2-D procedure which
warps control points {or feature lines) of one image into the control points {feature lines)
of another image while the images themselves are blended. In Star Trek IV, one of the
first commercial morphs was provided by ILM in the back in time dream sequence In
Willow (1988, ILM). ILM provided the morph of several animals. This technique was
also used by ILM in Indiana Jones and the Last Crusade (1989) and Terminator 2. PDl is
known for its use of morphing in various commercials including a Plymouth Voyager
commercial and an Exxon commercial in which a car changes into a tiger. Of course,

[
| mor phing has gone on 1o become another Energizer Bunny of TV commercials - it keeps Hidden Lines, Surfaces Curve
gomg and going and going... Full 3-ID morphing has yet to make it out of the research Generation and Animiation
labs and into any production enviromnent.

Thel e is another class of movies in which CG plays a role - thai of *hidden special effect’
(for lack of a better term). CG can be used to cover up mechanical special effects or to
enhance the scene to integrate a mechanical special effect more completely. For the most
parl this resides in the 2-D realm and, as such, will not be the focus of this document.
Ho?weve: with the onset ofdlgual techniques for 2-I compositing, sequences will be
rUL%tmely digitally available making them susceptible to a variety of digital post-
processmg techniques. The first digital blue screen matte extraction was in Willow
(ILM) The first wire removal was in Howard the Duck (ILM). In True Lies (1994, Digital
DOII‘Idm} CG was used Lo erase support wires from suspended actors. In Forest Gump
[19?4 Digital Domain), CG was used to insert a ping pong ball in a sequence showing
an ?fcl;emely fast action game. In Babe (1995, Rythm & Hues), CG was used to move the
mouths of animals and fiil in the background uncovered by the movement. In Interview
w:dtra Vampire (1994, Digital Domain), CG was used to curl the hair of a woman during
the transformatlon into a vampire. In this case, some of the effect was created using 3-D
glaphm and then integrated into the scene by 2-D compositing.

I

5.33 COMPUTER ANIMATION SOFTWARE :

NOTES

It
Herei is a short list of some animation software.

Il(t}lFF Animator

Macromedia Flash

Softlmage {(Microsoft)

Ahas/Wave!‘ronl (SGI)

3 3 Studio MAX {Autodesk}

[11 ghtwave 3-D (Newtek)

P: isms 3-D Animation Software (Side Effects Software)
l;lOUDINl (Side Effects Software) |
Apple’s tooikit for game developers
Digimation

Herewve are going to discuss Macromedia Flash and GIF Animator

5.34, MACROMEDIA FLASH

Macr:(l)media Flash is quickly becoming the standard for multimedia development for
the web and the desktop. Flash is an extremely powerful drawing or illustration
pmgram featuring all the creation and manipulation features you could want. You can
introduce objects, move objects, and even morph objects over time. Flash allows you to
eas;ly‘mcol porate text. graphics, sound, and animation into a compressed package that
can be sent over the web or played from the desktop.

The core elements of the interface can be described in terms that lend themselves to a
movie analogy. The desktop is the “stage.” and the unfolding of your creation takes
place along a timeline that is divided into "frames.” You can set an object 1o exist for a
specific number of frames, and you can assign actions (start/stop) to a frame. Larger
subdivisions of the file are called “scenes.” Flash provides tools for sketching and layout
ina process called “storyboarding.”

t : Sell-Instructional Material 177

Compuier Graphics

178 Self-Instructional Material

i

Obijects are controlled using a series of "panels” that group the functions you might
wartt to perform on an object you've created. The Translorm panel, for example, lets you
rotate, skew. scale. and duplicate elements. The Align panel controls the alignment,
distribution, sizing, and spacing of objects. With the Mixer, you can define colors. Using
the Character panel, you can edit fonts characteristics such as font size., font color, and
kerning, as well as set links to text. Similar panels are available to create and control
color and sound.

Some key concepts behind the features:

¢ The range of options for object manipulations is due to the program’s ability to
treat objects as either bitmap or vector, depending on the operation you want’
to perform. Imported bitmap art can be converted to a collection of vector
drawings for extraction and further manipulation to suit the purposes of the
presentation.

o A “key frame” is a space in the timeline where you can define the properties
of an object (shape. color. ransparency. position, etc.) for a chosen time dura-
tion. Another function of key frames is to introduce a layer in a timeline rela-
tionship to active layers. Different key frames can exist in different layers, but
you need to line up key frames to give the appearance of motion and movement.

« A major consideration in developing web-based communtication vehicles is the
time required for downloading. This becomes crucial when using motion. The
library feature of Flash serves to reduce the file size of the final product, because
objects can be reused many times in the movie. but are downioaded only once,
You can edit one instance of a library item and apply the change to the library
item or leave the library item alone. Objects must be placed in a library before
you can apply animation.

