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Upper and Lower Riemann Integrals
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Lanearity Properiies of Riemann Iniegral

Integration and Differentiation

Fundamental Theorem of Calculus

1.1. INTRODUCTION

In elementary caleulus, the process of integration is treated as the inverse
operation of differentiation and the integral of a function is called an anti-derivative.
Historically, however, the subject of integration was developed is connection with areas
of plane regions. It was based on the concept. of the limit of a sum when the number of
terms in the sum tends 1o infinity and each {erm tends o zero. This notion of integral
as summation is associated with intuitive dependence on geometrical concepts. The
first satisfactory rigorous arithmetic treatment of definite integral was given by a
German mathemaiician George Friedrich Bernhard Riemann (1826-1866). Many
refinements and generalisations of the subject have appeared since then. However, we

shall confine ourselves to the discussion o6f Riemann integration only.
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Real Analysis

NOTES

We shall be dealing with clesed finite intervals [@, b] so that (b —a) € R and
X € [a. b] implies @ < x £ b. Moreover, all funciions fwill be assumed (o be real valued
function defimed and bounded on [a, b].

Thus f: [a, b] = R and | f(x) | £k, where k15 a posilive real number.

1.2. PARTITION OF A CLOSED INTERVAL

Let T= [a, b] be a finite closed interval. Ha=x, <x; <x, <. <x,=Db, then the
finite ordered set P = {x,, x,, x,. ..., x,} 15 called a partition of I.
The n-+ 1 points x,, ¥, X, ... . &, are called partition points of P.
The n closed sub-intervals 1, =[x, x| [, =[x, x), ... L=l
I, =[x, x,]determined by P are called the segments of the partition P,
n i
Clearly, v =ulx . x]=[a.b)=1
r=1 r=1

The length of the rth sub-interval I, = [, , x,] is denoted by §,. Thus 8 =x, —x, ;.
Note 1. Partition is also known as dissection or net.
Note 2. By changing the partition points, the partition can be changed and hence. there
can be an infinite number of partitions of the interval I,

We shall denote by Pla, b] the set (or family) of all partitions of [a. D].

1.3. NORM OF A PARTITION

The maximum of the lengths of the sub-intervals of a partition P is called the
norm or mesh of the partition P and is denoted by || P || or i (P).

Thus IPll=max. {8 :r=12, ..., n}
3

=max. (¥, ~x,_ :7r=12, ... ,

1.4. REFINEMENT OF A PARTITION

If P. P’ be two partitions of fa. b] and P c I, then the partition P’ is called a
relinement of partition P on [a, b]. We also say P’ is finer than P
Thus, if P’ is finer than P, then every point of P is used in the consrruction of P’
and P’ has at lcasi one additional point.
If P, P, are two partitions of [a, b]. then PP UPyandP,cP LD,
Therefore, P, U P, is called a common refinement of P, and P,
Note 1. If P, P, € Plo. bjand P, C P, then | E, | =] P

Note 2. If P = {x, x|, %,. ......, X} is a partition of |, b].
n
then Z F=8 48y + G = ) H g, — ) +x,—x, )=x —5,=b-a
r=1
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1.5. UPPER AND LOWER DARBOUX SUMS

Let {: [a, b] — R be a bounded function and P = {a = x, Ny, Xy e ,x =bybea
partition of [a, b].

Sinee fis bounded on {a, b, fis also bounded on each of the sub-intervals. Let M,
ntbe the supermum and infimum of fin [a, b] and M, m_be the supermum and infimum
of fin the rth sub-interval L=0_,x];r=12 ... TR

i
The sum M8, + M5, + ... +MS + . +M3, = 2 M,$§, is called the upper
r=1
Darboux sum of f corresponding to the partition P and is denoied by
UP, fHor UY, P).

ki

The sum m,d, + myd, + +md + ... +m,b = E m.8, is called the lower
r=1

Darboux sum of f corresponding to the partition P and is denoted by 1(P, /) or L(f. P).

Thus U, p= i M,S5,; LP,.fH= i m.8,

ral r=l

Clearly, these sums depend upon the function f and the partition P, and do exist.
for every bounded {unction.

1.6. OSCILLATORY SUM

Let f: [a, b] — R be a bounded function and P = {o = x,, x,. x,. ......, x, = b} be a
partition of [a, b).

Let m_ and M be the infimum and supermum of fon [ = v, x],r=1.2,3, ... s
Then

UP. H-LEP. H= zn: Mrar - zn: m,S, = i (Mr -m. )8, = i orsr
r=1

r=1 r=1 r=l

where O, =M, —m, denotes the oscillation of fin I .

U, h-L(P. H= E 0,8, is called the oscillatory sum of f corresponding to the

r=1

partition P and is denoted by w(P, /).

Sinee O, =M —~m 20,r=1,2 ... . i, each oscillatory sum consists of a finite
number of non-negative terms.
(P, /12 0.

Theorem 1. /f [ : [a, b] = R is a bounded function and P e Pla, b], then
mh-—<LP HsUP H=MDb-0

where m, M are the infimum and supermum. of fon [a, b).

Riemann Integration

NOTES
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Real Analysis

NOTES

Proof. Let P={a=x, 1, x,, ... , X, = b} be a partition of [a, b].
{is bounded on {a, b] = [is bounded on each sub-imterval [x_,, xJ. r=1,2

Let m _and M _be the infimum and supermum of fon [x_,, x|

Clearly msm <M <M = mé <mb <MS <M§,
= Em&rszmrﬁrgz M,S,gz M5,
=1 r=1 r=l r=1
11 n
= mY 8, SLP,)<UP. H<M Y, 5,
r=1 r=1

= - =LP, H2UP.HA=Mb —a)

[ 21 6,=b—a]

Note. The above theorem implies thai L(I?, /) and U(P, /) are bounded if fis bounded.
Theorem 2. Iff: (e, b} = R is a bounded function and P e Pla, b, then

G LP.HUP NH GHLP. - Pp==TP, Hand UL, -H=-LP, H
Proof. Let P = {a = x,, x,, Xy ......, ¥, = b} be any partition of [a, b].

Let m, M be the infimum and supermum of fon [«, b] and s, M_Dbe the infimum

and supermum of fonl ={xv_ . x].r=12 .. »n
(z) We have m<M, r=1,2 _...n
= m8 sM3 = > m8 <y MBS, = LEHsUP /.
r=1 r=1

(i) fis bounded on [a, b)] = ~ fis bounded on {a, b]. m, M, are the infimum
and supermum of fon T,
= —M,_, —m_ are the infimum and supermum of — fon 1. (Note this step)

Tt It
By definition, L, - =Y, (-M,)8, =— 3 M8, =-UQ, /)
r=1 r=1

UE, -p= E (-m,)8, =— 2 m,8, =—L({P. f).
r=1

r=l
Theorem 3. If f : {a. D] = R, g : [a. b] — R are bounded funclions and
Pe Pla, b, then
G UP. [+ U H+ UP, g
@) o, f+g <ol NH+olP g.
Proof. Let P’ = {a =5, x|, . ......, x, = b} be any partition of [a, b].

(i) LP frg)2L(P, N+ L, g)

[. g areboundedon [0, ] = [+ gisbounded on |a, bl.
Let m. M/ be the infimum and supermum of fon [,
m,”. M.” be the infimum and supermum of g on I and
m,, M be the infimum and supermum of f+ gon I

() M, M " are supermum of fgonl

= fOSM g)<M” Vael

4 Self-Tnstructional Material ~




= f)+gxy<sM + M7 Yxel
= f+2 ) <M +NM" Yxel
= M)+ M”isanupperboundof f+gon 1,
But M, is the least upper hound of f+ gon I,

M <M/ +M”onl_ r=1%2 ... , = M &, < M8 + N 7§
= Z Mrar SE Mrrar +z M,”8, = U(Pf+g)£U(pf)+U(Pg)
i=1 r=1 r=1
@) m  m” are infimum ol f, gonT .
= fyzm  gxyzm,” Vel
= fly+g®zm +m” Vael
= F+ozm/ +m” Vyel,

= m,+m"is alower bound of f+ gon 1.

But m, is the greatest lower hound of f+ gon I .

mzm +m” = md zm § +m"§
1 I L3
= Y m8,2Y ms +Y m 8, = LE.f+4>LEP.H+LE. .
r=1 r=l r=1

G@w@i+$=UWJ+Q—LWJ+Qsﬂm1n+w3mkﬁuﬁﬂ+uﬁml
=[U@. H~LE NI+ [UP, 9~ 1P, 9] =0, H+of. g
o, frg) <o, H+ ol 9.

Theorem 4. If P’ is a refinement of P containing p poinis more than P and
LAY 1 <k ¥ xela, D], then

OLP NP NP N+ 2phd @ U, H2 U, pz U, - 2pkd
@i ol fi—wl”. H < Iphd
where )| Pl=8.
Proof. Let P’ contain just one point &(sav) more than
P=(a=xy 2,2, ... Yo X, ., x, = b
and  x, <& <x. then Y E{a =g, N, Ny s X, B Y, x, =b}
Let m/, m” and m_be the infimum of f in the intervals [x_, &, £, x,] and

[x,_,, &,] respectively.