« Download time can also be saved by manipulating objects in lavers so that part
of an object or group is covered by anather. Flash stores only the content that's
visible at the surface.

» "Tweening” allows you to select two frames and then morph an object from one
shape to another between the frames.

5.35 GIFF ANIMATOR

Key Features

Fast and easy animation

1. Intuitive Interface: Get around fast using a tab-based interface

2. Easy composition: Create dynamic multiple object animation with drag and
drep precision '

3. Dynamic effects: Apply various text effects, video effects. transitions etc.

4. Powerful optimization: Ensure fast loading animation with the latest image
compression techniques

5. Flexible output: Export 10 a wide variety of file formats, including Flash. AVL,
MPEG etc.

System Requirements for Giff Animator

¢ Intel Pentium compatible processors

s Microsoft Windows 98, NT 4.0 SP5 or higher
s 64 MB of RAM

« 20 MB of available hard disk space

|

s CD-ROM drive
» True color or Hicolor display adapter
» ‘Windows compatible pointing device.

i
5.36 SOUND ANIMATION

Il

b . s N B .
Sp%cla] bonds connect sound with moving images. In animation. these bonds are very
spelqiaL The visual elements and the audio track seem to share a more intimate and more
creative partnership than exists in other motion picture form.

This may be created by :

s High degree of synchronization

The technology of animation encourages a higher degree of synchronization
that is practical within other forms of moviemaking. In both visual and audio
realms, the animator has total control. An image or a sound can be placed with
accuracy down to the tenths of a second.

Iread about the Synchresis phenoma)

Sirong relationship between animation and music

Animation and music have a basic mathematical foundation and move forward
at a determined speed. The rhythm of a-musical composition is measured, and
1 beats are fitted into bar units of defined time length and are interpreted in time
| Lnils.

»| Sound metaphors

' The combination of fast moving animated visuals and unrealistic sound effects
create audiovisual metaphors that often have humerous aspects. For example
slow moving footsteps synched to cymbal crashes ... or ... fast moving hands
digging to the sound of a roaring engine.

iKinetic energy

In animation synchronized sound effects are used as a source of kinetic energy.

M the Classic Hollywood Studio Cartoon the sound track are mostly constructed
from hoinks, petangs, pings, and kerthuds to energize a scene.

When these sounds are determinants of the scene's pacing, they are recorded prior
1o shooting and logged like a voice track: the animation is shot 1o the effects track.

An

. ?re—synchronous

n?ation Sound can be...

) Fost-syhchronous
» Non-synchronous.

|

I
Pre-synchronous

t
Mu31c and sound effects for key actions is recorded before the images are produced and
the animation is “shoot to the track” The sounds are created * ‘presynch”.

Most,vo;ces are recorded presynch. Presynched is the best way to achieve the precise
syncht onization between pictures and sound that, for audience, is one of the most
entertaining aspects of animation. For the animator. presynching also helps solve one of
the most difficult problems encountered during shooting: how to pace action, or more
precis‘?ly how to determine the extent of each incremental movement. Once a voice or
musmtrack has been recorded, ana]yzed and logged, it becomes a concrete determinant
ofwh{.n key actions must oceur retative o those points.

I

|

|
|-.

Hidden Lines, Surfaces Curve
Generation and Animation

NOTES

Self-Instructignal Material 179

Computer Graphics Dramatic important sound are logged as voice track prior to shooting.

Post-synchronous

The images are shoot before the sounds.

Sound effects are used to complete the outer orientation {the spatial and temporal
settings) established by the visuals. These sound effects are often added in
postproduction. since they are rarely the primary determinant of the scene’s pacing. If
NOTES the animator is shooting to the voice track, particular actions in the picture that require
an sound effect - such as doors closing, gunshots, telephones ringing. and so forth —are
simply cut into the effects track at the appropriate frame,

Non-synchronous

Non-synchronous music has not been carefully timed to fit the picture. Because music
and fiim both are “time arts”, it is inevitable that any s¢lection will synchronize with the
picture at random points, and even non-synchronous music severs as a “bed” for the
action throughout.

In Animation Actions are Condensed

Standard libraries of sound effects are more and then useless for animation because the
action of animation is for compact - a real car takes ages to go into the distance compared
with the animation of the samc action.

- First Principle of Animation Sound

First Principle of animation sound effects is that there is no connection between the
object inthe picture and the origin of the sound.

SUMMARY

» A major parl of rendering (making tmages more realistic) is the visible surface prob-
lem. {ie. only display hose surfaces which should be visible.

o Hidden Surface Algorithms are usually image space or a combination of object and
image space.

s Object Space method is implemertted in the physical device coordinated system in
which objecls are described.