17
Let M, M,” and M, be the supermum of fin the intervals [x,_;. &], [£, x] and
[x, ;. x,] respectively.
Since lfa){sk ¥ xela b} die. —k<fy<k Vrela, b
—ksm sm sk ~k<m sm”<h
~ksM <M <k <M <M <k
= Ogm/ —m £2k,0<m” —m <2k
O0<M,-M <2k 0<M -M"<2k
2] L p-LE N=Im G-x_)+m (c, -] -m (x ~x_)
=m/€—x, J+rm N -§—mx, -D+E-x_)]
=(m-m)E~x_}+m" —m)(x, -5
L2RE —x, )+ 20y, — ) =20(v, — x,_) = 2R3,
< 26 [ 8, <P =8

Rienann Integration

NOTES
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Real Analysis

NOTES

= (. ) < LP, ) + 243

If P’ contains p points more than P, then introducing the additional points one by
one and proceeding as ahove p limes, we have L(I", N < L(P, f) + 2pks

Also (P, Hh=sLP, hH
1P, H TP, psLAP, fH + 2pkd.
(U] U@, H-UT" H=M, —a _)—[ME-x,_)+M"(x -]
=M, [(x, - D+ E~x DI -IM E-x_)+M"x -5l
=M, -M")(x-8+M -M)E~—x,_)
S2k(x, -8+ 2k(E€ —x, )= 2k(x, —x ) =2k5,
< 2k8 i~ 3, 2P1I=3]
= U, H=2UP, H—2k8
If P’ containg p points more than P, then introducing ihe additional points one by
one and proceeding as above p times, we have
U@, n=ue, /) -2pkd
Also UP, H2U0T. Hh
U@ HzUE, HzUE, H-2phd.
i Now U@, H-UP. NH<s2pkd and LA, H-LEP, H < 2pkd

Adding, [U®, H=14P. pl -~ [U(P, ) - L', N] < 4pks

= X w(P. f) —w(P’, ) < 4phs.
Theorem 5. If P,, P, e Pla, b}, then
@ LP,. N UWP, N (0 L(P,. h s UP,.

i.e., no lower sum con exceed any upper sum.
Proof. Let ' = P, U P, be a common refinement of P and P,

(i) Since any refinement does not: lower the lower sum and does not raise the
upper sum.

o LP,.HNSL®P. fH and UP,NH<UP, )
Also [P, HsUP NH

Combining, we have L{P, N <LEP. HsUP, H2UP, H
= LP,. H U@, N

(i) Please try yvourself.

1.7. UPPER AND LOWER RIEMANN INTEGRALS

Let [ [a. b] = R be a bounded function. Then {or every P € Pla, b], we have
mb-—a 2P, AU HsMb -

where m and M are the infimum and supremum of fon [, b].

Thus for every P € Pla, b], wehave LIP, H < MG —a) and UP. Hzmb - a)

= The set {L(P. Hip ¢ ply, 5 Of lower sums is beunded above by M{b — ) and,
therefore, has the least upper bound.

The set {U(P, Hive Plas, b] of upper sums is bounded below by m (b —a) and, therefore,
has the greatest Tower hounid.
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F Lower Riemann Integral of f on [a, b] is defined as sup {L.(P, fi}, Pla, b] and is

b
denoted by L flx)dx.

Upper Riemann Integral of f on [a, b] is defined as inf {U(P, f)}Pep[a___ b 18

}i denoted by jbfo)dx-

1.8. DEFINITIONS AND EXISTENCE OF THE RIEMANN-
STEIELTJE’S INTEGRAL

Abounded function fis said to be Riemann iniegrable (or simply R-integrable) on

b b
fa, b] if its lower and upper Riemann integrals are equal i.e., if J flxydx =I f(x) dx.
a o

The common value of these integrals is called the Riemann integral of f on
[er, b] and is denoted by

j:f(x) dx.

The interval [a. b] is called the range of integration. The numbers ¢ and b are
called the lower and upper limits of integration respectively.

Note 1. Riemaun integral is based on the notion of bounds and is subject to two conditions

() { is bounded on the interval, and (i7) the interval is closed,

2. The family of all bounded functions which are R-integrable on the elosed intervals
[¢, b] is denoted by R[a, b]. If fis R-inicgrable on [a. b]. then we write fe Rla, b].

3. [is R-integrable an fa, b = (@) fis bounded on [a, b]

(i) Kﬂﬂﬁ:fﬂmﬁ=ﬂﬂﬂﬁ.

. 5
Theorem 6. /f {: [a, b] = R is a bounded function, then _[: flx)dx < j Fix)dx.

Proof. Lei P,. P, e P g, b]. then
L, N<U®,, A ¢ nolower sum can exceed any upper sum)
This is true for cach P, € Pla, b]. Keeping P, fixed, the set {L(P;, /)lp, . prq, 5 has
an upper hound U(P,, /).

Also sup {L(Pl, f)} = j:f(x) dx

P,ePla,b]

Since supermum <€ any upper bound
I ] 1

b
Iﬂﬁ&gm&j}

Rienwon hitegrotion

NOTES
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Real Analysis This is true for ecach P, € Plo, b]. Thus the set {Ufpz,f)} [ has a lower
P,ePla,b]
b
. hound J flx)dx.
NOTES g
B inf Ef( Ydx
{. ] = X .
" " {U(P2’f}}PgeP|a,b] -[1
Since any lower bound < infimum.
' 5 ;
[rwas| rwax.
2 a

Theorem 7. If { - [¢. b] = R is bounded function, then

P
mib — a4 < r flx)dx sj Flx)dx < Mb —a)

ichere m and M are the infimum and supermum of [ o |a, bl.

Proof. Yor cvery P € Pja, b], we have

mb-a) SLEP, HASUP. H<MbB-—a) D
| Novw. SUP{L(P’ f) }PePla,b] - -[_f fla)de
- LP. )< _[:f(x)dx e
inf {ue,n), . = J’b foyde = r’ Fodx <UE. f) ()
Also, Lb flx)dx < jb ) dx (1)

From (D), (2. (3} and (4), we have

B b )
mh—a) S LEP, )< j fla)dx < j flxydx < UP. f) < M@ —a)

b b
= mb—a) < j f(x) dx s_[ £lx)dx < M — ).
a o
Theorem 8. I/ [ Rla, b], then

@ mb—a) < f’ fix)de<M(b-a)if b2a

G mb-az Jb flx)dx 2 Ml — @ if b < a where m and M arve the infimnm and
superntum of fon [u,ab]A

Proof. For a = b, the result is trivial.

I b > a, then lor every Pe Pla, 8], we have

mh - sLP, HsUP, HsMb-a) A1)
b b
Now sup{]_,(P, f) }P i = L flx)dx= L f(x)dx [+ fe R [a, b

b
= P, f) < L f(x) dx o))

8 Self-Iustructional Material




i

|

l
|

Also inf{U(P, f)} = Ef{x}a‘x= Ef(x)dx |- fe Rlw, b]

PePla,b)
&

= [rwax<ue, @)

From (1), (2) and (3), we have

mh-)<LE,NH< be{x} dxsUP, ) <M -a)

b
mb—a) < j £(x) dx < M(b - a)

Ifb<qg, thena>b.
Interchanging a and b in the above result, we have

mia— by < j: Flx)dx < Ma —b)
b
= —m.(u.—h)z-j f(x)dx 2 - M(a - b)

b
- m(b—u.)z_[ f(x)dx 2 M(b -a).

ILLUSTRATIVE EXAMPLES

Example 1. Jet fix) =x for x € 0, I and let P = {O, é, %, 1} be a partition of
10, Ij. Compute U(P, ) and L(P, ).

Sol. Partition P divides the interval [0, 1] into sub-intervals

11 = [0, l}‘ I(‘5 = [l’g], _[3 = [E, 1}
3 3 3] 3

1 1 2 1
=3 -0=gi%=3"3"

Sinee f{x) = v is increasing on [0, 11.

1 2
h{ = —, — - LI' —_— = — A — _—
=.m, =0 M, =2 om, =~ My=1,m,= =

173 3!
3
UP. =3 M, 8, = M35 +DM3, + Mg,
r=1
11 .21 1 1(1 2 } 2
soogto.ootl ===+ =+1|==
33 33 3 3.3 3 3
3
1 11, 21 1
L, H =Y mb, =m8, + myb, + md, =0, S+ 2+ o 2=,
“ 1 333 33 3

Example 2. Compuite L(P, ) and U(P, f) for the function [ defined by fix) =x% on

[0, 1} and P = {0, i,g,i, 1}‘
4 4" 4

Riemann huegration

NOTES
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Real Analysis

NOTES

Sol. Partiiion P divides the interval [0, 1] into sub-intervals ,
1 12 2 3 3 1
L | S PR LR R
Since f(x} = 12 is increasing on |0, 1}
1 1 4 4 9 9
m, =0, M = 16 my= Tg M, = T BETY M, = 16 m, = 16 M,=1
4
I(P.H= 2 m8, =m 8, + md, + myd, + mB,

r=1

1 4 9 1. 7
=i0+—t—F— | X —=—
( 16 16 16] 4 32

4
UP. H= Y, M8, = M5, + M3, + M3, + M3,

r=1

(1 4 9 ) 1 15

==L 1| x2==2
16 16 16 4 32

Example 3. If fis defined on [u, bl by fix) =k v x€ [, b] where k is constand,

then fe Rla, bl and jb f)dx=k(b-a).

Or

A constant function is R-integrable,
Sol. Let P = {u =x,, x|, x,, ......, X, = b} be any partition of [a, b]. Then for any

sub-interval v, x,] ; r=1,2, .., n, we have

M =m=k [+ fa) = k= constani]

U(Pr f) = E Mr{xr —.xr_l) = 2 k(xr _xr_l)
r=1 r=1

= kz (x, —x,_1) = k(b — @) = constant.

r=1
and L(P.H= 2 m.(x, —%,.q) = 2 klx, —x,_1)
a1 r=l
= kz (x, —x,1)} = k(b — @) = constant
r=1
’ fx) de Kt
-L fix) de = sup {LP, f) }PePla,b] =b-a)

b
L fx) dx = inl {UP, £) }Pma,b] = k(b —a)

10 Self-Instructional Material




Riemann Integration
Since

j:f(x>dx= fﬂx)dx = kb - a)

fe Rla,b] and jbf(x)dx=k(b-—a).

NOT
Example 4. If fis defined on {0, 11 by fix) =x ¥ x € [0, 1} then f € R[0, 1] and OTES

? 1
_{ fix) dx ==
0 2
1 2 -1
Sol. let P = {0,—,—,---, A ,i, y—= 1} be any partition of [0, 1]. Then for
nn n n

any sub-interval

n
-1 -1 1
We have Mr=£.mr=rT and 6r~%~rn =
n H r 1
U(P:D:ZMrﬁrZZ—— ,
r=1 r=1 non
1 1 1 nn+1) n+l
= r=—(1+2+3+ ... +y=—. =
nzé n2( ) n? 2 2n
n n n
-11 1
L(P:f)= 2 mrar :2 r ‘_=""'2_2 (r“l)
r=1 oy R e |
:iz|0+1+2+ ______ +(u+1)]=_1§._(”‘1)-”="‘1

n
1 _ oy (21 10 1)1
L_J f(x)dx_sup{up’f)}?epw,u_ nlgnw[ on ]FJEE(l E]_E
1
2

1 . n+1 1 1
: =i = | =lim =|1+=|=
and L f(x)dx mf{U(P, f)}PEm,H Jim o ] lim 2[ + n)
v 1 ! 1
Since, jg f(x) dx = L flxydz=—
1 1
e R0, 1 d ==
fe R[0,1] an Lf(x)dx >
Example 5. If fis defined on |0, a], ¢ >0 by f(x) =x° ¥V x € [0, a], then
R{0 i ¢ o
fe R ,a]mu.J-U ﬁ'x)dx=?.
9% _
Sol, Let P = {O,E,———,......,(r l)a,ﬁ, ...... ,E'i=a} be any partition of
non n n n
o . (r—Da ra
[0. a}. Then for any sub-interval I = el P r=1%1 2. ... n, we have
3.3 33
-1
M, = 4 (; .m, = % [ fix)=21%1s increasing on {0, «]]

Self-Instructional MMaterial
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Reai Analysis

NOTES

Also, 5. = %
- A
u@e f)zzMrarzz 3 ';
r=1 r=1
=Eiﬁ:ﬂ_a‘:ﬁm+n2_m+n2a4
n? o nt’ 4 nt 4
n n 3 3
r-D%a
LP =D, mb, =y, 2
r=1 r=1 f n
2 n 4 22 2 4
a 3_@a (n-D"n" (r-1)° a
= — (r=1°=—. = L—
nt ; r_z4 4 n? 4
.[g flx)de = sup {L(P’f)}PeP[U,u]
. (n-1°% ot . at 1¥¢ ot
= lim g—.—|= lim —|1-—| =—
-3 n 4 n—o 4 n 4
and fo fwrdz =it {U®DY,
‘ ] (n+1)2 (14 a4 1 2 a4
= lim . — | = lim —|1+=| =—
n-—sea n 4 e 4 mn 4
. i d _ a dx_a4
Since, IQ flx)dx = .[0 f(x} =

a

fe RI0,a] and [} flx)de=".

‘ . 2n nn
=8N X : I : :0,—R—,—, ...... ,—} el
Example 6. Let f(x})=sinx forxe [0, 2}(:11,(? lel P [{ " 2n’ 2n on be the
7
fition of | 0,—|.
pertiiion 0[[ 2]

Compute U(P, f) and L(P, [). Hence prove that fe R ’:O,E].

2
Sol. Here P= {0, -2%1-, -g%, ...... , (r ;nl)ﬂ , -2"%, ...... , % = %}
For any sub-interval 1 = I:(r ;nl)rc s %] r=12 ...,n
M, =sin %:—, m_=gin (r ;:)n

‘ -+ f(x)=sin x is increasing on [O, %]

Algo § = o T

12 Self-Instructional Material




vosino+sin (e + @) +sin{o+28)+ ... ton terms =

J-m'
0

2
f(x) dx = sup {L(P, ) }

U(I)”):ZMrar: 5111—2-;;%:%

. = . 2n . nBm
8in — 4+ sin —+... + Sin ——
2n 2n 2n

8in -3£-+n_1 a sin[—JE s
_ T 2n 2 " 2n 2 ' 2n

sin(a+n;16]sinn—ﬁ

(n + In sin =
- 4n 4 _ = Sin(n+1)n
2n sin4—ﬂ— 2.2n° 4n

n

sin

.M
gln —
4in

NN T | . T T T . =
sn [“"'—"] sin — €08 —— + ¢0s§ — sin —
4 4n T 4 4n 4 4n

T 1 [cot%+ li‘=i[cotl+ 1]

b1 1 n n i
= — t—-1|=—]cot—-1
o et e et

PePlO,n/2)

- \im L[wti_l]:ﬁm A2,
n-w dn 4n merel o S 4n
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NOTES

‘n
and -{02 f(x) dx = inf {U(P' ) }pEP[o /2]
i
= lim _’L[cotl+ 1]: lim | 48 =1
no e 4n n Aowltan & 4n
4n

Since J:mf(x) dx=|? f(x)dz=1

T /2
—| ani =1.
fe R[o, 2] md J’U fx)dx=1

Example 7. Show by an example that every bounded function need not be
R-integrable.

. 0, wh is rational
Sol. Consider a function [defined on [0, 1] by f() = { woen 118 rationa

1, when x is irrational

Clearly, f(x) is bounded in [0, tbecause 0< () €1 Y re [0, 1]

P ={0, x, x, Xy ..o, &, = 1} 18 a0y paridtion of {0. 1], then for any sub-interval
L=l ,clLr=12 ., nwe have M_=1.m =0

M=

U@, =3 M35, =

1. (I,- _xr—l) =x, Y= 1

r=1 r=1
n n
and P, H=Y, mb, = 0 -x1)=0
r=1 r=1

E f(x) dx=sup {L(P, )}

PeP|0,1] B

it
and jo F(x)dx = inf {UP, Ppepro 1} = 1
1 1
Since, j Flx) dx # j f(x) dx, f e RIO, 1.
Q o

} : 1r i cos x, if x is rational
Example 8. If [ be « function defined on [0, Z] by fix} =

sin x, if xisirrational’

thenfe R |:0. %H

_ n 2n (r-1lnm rn T T .. b4
Sol. leiP=<0,—,—,...... . IO ,—— =—>1 he any partit =1
ol. l.e { an' n in dn . 4} ¢ any partition of[{), 4]

(r= Dﬂ,ﬂ], r=1.2, ..., n, we have
in  4n

Then lor any sub-interval [

{r—m (r-1m

M =cos and m, =sin y { CoS x = sin x on [0, %]}
n
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Also, 8, = =
] 4m
7 LI (r-Dn
! P Nh= M,5. = —-cos
“ ue. n rzﬂ rer ; dn 4n
E
| = i]:cos 0+ oS ——+...... + cos (n = D
| in 4n 4n
n—- T . n (n - 1)“ n
cos| 0+ —|smn| -.— i
S | ) (Hn)_n” n ' 8
. 1 4n R
mn(z-Z;J Sln8n
1 LA (r—Dn
— - m 5? = _S-
and L, hH Z r an " an
r=1 r=1
=Jl[mn0+mnjl+ ...... +sin 2 V7
4n 4dn 4n
sm[0+-—— 1] [2_3‘_] sin U2 g4
_n 4n 2 4n - 8n 8
4dn 1 = 4n in —
sin{ —.— 8n
; (2 4n] snlsn
rf4
(x)dx = P
Ig f sup {L(P, f )}Pem.nm
F . n-Dm . =
g Sin 3 sin =
= lim |—. f 8
a—eal| 471 sin E_
| 8n
[
= lim |82 ZmnfE—JLJmnE
e 8 8n 8
| n
L LT 1
=I><2bh w—:l_,‘:‘_=]—"—_
sIn 3 Cos 4 2
and 1 =i
ant Jo f(x)dx = inf {U(P’ f}}PeP[(},nM]
(n-Dm . =
q ©0S p sin —
= lim 4_ 1L T 8
a = n 3
| sin =
[
= lim | —32_ 2cos (E—-EJ sin =
a— e Sinl 8 n 8
| 8n
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} . , I
=1x2cos —8IN— =510 —
8 8 4 2

. z x ‘ 1{
NOTES Sinee, Jg4 f(x)of:rcatj‘1 fix)de. - feR [O,Z]_

0 :
TEST YOUR KNOWLEDGE 1.1
1. Iffis defined on [0, @]: ¢ > 0 by fix) =a® ¥ x € [0, a], then f& R[0, a] and _[: flx)dx =§ .

) 1, wh is rational
2. If f(») be defined {0, 1]. as follows: f{x) = when x ?S ?a m-na . Show that f is not
-1, when x is irrational

R-integrable over [0, 1].
{Hint. For any sub-intorval 1 = [x_ x], r=1 23 .. , . we have M =1,
m,=—1].
3. Prove that Lg flx}ydx =7, where f(x) =2x + 1.
P 11
4. Prove that f(x) =3xv+ 1 is integrable on [1, 2] and L (3x +1)dx = <
3
5. Show that f(x) =2 — 3xis integrable on {1, 3] and L (2-3x)dx=-8.
4
6. Show that f(x) =% is integrable on {1. 4] and L 2% dx =21.

L whenxe@
. i = 2’
7. Let fbe defined en [0, 1] by f{x) {%‘ when z¢ R Q.

Then show that fis bounded but not. R-integrable on [0, 11.

. 1 1
tm, == M =-
[Hm m, =2, M, 2}

1.9. NECESSARY AND SUFFICIENT CONDITION FOR
INTEGRABILITY

Theorem 9. A bounded function [ is integrable on [a, b] if and only if for each
£ > 0, there exists u partition P of |a. b} such that U, [ L H<e

Proof. (The condition is necessary)

-3 B b

Let fbe integrable on [a, b] so that I F{x)dx =I fix)dx = J flx)dx
a @ a

Let € > O be given

Since Ef(x) dx = inf {U(P, f)} and I: flx) dx=sup {U(P, ) }

PePla, bl PePla,b]

therefore, there exist pariitions P) and P, of {a. b] such that

W6 Self-Inshuctional Material




b b
Ue,. ) <J f(x)dx+.;_=j f(x)dx+§- (D)
b b
and I.,(Pz,f)>Lf(x)dx—%= L f(x)dx—% (2
Let P=P,ul, i

b
then U, /) < UP,, ) <j f(x)dx+§<L{P2,f)+%+% <TAP. f)+e

[Using (1) and (2)]
=  UP H-LP NH<e

Conversely. (The condition is sufficient)
Let £ > 0 be given. Let P be a partition of {a, b] such that U(P, p —L{P. f <e
(3

’ ) b b
| Since L, p< [ fe)des [ fx) dx<UE, )
] 3 b )

v [ fede- [ Fa de< U@, ) - L@, p<e by (3)]

a a

I But € > 0 is arbitrary

J’b f(x) dx - r flx)ydc=0 = jb f(x)dx= J’b flx) dx

= [is integrable.
Theorem 10. 4 bounded function fis integrable on [o, b] if and ouly if for each
£ > 0, there corresponds a 8> 0 such that for every partition P of |a, b} with | P || <8,
| UP.H-IP fy<e
‘ Proof. (The condition is necessary)

b 3 b
Let. f be integrable on [a. b] so that L f(x)dx =J fix) dx =j flx)dx

Let € > 0 be given. By Darboux’s theorem, there exists § > 0, such thau for each
partition P of [a, b}, with [| P || < 8,

N b g b £
| UP, f < j f(x)cix+§—Lf(x}dx+§ (D)
b
and L, f) > L f(x)dx—-%= Lbf(x)dx—%
or —IJ(P,/)ﬂ——J:f(x)dx+§ {2y

]

l Adding (1) and (2), we have U(P, /) — 1.(P, f <& for cach partition P with [[ P |1 < §.