= [mage space method is implemented in the screen coordinate system in which the
objects are viewed.

s Two basic approaches used lor visible surface algorithm detection which are as foi-
lows:-

1. Object Precision Algorithm
2. lmage Precision Algorithm.

» Coherence is based on the principle of localily, whereby “nearby” things do have Lhe
same or similar characteristics.

+ Wilh scan-line algorithms an image is generated sequemially, one scan line at a time.
Spans are porlions of a scan line with some constant property. c.g.. the same object is
visible over a given span.

» The curve in general does not pass through any of the control points except the first,
and last. From ke formuta B(0) = Py and B(1) = P,

» The curve is always contained within the convex hull of the coniral peints, il never
oscillates wildly away from the centrol points.

« Il there is only one control point Py, ie: N = ¢ then B{u) = Py for all w.

180 Seff-instructional Material

& - - 1

s If (here are only two control points Py and Py, i.e.: N = 1 (hen the formula reduces Hidder Lines, Surfaces Curve
to a line segment between the two contral points. Generation and Animation

1
1 -k
=

ot The term
NI

muk (l—u

is called a hlending function since it blends the control points 1o form 1he Bézier curve,

)N—i‘

NOTES

lThe blending function is always a polynomial one degree less than (he number of
I cantrol points. Thus 3 control points resulis in a parabola. 4 control points a cubic curve
' elc.

=1 Closed curves can be generated by making the last control point the sanie as the first
control peint. First order continuity can be achieved by ensuring the tangent between
the first two points and the last two points are Lhe same.

* Except for lhe redundam cases of 2 control points (straight tine}, it is generally not
possible to derive a Bézier curve that is parallel 10 anclher Bézier curve.

¢l A circle cannot be exactly represented with a Bézier curve.

el isn't possible 1o create a Bézier curve (hat is parallel to another, except in Lhe rivial
cases of coincideryt parallel curves or straight tine Bézier curves,

+|{Special case, 3 control points

B(u) = F‘o"(l—u}2+P| ‘2‘11{1—u)+P2u2

. ‘Specnal case. 4 contral paints

Blu) =Py (1-u)?+P "3 u~ (1-u)?+P* 3 P (1-u)+Py* P

iBézier curves have wide applications because they are easy 10 compute and very
stable, There are similar formulations which are also called Bézier curves which behave
'idifferemly. in particular il is possible 1o create a similar curve except that it passes
11hrcough the control points. See also Spline curves.

s [Fractals stands for fractional dimensional and is a term widely associated in graphics with
randomly generated curves and surfaces, They are used 10 provide materialistic shapes
for representing objects such as coast lines, rugged mountains, grass etc.

* |Animation is the creation of the illuion of movement by asserbling a sequence of still
:mdg,es To animale is "Lo give lile to’. The illusion of movement is caused by physiological
affecl knawn as “PERSISTENCE of version”. We are concerned with computer generated
?]']lllldlan

ﬂ"here are softwares for animation like Giff Animaition and Macroimedia Flash. They have
I?een discussed in the chapier.

t
% REVIEW QUESTIONS

. Peﬁne Hidden Surface Algorithms,

. 1\;\"hal are the Object Space and Image Space methods?

. I[;)eﬁne the techniques for Efficient Visible-Surface Algorithms.
. Define coherence and types of coherence.

. Define Spatial Partitioning.

. Define back face removal.

. Define Z-Buflfer algorithin and Painter’s algorithm.

. Qeﬁne Warnock Area Subdivision Algorithm.

. \;’Yhal is Binary Space Parlitioning?

- D D =] SN e L DD e

- Define Binary Space Partitioning (BSP) tree.

Self-instructional Material 181

1

Comipuier Graphics 11. Given thwree contiol peints on the xy-plane (- 1.0), {0.1} and (2,0}, do the lollowing:
» Write down its Bézier curve eguation.
+ Expand this equation 1o its equivalent convenlional form.
« Since there are ihyee control points, there are three Bézier coefficients. Wrile down
their equations and sketch their graphs,
e Use your calculator 1o find enough number of points using lhe conventional
parametric form and skeich the curve.

« Find points on the curve that correspond to u = 0. 0.25, 0.5, 0.75 and 1 with (he

NOTES conventional form.

« Use de Casleljau's algorithm to lind points on the curve corresponding to u = 0.
0.25. .5, 0.73 and 1.

« Subdivide the Bézier curve at u = 0.4 and list the control points of the resulting
curve segments.

» Increase the degree of this curve to three and list the new set of control points.
Then. increase the degree 1o four and list the new set of control paints.

12. En the variation diminishing property, what if you have a line or a plane that passes
through a control paint or contains a line segment of the control polyline? Suggest a
proper counting of intersection points and verify your ¢laim with examples.