! Conversely. (The condition is sufficient)

f Let € > 0 be given. Then for cach partition P with || P || < 8 (where § is a positive
number depending on €).

UP.H-LMP, H<e (3

b b
Also, for any partition P, L(P, p < I flx)dx EJ f(x)dx s U(P, )

Riemeanit Integration

NOTES
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= [[fwds- [ fadz<u@,f-1@.f<e by 3]

But g > 0 ig arbitrary

NOTES LB Flx)dx - J: fixydx=0 = f flx)dx= _[: flx)dx

= [isintegrable.

1.10. SOME CLASSES OF BOUNDED INTEGRABLE
FUNCTIONS

A bounded function f: [er. b] — R is integrable on [a, b] if
(") [ 15 continuous on [a. b] (i} f is monotonic on [a, b}

(i7t) f has a finite numbes of points of discontinuity on (¢, b]

(ir} the set. of points of discontinuity of f on [a, b} has a (inite number of limit,
noinis,

Now we prove these assertions in the following theorems.

Theorem 11. If {- [a, ] = R is continuous on [, b], then fis integrable on {a, b].

Proof. {is continuous on closed interval [a, b)

= fis uniformly continuous on fa, b)

I3
= Foreache>0,3a8>0suchthal | &Y ~fx) ] < P el
forall . x"€ [, bland | ¥ —x" | <&
Let P={u=x, 3.2, ... , X, = b} be a partition of [¢. b] such that [P || <3.

Since fis continuous on [a. b, therefore, f1s bounded on («, bl

= [iscontinuous on I, =[x, ,;, x,] and attains its infimum m_and supermum M,
al some points ¢ and d_of [x,_,, ] sothat m_ =f(c) and M _=f{d)

Since le,—d | Slx,—x_,1=8 <3 and ¢,.d € [x_,.x]c[ab]

= ¢, d_satisfy the conditions imposed on &, »” in (1).

From (1), | fie)—fd) | <=

But I flc)—fd) =1 m —M [ =M —m,

M, —m < ~

Now, U@ H-LI.fH=Y M, -m)3,

r=i

n ¢ . n )
5, = _ o
4;(&)—&}!' 5—&28r b-a (b (;) £

r=1
= UP.H-TLP H<ewith|P)I<3
= [isintegrable on [a, b].

Note. There exist functions which are integrable bul not continuous. So continuily is a
sufficient but not neeessary eondition.
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Theorem 12. If {: [a, b] = R is monnionic on [a, b], then [is inlegrable on [a, b).
Proof. Let { be monoionically increasing on [a. b], then

S <f) Vv xe o, b
= fis bounded on [o, b] and inf f = f(a) and sup f= f(b)

Let € > O be given and P ={a=x,, x,, Xy, ...... X, = b} be a partition [, b] such that
3 . .
S « ———— forr=1.2, ... L.

TOfO-fla+l

Let m_and M_be the mlimum and supermum of fon T = [x,_,, x,].

Since f is monotonically increasing. m = f{x, _,) and M =f(x)

Now UP,N-LEP.fH= M, -m)s,

r=1

=Y (flx) - fla, ) 8,

r=1

<3 1f ) - flx, ).

r=1

£
fO)-fla+1

£ & .
S Fo @ g e

= m [fix,) — fix )

¢ - F®)=fl)
O — )+ 1 ) - fil o) -1 E<E

for each € > 0. 3 a partiiion P such that U, /) —1.(P. fy < ¢
= fis integrable on [a, b].

Similarly, when f is monotonically decreasing on [u, ], we can prove thal f is
integrable on {¢. b].

Hence, fis monotonic on [a. ] = [is integrable on [a, b).

Theorem 13. If the sei of points of discontinuity of a bounded function [ |a, b)
— R is findte, then fis integrable on [a, b].

Proof. Let ¢, ¢y, ... ¢, be the finite number of points of discontinuity of f on
[a, b] such that '

€, <6y < <e
Let.€ > 0 be given.
Enclose the poinis ¢y, ¢, ......, ¢, In p non-overlapping sub-intervals
Li=la, bl L=y by, ... I, = a, b]
= £
such that the sum of their lengths = 2 (6; ~a;) is « ———— where m and M are

2(M —m)

i=1

the infimum and supermum of fon [a, b].

Riemeann Infegration

NOTES

Self-Instructional Maierial

19




20

Real Analysis

NOTES

Since the oscillation of fin each of these sub-intervals 1s € M ~ m, iherefore, the

total contribution of these p sub-intervals 1o the vscillatory sum is
'

P

Y M -m) b —a)sM-m) . = =2

= 2M-m) 2
The (p + 1) sub-intervals in [, b] that are formed by deleting the above p

sub-intervals are

I =la, a), 1, =[b, a,], 1, =1b,. a4, ... : Ip’ = lbp_]_, ﬂ.‘u], I, '= [bp, bl.

Pl
[is confinuous on cach of these sub-iniervals, Therefore, there exists a partition
P of1’.r=1.2, ..., p+ 1such that the part of the oscillatory sum arising from cach
of these {p + 1} sub-miervals is

<5
2p+ 1)

The total coniribution of these {p + 1) sub-intervals to the oscillatory sum 1s

£ £
—_ (p+D==
ey PP
Thus, for the partition P={a, ...... cay, by , @y by, . bp_. ....... b} of [e, D],
we have
£ £
; - 1. -t ==
UP, HN-LE. H<g+g=e

Since for each € > 0, there exists a partition P of [a, b such that.
UP. NHN-LEP H<e
Hence fis integrable on fa, b,
Note. There arc integrable functions having an infinite number of peints of discontinuity
in {a, b].
Theorem 14. If the sel of points of discontinuily of a bounded function [ : [o. b]
— R has a finite number of imil poinls, then fis integrable on [a, bl

Proof. Let ¢ ¢y, . ¢, be the finile number of limit points of the set of points of
discontinuity of fon fa, I] such that¢, <c, < ... <e,.

Let £ > 0 be given.

Enclose the points ¢, ¢, ... ce,np non-overlapping sub-infervals
I, = le, by Iy =ty b)), o IP = [u,, bp] such that the sum of their lengths
E £
= 2 (b; —q;) is « ————  where m and M are the infimum and supermum of fon
=1 Z(M - m)
fa, b).

Since the oscillation of £ in each of these sub-intervals 15 € M — s, therefore, the

P
total conirtbuiion of these p sub-intervals to the oscillatory sum is E (M; —m;) (b —a;)
i=1

fepy & _E
< (M m)’2(M—m) 2
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The (p + 1) sub-intervals in [a, b] that are formed by deleting the above p
sub-intervals are
Io=le o I, =[by, bl I/ =[b,, ag). ... 0 =1b, a,l,

o =16, bl
In each of these sub-intervals, fhas only a finite number of points of discontinurty
[for otherwise the in{erval which containg an infinite number of points of discontinuity
of f will have a limit point (by Bolzano Weierestrass Theorem). Therefore, each of
these sub-intervals can be further sub-divided such that the pari of the oscillatory
sum arising {rom each of these (p + 1) sub-intervals is

£

“2p+ 1)
The tolal contribution of these (p + 1) sub-intervals (o the oscillatory sum is
£ £
< Ap+D=—.
2p+D T
Thus, for the partition P={qa, ...... L by sy by L, bp, ...... . Dol fa, b,
we have
E €
- L(P, —t—=

Since for each £ > 0, there exists a partition P of [«¢. b] such that.
UP, H-LEP. H<e
Hence f is integrable on [a, b].

1.11. RIEMANN SUM

Let fbe a real valued function defined on |e, b].
Let P={a=x, x, %, ...... , &, = b} be a partition of {g, b].

n
Let& e [x, . x], r=1,2 ... n. Then the sum z f(&,)8, is called a Riemann
r=1
sum of fon {a, b] relative to P. :
Since &, is any arbitrary point.of fx,_,, ¢ ]. therefore, corresponding to each partition

P of |a, 8], there exist infinitely many Riemann sums.

1.12. INTEGRAL AS THE LIMIT OF A SUM
(SECOND DEFINITION OF INTEGRABILITY)

A funetion £ [r. b] = R is said to be integrable on [u. b] if for each & > 0, there

exisis a § > 0 and a number 1 such that. for every partition P = {a = Ngr X, Xgr e, X,

=b}ol [a, bl with [P | <8 and § € [x_,, x| arbitrarily, | 5 fEDS, -Tl<e.
r=1

b
The number I is the Riemann integral of fon |a, b] ie, 1= I Flx) dx

Riemann Integration

NOTES
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Thus a function { is integrable on {a, b] il lim z FE)S, exists and is
e

NOTES independent. of the choice of sub-interval fx,_. x,] and of the point £ e {x, . x ]

b
This limid, if i¢ exists, is 1 = j flx) dx.

1.13. EQUIVALENCE OF THE TWO DEFINITIONS OF
RIEMANN INTEGRAL

Definition 1. A bounded function f: [, b] = R is said to be integrable on [a, b]if
its lower and upper integrals are equal and the common value of these integrals is
called the Riemann mtegral of f on e, D].

Thus Lbf(x)dx = Ef(x)dx = I:f(x) dx.

Definition 2. A function f: [¢. b] = R iz said 10 be integrable on e, b] if for each
g > (), there exists a 8> 0 and a number | such that for every partition I' = {a=x,, x, x,,
e X, = Db of [a, b] with | P | <& and €, € [x,_, x,] arbitrarily,

b
<egwherel= I flx)dx. -

-

i FE)8, -1
r=1

Definition 1 = Definition 2

Let a bounded function fbe integrable on [a, b] according to definition 1, so that

Ef (x)dx = Ef(x)dx = j:f(x)dx

Let € > 0 be given.

Then, by Darbourx’s theorem, there exists a § > 0 such tha( for every partition P

with || P || <&
b b
U(P,D<If(x)dx+ezjf(x)dx+s (1)
8 @
b ) _
and L, = J fx)de—¢e = J fix)dx—¢ (2
If m,, M_be the infimum and;upermum of fon [x, ;,x ] thenfor € € [x,_,.x] we
have
m < f€)<M, = mB sfE)S <MS,
m n n - -
= Z m8, £ E fE)S, < 2 M3, = L®P.H< E f(£,)5, <UP, f) .3
r=1 r=l r=1 r=1

From (1), (2) and (3), we have

i b
jbf(:c)dx _e<L@ N< Y fE)S, sUP, f)<j flx)dx+e
a r=1 a

Z b
= E—e<zf(§,)5,<1+£ where I=j flx)dx
r=1 e
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'

;
-

¥ res, 1)<

r=1

= fis integrable according to definition 2.

Conversely. Definition 2 = Definition 1

Let f be mtegrable on {a. b] according (o delinition 2.

We shail show that fis bounded on [a.b] and ils lower and upper integrals on
{er, b] are equal,

If possible, let. £ be not bounded on {a, b].

By definition 2, for £ = I, there exists § > 0 and a number I such that. for each
pdrtllmn Pof [a, bl with | P || < §,

<L,VE €lx, |, x]

I A1 P
= [T1—1<|Y fES, |<ITI+1
r=l
= 2 FENS T <1 TI+1VEelr,, ] )
r=1

Since fis hot bounded on {o, D], it.is not. bounded on at least one sub-interval of P,
say [y, %,

n
Taking & =« for r # m, each term of E f(€,)8, except fi€,) 8, is fixed.

r=1

m-1 n
ie., E fEDS, + E f(E,)8, is fixed.
r=1

r=m+1

Since [ is not bounded on [x,_,, x, ], we can choose & € [x,,_ ;- x,,] such that

Nl

m-1 n
Y FEIS+ Y FEIS, + &), | < 1] +1
r=1 r=m+l
ie, 2 fEEI8,.|>1T1+1 which contradicts (4).
r=1
fcannot be unbounded on any sub-interval of [, b] and hence fis bounded on
{er, B

Now, let £ > 0 be given, Then, by definitton 2, there exists 8 > 0 and a number [
such that for every partition P with || P § <8,

2 )8, -

<—V§e[\”:‘,]

3 £ g
= - 5 2 £.)8, <I+§ VEely, . a] D)

Riemen Integration

NOTES
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NOTES

Let m,, M be the infimum and supermum of fon [x,_,, x,], then there exist points

o, B.e [x,_;, 2 r} such that
flog) <m,* 2(b€~ a) and f(B)>M - 2(65—- a)

= zf(a)ﬁ <Z‘:ma+2{b a)rzn‘ia,,
and 2 £B,)8, >2 M3, - o “)2 5,

= r2:i"(oc,,)ﬁr4L{P,}°)+2(b > Ab—-a)
and g FBIS, <UE, - 2(b . (b-a)

= 21 f(e,)8, < L(P, f)+%
and 2{ £8.)8, > U, f)—% : 6

From (3) and (6). taking £ = o_and §,, we have.

{
1__<2 f(E)8, <L(P, f)+—
r=1

and T+ %>§‘{ fE,)8, > UP, f)—%

= [—e<L{ fH and 1+e> U, M for every partition P with (| P | < 8.

b b
But (P, nsj f(x}dxsj F(x) dx < UP, f)
5 5
l~£<j f(x)dxs_[ flx)de<l+e

= ‘jbf(x)dx—rf(x)dx <@+e)-(-g=2

Since &> 0 is arbitrary.

Ef(xm -[fwde=0 = Eﬂx} ax= [ foo dx

= fis integrable according (o definition I

Note. From the above theorem, we conclude that [ is integrable on {a. b] if IPII 0

i b i
2 f(E,)8, exisls, where £ € [x,_, x| and L flx)dx = ”Hln_"l,o Z{ f(E, 38,
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ILLUSTRATIVE EXAMPLES

Example 1. From definition, prove that
5

. 2 ) R . » I 2 N _2_
N L flx)dx =6 where f{x) = 2r + 3 (1) L (2x° -3x+5}dx = A

Sol. () Since f(x) = 2x + 3 is bounded and continuous on [1, 2).
[is integrable on [1. 2].

Constder a partition P={t =x,, x, x,, ..., x, =2} of 1, 2] dividing i1 inio n equal

sub-intervals, each of length

b-a

i 1
=——=— sothat IP==—=0asn—c
n n

1
and § =—,r=1,2 ... n.
n

,..
1l
+

Also

(laking £ =x)

1l

[[rrdx = tim Z:, F&€)5, = lim 21 Fx)5,

PI=0
=

o (5 2r
,}1,“21(;; —} ,!Lm[;““— ]

= lim [5+-?2_.”(”+1}]= lim [5+’”l]= lim (6+1}=0,
e n 2 71y oo n ft—oa n

2x% — 3x + 5 is bounded and continuous on [0, 1], theredore, fis

{71) Since f(x) =
integrable on [0, 1]. )
Consider a partition P={0= Yoo Xy, Xy, e, X, = 13 of {0, 1] dividing it into 1 equal

sub-intervals, each of length

b~ 0 1
GZ—-=— sothal [Pl = 0asn— o,
n n n
1
Also, .1',,=0+£ z and §=—,r=1,2 ... _.n
n n n’

1 . . -
[, frdx = " 1;1“13021 fE)8, = lim E f(x,).8, (taking & = 1)

r=1

I
L -
l-
;8
.
ibv3-
‘H\
-~
B~
o —
3 [

2r? 3 5
R
Fi 1 n i

Il
A
ll—'

, B
D=
| p— |
]
o
2~
S
[
I
o]
—_
Bl
S
+
o
| I |
=]
=
1l
1=
-
AN

o 2 nln+1(2n+1) 3 nr+l) 5
=i —_ E—— +—.n
| nd 6 n2 2 n
. 1fn+1Y(2r+1Y 3{n+1
= lim | = -—= +5

ns=|3y n " 2\ n

Riemenr hitegration
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NOTES
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lim [l(1+l)(2+i)—-3—(1+1]+5]
noe| 3 n n}) 2 n

Lo Smaese 2
5(1)(2)—2(1)+0— 8

Il

!
Example 2. Fealuate j; fix)dx, where f{x) =] x |.

-x, wh <0
Sol. Since feo=1 x| :{ x, when x

x, when x>0

[ is bounded and continuous on [~ 1, 1]
= fis inlegrable on [- 1, 1}

Consider a partition P={-1=x,, x|, ...... = 0x X g s Xy, = ol 1 1]
e ) b=a 1--1 1

dividing it into 2n equal sub-intervals, each of length = = — go that
2n 2n n

[Pl—0asn — e,

1
Also, v=—1+ L and 8, =—.r=12 ... n
n n
i 2n 2n
dx = li § =1 .8 aking & =x
J s = lim 3, £C)8, = lim 3, fz)-d, (taking £, = 1)

ﬁ_’i i flx )8, + i f(x,)B,j{

L r=1 gy or=a+l
= lim i f( 1+ "] E 22 f(—1+£} 1
il n})n & n) n
a 2n
ry 1 ry 1
= lim -(—1+—).—+ 2 (—1 —) —:l
o [Z} n n r=n+l n n
[ r 2n
. 1 r 1 r
- [$ () 35 )
(1 MR n
[ 1 1 & 1 1 &
=1 —.n-—= +p-—1}. —
nl-l;nw n " n2 E g ( n) n+?12 _E r]
B r=1 r=n+l
= lim __1_2_.n(n+1) iz{(n+1)+(n+2}+ +2n}]
noe| 0 2
1fn+1 1 »n
_311_1&[-.5[ ) 7 2(n+1+2n)]

[ inan AP.§, = % (a + l)}




: 1 1 1
u_w]i-a(li- ;]+%(3n+ 1)}

. 1( 1] 1( 1] 1 3
= =1+ =j+=|(3+—||=z=—-=+- =L
-3l 2 n) 2 n 2 2

2
Example 3. Fvaluaie _[_1 f(x)dx, where fix)= | x |.

Sol. Since fivy=1 x| ={

—-x,whenx <0
x,when x>0

f1s bounded and eontinuous on |- 1, 2]

= [is infegrable on [~ 1, Z]

Consider a partition P = {— 1 =xp. x, %, ..., 2, = 0. %, 1, ¥,

|- 1, 2] dividing it into 3n equal sub-intervals, each of length mLgs 2-CD _1

that i Pll= 0asn — e

Also. X

lim
1P o

H

= lim
n—oa

lim
n— e

lim

H o

L

hm

-3

lim
A—ma

f

= lim

n— e

= lim
n— =

= lim
=

H

. Xy, = 2} of

1
and &, =—,r=1,2 ..., 3n
n

3n n
. 21 fE)S, = ﬂli_z)nmzl f(x,)8,

[ i 3n
Y Flx)8, + Yy f(x,)a,]
r=1 r=n+l

n 3n
E —(-1+£].l+ (—1+—r—].l
r=1 n;jn r=n+l n;jn
& 1 r 3 1 r
-—— | —_—t —
; (n an rgrl( n n2)]
l n—~1—2n: r+(—i] 2n+—1— i r
n nz r=1 n n2 r=n+l
1—i2.”(’”1)—2+i2{(n+1)+(n+2)+...+3n}]
n n

[ 1(n+1) 1 2n
-1-= i +1+3
2( m ] =3 (n n)]

+

1
2

o)

3n

(taking & =)

q=

5
-
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¥
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Real Analysis

NOTES

. a . .
Example 4. Show: that J sin x dx =1 —-cos a, where « is a fixed real number.
. 0

Sol. Since f(x) = sin xis bounded and continuous on [0, ¢, therefore, fis integrable
on [0, a}.