13. A Bézier curve of degree 2 defined by three contrel poinis Py, Py and Py is a portion of
a conic seclion. Whalt type of this conic section is it? IS it a portion of a parabola. a hyperbola
or an ellipse? You can assume the given control points are in the xy-coordinate plane.

14. Suppose Bézier curve Clu) (resp.. D{u}) of degree i is defined by control points Py, Py,

o P, (resp.. Op. Q. ... Q). IF the curves are identicai (i.e. C(u) = D(u} for every u in
[0.1]), then the corresponding contro! points are also identical (ie. P; = Q, forall ¢ <
=j<=nh.
Hint: First show that if {1 - JA + uB is a zero vector for every u in [0, 1], then A
and B are both zero vectors, Then, work the de Casteljau’s algorithm backward 10
show that P; - Q; is a zero vector for all G <« = i < = n.

15, Suppose Bézier curve Clu) of degree n is delined by control points Py, Py, .. P,

1. Prove lhe following:
1}
Bt = (1) Clni)Cln=i - i)
j’=l

2. Show that curve C{u) can be rewritten to the following matrix form:

Hlga My .- Mgy u°
Clw = [Po, Pl,..A,Pn]. Mo M - nl‘ln) u!
Wup My .. My, "
where entry myis deflined as lallows:
my= (-l)j_i C("’i) C("_ I.')"" f) if]ZI
0 otherwise

16. Therefore, a Bézier curve can be rewritten using the waditional polynomiai form in

’ = 1w, e ... ™ This is the so-called monomial form and the basis functions are
W = 1, v, b ... u". However, the use of this inonomial form is compulationally
uistable.

17. Show that the maximum of By ,(1) occurs at u = il and that the maximum value is

it fi(n—f)n_f

itn=ijt ~ n"

182 Self-Instructional Material

e b M s, F—

|

18 Verify the following results with your calculus knowledge:
= 1he derivalive of B, ;(u):
: d

I ' du ni() = By (u) = n(Bu—l,:'—l (H]—Bn_l',‘(u))

pluy

%C(u) = C'{u)= EB”‘”(“) {“(Pm - Pf)}

19 The discussion of joining two Bézier curves with C'-continuily assurmes the domain of
¢ the curves is |0, 1]. Suppose the domain of the first curve is {0 5] and the domain of
' ihe secand curve is {s. }. Redo the calculation. What is your conclusion? Is there any
- maedification required?

|.| « the derivative of Bézier curve

20.?‘ Prove the fullowing:

~) ek)P,

,.
[
S
i [
[=
—

where D}’s are the k-th difference points and Ck. j} is the binomial coefficient defined
~as {oliows:

k!
| j (k=)
:_‘-Wilh this formula, we can express a higher derivative using the orviginal control peints
‘rather than using finite difference points.

Cik j)=

21. l'Allel subdividing a Bézier curve of degree p at s. we have two Bézier curves of degree
|p one on interval |0, 5| while the other on [s. 1], Show that these 1wo curves are of
|C’ cortinuous at the joining peint

|Hml Suppose the last two control points of the curve on |0, sf are P, _; and P, and
the first two control points of the curve on {s, 1] are Qp and Q,. '[hen we have Pp_ s
P, = Qg and Q, are on the same line, and the ratio of the distance from P, ., o P, =
Qg and the distance from P, = Q to Q, is equal to s due to subdivision. Now, change
the variables of both curves so that they have domain on [0, I]. A simple calculation

ﬁvi]! lead 1o the desired conclusion,

22, Fxplain the steps used it Animation process.
23.
24.

25,

‘ﬁ\!’rite a programn to generate Beizer curves.

Write a pragram for generation of fracials.

\],i\frite short notes on :

(b) Animation and Movies
{d) Multimedia

'(Ia] Persisience of version
.\(C] Animation Hardware
{e) Fractals.

FURTHER READINGS

. Computer Graphic: V.K. Pachghare, Laxmi Publications, 2007, Second edition.

. (,omputer Graphics: Prabhakar Gupta. Vineet Agarwal and Manish Varshney, Laxmi
Pubtications. 2011,

. Cl‘omputer Graphics:
. C'omputcr Graphics:
. Computer Graphics:
. Compuier Graphics:

Rajiv Chopra, . Chand Publisher, 2011,

C.5. Verma, Ane Books, 2011.

Pradeep K. Bhatia. LK. International, 2009, pbk, Second Edition.
Ruchi Mishra, Global Vision Publisher, 2010.

Hidden Lines. Surfaces Curve
Generation and Aninration

NOTES

S(‘.'F.I'J?S[i‘lICIJ"O_{}_Q_I_'AJHI(!I‘I'EII' 183