Consider a partition P={0=x,, 8. x,, ....... 8, = a} of {0, o] dividing it into n equal

. a- a
sub-intervals, each of length = %0 that || Pll= 0asn — e

Also, :.:,,=O+E=E and & = E r=1.2, ... , M.
n n n’
a = 5 = & S TslLd = 5
J’O flx)dx |P1’1|1n—1>0§ FE,) llm E flx.)8, (laking & =x)
ra S a ra
= =l — sin —
. oal . a ., 2a . na
= lim —l:sm—+sm—+ ...... +sm—]
noen n n n
sin(a+n_1 E]sin(E E'-)
= lim & n 2 n 2 ' n
Tanen sin —
2n
sin(ow'1'1—;—1[3}-*&1'1&-"2E
- sin o + sin (o + B) + sin (o + 2B) +...... ton terms =
sin-(i
2
a
= lim 2.2 .sini(-z-Jrn_lJ.sinE
H—3ea Sll‘l-i 2\n n 2
2n
a
= lim 2.—2% .sinfi(h-l}sinE
mn—3 ™ Si i 2 n 2 4
2n
o a asn—)m,9=i~—>0
=2 x ] Xsgin — X% gin — 2n
2 2 and lim — =1
8-20sin 0

=2sin? L =] —cosa.
2
nf2
Example 5. Prove that J cosxdy =1.
0

Sol. Since f{x) = cos x is bounded and continuous on [0, E] , therefore. {13 intégrable
2

18 Self-lnstructional Material




Consider a partition P = {0 = Xgy X1y Xgyeeones Xy _E} of [0 2] dividing it. into n

n
Lo
J( equal sub-intervals, each of length 2 =2—ﬂ— sothat | P— Dasn — e
| n I3
moorn n
Als =+ ——=— = =1,2, ... 1.
Also, x, =0 o = 9n and §, = o r=1, n

w2

e de = Jim 21 F&8, = lim Z; f(z)5,  (aking& =x)

It

i

i rn
Ii li — —
n}f)nw E (2n} 2n nlfnu ; 2n cos 2n

: b4 s 2n nn
im —jcos— +cOoS — +...... +Cos —
=« 2n 2n 2n 2n

f
=
g
|

| = lim 2. 42 .cosi(-%+n_1]sin%

Ao . W 4

n o . n

n
= lim 2. 4% .cos£[1+l)sin
4 n

w
=1
|

=2><1><cos£><sin£=sin-—=l.
4 4
Example 6. Show: that the greatest integer function f(x) = [x] is infegrable on.

4
[0, 4] and -L [xldx =86.

Owhen0<x <1
lwhenl<x<2
2when2<x<3
E Swhen3<x<4

Sol. fy=[xlon [0, 4] = flvy=

, = {is bounded and has only four points of finite discontinuity at. 1, 2. 3. 4.

integrable on [0, 4} and

I: [x]dx =J: [x]dx + f[x]dx +J;3 [x]dx +j: (x]dx

‘ Since the points of discontinuity of fon [0, 4] are finite in number, t.h(,r(.fure, fis
i

Riemermy Integration
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Real Analysis 1 2 ‘.8 4
= [ odz+| 1dx+J 2dx+ [ 3dx
o 1 2 3

=0+2-D+2B3-2)+3d4-3=0.

NOTES . ] _ 0.if xisaninteger
Example 7. Show that the function [ defiuted by flx) = { 1, otherwise s
integrable on {0, m], m being a positive inleger.
Sol. 1) = { 0, .ifx=0,1,2,......,m
Lifr—-1l<x<r, r=0,2,.... ,m
= fis bounded and has oniy m + 1 points of finite discontinuity at 0, 1, 2, ..., m.

Since the points of diseontinuity of fon {0, m] are finite in number, therelove. fis
integrable on 10, m].

Note. [ ft)de = [} fdds+ [[ fx)dx+.n+ [ flx)dx

= [ vdes [l 1des o [ v

=(1-M+@=-1)+..... +m=-(m=-1N=1+1+... +1=m.
Example 8. Shotw that the function f defined by

1
x)=——, when
ft: pe
fla)=0

is integrable on 10, 1), although it has an infinite number of points of discontinuily.

1 -
2;“.}‘ (xs"?") (”'—0, I, 2, ,,“_‘)

Also evaluate ‘L: fix) dx.

30

only one limit point 0.

Self-Instructional Material

i
Sol. fix)y=1, when 2 <i<1
1 1 1
:E’ When—§5<xS§
i 1
=57 vvh(:nzi3 ~<.r£-2—2~
= 11, \\-‘hen—L-ch 1
2“- 2n. 2n—1
=}, whena=0
Thus we notice that f is bounded and continuous on [0, 1] except at the points
1
", l, e —-L e
2 2° 98
. . : N . : 11 1 .
The set of points of disconiinuity of fon [0, 1] is 10, 3 REIgE which has




Sinee the set of points of discontinuity of fon [0, 1] has a finite number of limit Rienann Integration

poings, (herefore, fis integrable on [0, 1],
!
1
] Now flx)dx
II b NOTES
i

1/2

1 2 Th o
= [0, feds+ [ f@yds + [0 fe)dx 4ot [0 flx)dx

vz
_q vz 1 L | vl g
Juzldx+ju22 de+Ju23 Fdx+ ...... +L2" 5T dx
]J,_l_(l_}_],ri(i_i}, 4_.1_[L_L]
2 2 22 22 22 23 """ 21’:—1 2!’!—1 2n

1 1{1 1 1
7)) e

I
B e B

2 4. 2% 3 4"
Proceeding to the limit when n — . we get J.lf{x) dx = %
0
i —I— <X s !
Example 9. Show that « function fdefined on [0, 1| by f(x)={n n+1 " n’
0,x=0

1 2
b =12 ... Jis wlegrable on [0, 1. Also show that L fix) dx =.%_— 1.

Sol, fXx=1, when :?1- <x<]

1
, when 3 <y g

W= b=
[CY SRR . T

, when - <x<
4

1
=~  when <x S
n n+1 n
=0, whenax=290Q
Thus we notice that fis bounded and eontinuous on [0, 1] except at the points
11
0.1, = =, ...
28
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NOTES

The set. of points of discontinuity of fon [0, 1} is {0, 1,%,%, ...... ] which has only
otie limit. point 0.

Sinee the set of points of discontinuity of fon [0, 1] has a finite number of limit
points, therefore, fis integrable on [0. 1].

Now _[1

Vin+1

, flx)dx

=L e [ fodes [0 fayds bk [oh flx)dx

1/4 Lin+1)
1 Y2 /3 ¥
=J 1dx+j ldx+‘[ laf.1c+ ...... +J " idx
12 v3 2 Vs 3 Vn+ln
( 1) 1(1 1) 1(1 1} 11 1
=ll-=|4+=|=-=j+=|=——|[+....-. + ===
2 212 3 33 4 ntn n+l

1 1 1 1 1 1 1 1
Stogtgtet—g || St st =+t
1 2¢ 3 n 2 23 34 nin+1)

1 2
Proceeding 1o the limst as 1~ e, we got I flx)dx =% -1.
0

A i
Example 10. Show that the function [ defined on [0, 1} as f(x}) = 2rx if 57

I .. 1 2
<y < Pl e N is titegrable over [0, 1T and -[ fix) dx = %
0

Sol. fix) = 2x, when % <x<l

=4x, when l <x< l
3 2

= fx. when l <y < _1_
4 3

=2(n — 1) x. when 1 <y <
n n-1

Thus we notice that f is bounded and continuous on [0, 1] except at the

yomts (4, 1. — l
I . g g

Self-Tustrnctional Material




A e

} which has only

b-'lli—-

The set of points of discontinuity of fon [0, 1] is {0, 1,%,

onc limit. point Q.
Since the sot. of points of discontinuity of fon [0, 1] has a finite number of limic
points, therefore, fis infegrable on [0, 1).

Now [ flx)dx

1 12 13 Vr-1
= qu f(x)dx+'|'”3 flx)dx + .[134 fx)dx +..... .[ flx)dx

n—1 n-1

Jl/r orr dx Z |: ] ,
= rx
& Jyrn WD r2 (r+ 1)2

rel r=1
B ias WU < b S S Partial Fract
= & rir+ 12 207 T4l r1)° (Partial Fractions)
_n—l (l_ 1 ]+n—1 1
- S\r r+l) A s 12

1]
~ oY
[u—y
|
l=
o
+

+ —
n 1> 22 3% n? 6
!
_x_ 1
6 n
: o 1 n?
Proceeding to the limit. as 1 - o, we get. L flx)dx= e
2 2
Example 11. Show: that Iim i+ da T+ n. T+ +-1— =£A
noe . (n+1)° (n+2) 8n| &

2 2
Sol. lim |=+—2 7+ n Tt t—
a—=e=ln (n+1)° (n+2) 8n

2 n2 n2 n2
lim T+ =+ g F o E Sl S—
noml(n+0P® R+1® +D) (n+n)®

n nz n %
= lim = lim
n—)wg (n+r)3 nl—eug [1+£]3
n
1 dx
= L TP [repla01ng by x and bydx]

Riemann hitegration

NOTES
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. n n n 1 T
Example 12. Show that: lim + + +orinns t o [ =
P n—»w[n" +17 nfe2? nf4 3t 2n] 4
n n n 1
1. lim + + +on +—
So rt—>-'=-(n2+12 n?+2% n®+3? 2n]
= lim o+ 2” 5+ 2n2+ ...... + 2n2
aowln“+1%2 n*+2 n“+3 n“+n
1
n
= lim Z 7 = lim 2 #2
i"_““iml n-o+r n_)”r=1 1+[i}
n
1
=I dx [replacingibyxand-—l—by dx]
0 1+ %% n n
1 1
= [tan_1 x] =fan~! 1 —tan~'0=—.
()} 4
Example 13. Show that lim i[szJre,£+s~nEn2—11+ ...... + sin iﬂ—]zg
n— e N n n n T
Sol. lim —1-[sin£+sin2—n+ ...... + sin n—ﬂ]= lim Z lsinf-11
A-s=n n n n noeidon n
1 . r 1
:J' sin wx dx replacing — by x and — by dx
o n n
1
&_M] —_Lleiop=2
LI

In 4
Example 14. Prove that lim [(1 + i} (1 + -2-] ...... [I + ﬂ]] = 5[2] .
= n n n e

in
Sol. Let .= lim |I1+ l](1+-2-) ...... [1+ 4_n]]
n=jea n n n

log I.= lim llilog(1+ —]—')+log[1+£]+ ...... +log(1+~4—n—]j|
n—=ca Il T n n

4n

1 r 4
i - 1 — = 1
nh_r)nmn E og(1+ n) L log(1+x)dx

r=1

o
I

(replacing z by x and 1 by alx)
n n
[Naote that the value of r/in1s O and 4 {or the first and last terms as i — o]

=[log 1 +0) 2] -I: 1;

Lx dx

.o 1 N 4
= 4 log Lm—_[g(l-—l_l_x}dx =4 log :.:—[;:—lc;g(l«r:c)]0

5
=4iog6—{4—logf]=5[og5—4=lc;g55—luge‘=logi§
e




e e e ——

Riemann hitegration

|

1.14. LINEARITY PROPERTIES OF RIEMANN INTEGRAL

b
Theorem 15. If f € Rla, b] and I: € R, then kf ¢ Rla. b) and L (kf) () dx NOTES

b
=k L flx) dx.

Proof., If & = (), then theorem is abvious. So, let k 2 0.

B b ) b
Since fe Rla. b, j fx) dx :j flxydx = j fx) dx

Lei P={a=ux,x, 1, ... x, = b} be a partition of a, b].

Let-m . M, be the infimum and supermum of fon [ = e, ;. x]
fis bounded on {u, b] = kf1is bounded on [a, h).

Lel e/, M " be the infimum and supermum of fon 1, = [x,_,, x,].

Case 1. Let k> 0.

Then m/ =hkm_and M'= kM
n n n
L@ k=Y, m, 8, =Y (km,)5, =k Y m,8, = kAP, f)
r=1 r=1 r=l1
M n l
and UP, k=Y, M, 78, =) (M,)5, =k Y M5, =kUP, f)
r=1 r=1 1 r=1

[0 Grxwrax

sup {L(P, kf) }PeP{a,b] = sup {kL(P’ H }PEP[a,b]

1

I sup {L(P, £} =k j:f(x)dx= k J':f(x) dx

PePla,b)

Also [ (f)(x)dx

inf (UP,k)} =it {{URN]

= kinf {UP, )} =k ff(x) dx =k f f(x)dx

PePla,b]

[, #ndx = [* tpcode =k faax

b )
Henee Ife Rla, b] and -[ (k) (x)dx =k J f(x) dx.
Case. 2. Let k < 0.
Then m/=hkM_ and M =km,
I n 1]
L. kY=Y m '8, =Y (M3, =k Y M3, =kUP, /)
r=1 r=1 r=1
] n n
and U@.kH= D M5, =Y, &m)8, =1 Y m,5, = k1P,
r=1 r=1 r=1
¢

Self-Insnuctional Aaterial
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Self-luseructional Material

.[: (kf}x)dx = sup {L(P’ kf)}Pel"‘[a.bl = sup {kU(P’ H }P Pla,b}

= kinf {U(P, f)} )= kff(x)dx: k Lbf(x)dx

PePla.b

Also E’ (kf)x)dx = inf {U(P, kf) A inf{kL(P, f)}

a,b] PePla,b)

=k sup {L{P, f)} =k J.:f(x) dx=~k I:f(x) dx

PePla,b]

b b b
j (kf Xx) dx :j (kf}(x)dx=kj' F(x) dx
b &
Hence kfe Rja, b] and _[ (kf)(x)d.x:kj f(x) dx.

(Second Proof)

Since fis integrable on {a, ], therefore, given € > 0, there exists a partition

P = {0 =3, 3, % o, = b of [0, b] such that UP, f=LP.p< .

Let m, M, be the infimum and supermum of fon I, = |x,_, x 1. fis bounded on

= kfisbounded on [a. b].
Let m/, M.” be the infimum and supermum of kf on {, = fx _,, x ].
,_flm, iR>00 kM, i k>0
" T eM, ifk<0 M0 N T lkm, ifk<0
RLPP, f) ifk>0 EUP, f) if k>0
M = ) : P kH=
= L. k) {kU(P, f itk<o @nd UP.&D {kL(P, £) ifk<0

_ | MUEP,H-LP,f) ifk>0
= U k) -1 k= {_ RUGP, )~ IKP, £)) if k<0

=1kl UPNH=-TP. M=<e Ifrom (1]
= kfis integrable on la. b].

Also Ij (Bf Xx)dx = Ij (kf ) x)dx [~ kfis integrable]
inf {U(P, f) } ifE>0
=3 {' = PEP{Q,b]
in {U(P, kf )}PEP[a,b] inf {kL(P, f)}Pepl , k<O

b
) {kinf (U, lppr, i k>0 |k ] F@dx ifk>0
= 01 =3 ¢
k sup {L(P, )} p, 5 if £ <O kJ’ Fode ifh<0
g

b
=1 J f(x) dx, since fis integrable.




jb Flx)dx |< J'b 1 1(x) dx.

Thecrem 16. If fc Rla. b], then | f| € Bla, bl and

Proof. Since f € Rlu, b]. fis bounded on [a, b
there exists a positive number & such that
[f | <k V xefa, bl = | flw<hk V xela b
= | /1 is bounded on [a, b].
Sinee f1s integrable on la, b], therefore, given e > 0, there exisis a partition
P={a=x, .1, ..., x, = b} of [a. b] such that UP. ) - L(P, f) <¢
()
Now, fet. m , M_be the infimum and supermum of fon1 =[x, x ] and m/, M be
the nfimum and supermumof | f | on 1.
Foralte, e T, we have
[T ft@=-1/1®I=11f -t
<A —f®) | <M —m,

M '—m <M -m_.r=12 ....n

U@, | f1 =L@ | f= 3 M =m )5 <), M -m)3,
r=1 r=1

=UP, H-LEP, H<e [from (1)]
1 £ € Ria. b]
Since Ll =max{f, -/
. <1yl =111} _
and <l =111 } vV axe la, b
= [0 fydx < [0 1f Gy @)
and J:’ - flx)dx < Ij [Fl{x)dx or _be(x)dxgr|f|(x)dx NG
Combining (2) and (3). we have jbf(x)dx stlfI(x) dx.

Remark. The canverse of this theorem is not true. Thus, if | f | iz integrable on [a. b,
then f need not be integrable on [u, b).
1, if xis rational

-1, if xisirrational

Consider a function §: Ja, bl = R deflined as  f(x) = {

Let I'={a=x, x,, x,, ......, x, = b} be any partition of [a. b].
Let. m, and M _be the infimum and supermum of fon I =[x,_,. x]. then
m=-1 and M =1,r=12 ..., 1«
L(PJ)=Z ms, =) -8, =-(b-ay=a~b
r=1 r=1
ue, H=3, M3, =Y 8 =b-a
r=1 r=1

Self-tnstrueiional Material
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b
L f(x) dx =sup {LP, ) }PEPIa y = Sup @by =a—b

[r@az=intfue,p},  =inf{-a}=b-a

_ b b
Since I f(x)dx:j flxydx, e Rla, b]

Bug [ Fl =1/ ]1=1V¥ xe fa,b]
Since | | is a constant. funciion, | f| € Rfa, b].
Theorem 17.Jff, g€ Rla. b| then [+ g€ Rlu, b} and

f’ (f +&)(x)dx = j” flx)dx + j: glx)d.

Proof. f and g, being integrable, arce bounded on [e, b].
= [+ gis hounded on la, b].

Let P={a=x,x, ..., x,=b}beapardtion of {a, b,
Let ne,/, M " be the infimum and supermum of fon T,
m,”, M,” be the infimum and supermum of g on ], and
m,. M_be the infimum and supermum of f+ gon [

Now M M”are supermaof f, gonl

= fOsM gvysM Vel
= . f+g@x)s M +M” v yel
= f+2) (<M +M” vaxel

= M+ M ”is an upper bound of f+gon,
Bui M, is the least upper bound of f+ gon I .
M <M’+M7onl.r=12...n

] LY
UP, f+oy= Y, M, <3 M, +M,")3,
r=1 r=l

- - 2 M,’S, + Z M,“8, = UP, )+ U®, g

rel r=1
= U f+ =P, p+UE. o
Simularly, we can prove that
L, [+ g 24P, )+ LP, 8
wP, f+B=U@. [+ -LP, [+ 9
S[UEP, H+UE, o] -ILE. )+ LEP. I
=[0@, H - LEC HI +[UF, O ~LEP, D=0, N +aol, g ..()
Led g > () be given.

Since fand g are integrable on {a, bf. there exist partitions P, and P, of [¢, b] such

£ £
w®, N < £y and  off,, g < 2




Let P'=P U, then (P ) <oP, )< 2 )

. 3
and o, @) <w(P,. g < 3 L3
Using (1), we have o f+g) <o, H+ o, &) < %*P% = thy (2) and (3)]

= [+ gis inlegrable on {a, b].
Now, let. £ > O be given. Then there exist partitions P, and P, of [, b] such thai.

jbf(x)dx~£ = bf( )dx——a- <L{P..H
o 2~ ,L x g o
b e b £
and L g(x)dx*g = Lg(x)dx-a <L, g
W P=P,UP, then LPLNSLP, Hand LP,. gy < LD,
jb flx)dx +ji’ gx)dx —¢ < L(P,, ) + L(P,, )
<L, )+ LP. ) <LP, [+ g)
b b
<[Frpwas=[(f+o)@de
(- f+gisintegrable)
. . . b b b
Since  €> 0is arbitrary, I f(x)dx+j g(x)dxéj (f + 2)(x) dx . {4)
Replacing by — f and g by — g, we have from (4),

_[: — flx)dx + _[: —glx)dx < j: (f+ @) dx

b b ]
= [reovdes [ gwdx [ (F+ @ de ()
From (4) and (5), we get

b b b
[r+eywax= [[rade+ [gwax
Cor. 1. /ff, g€ Rla, b), then - g e Ria, b

b 5 b
ened j (f —g¥x)dx -—-I flx)dx —j g(x)dx.
Cor.2./ff, g€ Rla. b) und o, Be R, then of + Bg € Rla, b].
Proof. fe Rla,bl,ae R = of € Ria, b]
g€ Rla.b],pe R = fge Rlu, b

ofe Rla. bl. Bg e Rle, b] = of +Bg e Rla, b]

b b b & b
Also j (of +Be)(x) dx = j (of ) (x)dx + j Bg)x)dx =« j f(x)dx +B j 2(x) dx.

Theorem 18. If fe€ R |a, b] then € R [a. b].
Proof. fe Rla,b] = | [ e Ria, b
[isboundedon [, b] = | flisboundedon[a,b] = | f]2=fisbounded
on e, b)
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Real Anafysis Sinee f2=| /|2, without loss of generality, we can assume that f> 0.
Letsup fin {a, b] = M.
Let g > O be given.
NOTES f€ Rla.b] = ihere exists a partition P of [a, b] suclh that
€
2M +1
where m . M _are the infimum and supermum of fon I

In Iil'" illf (F) = {i'ﬂf 02 = m r2 ;.lnd sup 02) = (Sup f)z - 1\,1,‘2

£

U@ . p-ip. p< oM +1

or Z (M, -m,)8, < e
r=1

U, 5 -LE, A=, M2-mD8,

r=l

=Y M, +m)M, —m,)8, <Y (M+MM, ~m)3,

=1 r=1
n
E
=M, (M, -m,)8, <2M. by ()]
et oM +1

<E
= for each £> 0, we can find a partition P of [a, b} such that U(P, ) — L(P, f4 <e¢
[? is integrable on fa, b].
Theorem 19. If{, g € Rla, b] then fg € Ria. D].
Proof. Since f, g € R[u, b], f and g are bounded on |«, b]
=3h>0suchthat | fx) | <kand | gl) | <k ¥V xe [a, b]
= | AW =1 A)g@ | =1/ 1 | gy i<k? ¥ xe |a, b]
= fgis bounded on [a, b].

Now fe Rla, ] = for a given £ > 0. there exists a partition P, of [¢, b] such
that

3
UP,H-1LP.H< %
Also g€ Rlu, b] = for a given € > 0. there exists a partition P, of [a, b] such
that
3
UP,. 8 - LP,. 8) < ok
LetP=7 0UP,, then

. E
U(P: I) - L(I), {) - U(pls I) - L(Pl,- f) < E};

and U@, 9) - 1P, &) <UP, 2) (P, ) < 2—‘1 ()
Let.m, M_ m/ M’ and m” M be the infimum and supermum of fg, fand g
respeclively on [ =[x, _,, x|
Forallo. Be [, we have
| (BB —Ue) | =1 f(Ba® - /(o)g@) |
=1 fiB) 8B — floog(B) + fio) s(B) - f(@) g(0) |
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= | gBYP) — fo)) + f(0) ) —g(m) |
SI1gB B -l i+1/e) | g(B) —glo |
SEM —m))y+ kM —m")

= M wm kM ~m}+EM"—m")

n 1] n
= Y M, -m)8, <k Y, M, —m, 08, 4k Y (M, —m, )3,

r=1 =l r=1
= U@ fg)- L, @ < kUE, H 1PN+ k[UE, g) - L, 9]

£ 3
k. k.—= (1
<l Py 55 =€ iby (D]

Thus for each £ > 0, we can find a partition P of {a. b] such that

UP, fo)-L{P, fg) <e
fe e Rla, b).

{(Second Proof)

1
We may write [ = 1 [(F+ 27 - (f -2

Now fge Rla,b] = [f+g [—ge Rla, b] by Theorem 3 and Cor. 1)

= (+ 5?2 ((—2*%€ Rla. by Theorem 4)

= (+8)*~(f-g%€e Rla, b] by Theorem 3, Cor. 1)
1 .

=7 [(/+gy - —8le Rla. b) (hy Theorem 1)

= fg € Rla, b]. .

Remark. Even though /, g are not integrable on [a, b), fg¢ may be integrable on ja. b).
Consider f: [¢. b] > R and g: [¢, b] — R defined by
0) X € Q I-, X e Q
flxy =
1 xeR-Q 0 xeR-Q
Then f. g are not integrable on [«, b], but

and g(x)= {

{2 = f(Heg() =0 ¥ xe [a, b] is a conslant function.
fg € Rla, b).
Theorem 20. If f € Rla, b], und there exists t.> 0 such that

[ /) |20 Ve ab], then %eR[a,b].

Proof. Since | Ay 121 Yaxe la, bl
1 41 Vye o b),1>0
)l S ¢ ¥E oL
1
= |% S? VYye|la, bl = {%(x) S?l ¥ xe€la bl

= 1 is bounded on [a, b].

Since f& Rla, b, for a given £ > 0, there exists a partition P of [a, b] such that

U@ N-1P. H=<e (1)
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F
Let m,”, M be the infimum and supermum of fon [, and m , M, be the infimum

1
and supermum of — on I

For all a. f € I, we have
1

‘(f]“” [ ] f(ﬂ) @

M —m < —2 (M — )}

LCR (1P -m,’
|f(a)||f(13)| :2

- E(M m}5< E(M'—m

r=1 r=1

- U(P,%]—I.‘(P,;] = [U®, - L, f)|<— Pe=¢ by (1)]

for each € > 0, we can find a partition P of [a, b] such that
1 1 1
U[P:FJ_L[P’ 7] <E = ? & Ria, b].
Theorem 21. If f, g € Rla. b] and there exists L > 0 such that

le@ 12t V xe€ |ab] then f e Kla, b].
g
Proof. f. g€ Rle,b] = [, g are bounded on [e, 0],

= there exists a positive real number k such that

{1 <k, gy isk Vv xelabl
(L}(x) | f= |k
g
= f is bounded on |er, b].
4

glx)| ¢t
Since f, g arc integrable on fa, b]. for a given £> 0, there exist parlitions P and P,
of [a, b] such that

¥ ve [m bl

U, ) - L(P,, f)4‘ £ .
and U(P,y, g)— L(P,, &) 4% D
Lel P =P,.uP, be a refinement of P, and P, then using (1), we have
UP, /)-L(P, /)< U(P, f) - L{P1,f)< tzg
and U(P, g) - L(P, £) < U(P;, 8) - L(P,, &) < ‘—225 ~(2)

Let.m,”, M be the infimum and supermum of fon 1, m.”, M “be the infimum and
supermum of g on I_and m . M, be the infimum and supermum of figon T,
Forallo, B e 1, we have
B flw
(L] ® —(ﬁ] (o |=| L1
g g

- _| gtof®) - Flerg ()
gpy glo)

gla)g(B)
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I

_ 1 ga)f(B) - flo)] - flo)[g(B) — glen)]t
[ glo) H g(B}

i g(o:) | . ' f((x) [ _ B
S Tgong@1 (B fe i+ oS | & -8 |

< t_};.. (]\..Ir' — m_r') + t% (l\_lrﬂ _ f”'rfl)

M —m < -%(M,’ -m,')+i2(M,.”—m,”)
¢ t

Y k 3 ’ 4+ k c " e
- > (M,-mga,szz—r: M,"~m, )6r+f_2,z.} M,” = m,")3,
f AP’ k
=  UlP,=|-L{P,= |2 [UP,f)-LP NI+~ [UP,g) - LP,g)
g g) ¢ t
k :25 B oi%
_— —_— = r f5)
< 32 " 2 2 2k £ [h\ (-)]
fe Rla, b).
g

Theorem 22./ffe Rla, bland a<c<b. then fe Ria, e], fe Rle, bl and

Eﬂﬂﬁ=fﬂﬂ&+fﬂma.

Proof. fe Rlu. b] = fis bounded on [a, b].

= [is bounded on [a. ¢] and [¢, b]. (v u<e<h

Since f € Rla, b], for a given € > 0, there exists a partifion P of [a, b] such thal
UP. H-LE H<s

Lei P =P u{c), then

LO.H<LI H<UFP, HUP. H

= U, H=-LE,N<UP H-LE, H<e (1)

Let P, P, denote the set of points of P’ on [a. ¢}, [e, b] respectively, then P, P, are
partilions on [u ¢} and [e, ] respectively and P' = PiuP,

UP, N=U@,N+U@P, H and (. pH= LPLA+LD, D
= (U N-LEPL.N+[UE, H-LP, N =UP, p-LE, H<e [y ()]
Since each of {U®,, H-LE,. H] and [U(Pz fy = L(P,, Hlis non-negative, each of

these is less than €
ie., UP,.H-1P.H<e and U, N -LEFP, N<e
for partitions P, P, of [g, ¢] and [c. b] respectively,

Hence fe Rla, ] and fe Re, b]

Now U, f=UF.H+UPF, N
= inl U, fh=inf U, ) + inf UP,, )
B : 5
= jﬁnmzjﬂﬂ¢+jﬂﬂﬁ
b
- rf(dex=rf(dex+Lf(x)dx
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Since fe Rla. b]. fe Ria, ¢} and f& Rle, b].

Cor. If f is integrable on [a, b] then fis integrable on any sub-interval of [a. b].
Theorem 23. Jf f€ R[a. ¢]. fe Rlc. bl and a <c¢ < b then fe Ria. b).

Proof. Since fe Rle.¢] and [fe Rle, bl

given £ > 0, there exist partitions P, and P, of fa, ¢] and [c, b] respectively

such that

U, f)—L(Pl,f)<§
U(Pg,f)—L(Pg,fk% e

If P =P, uP, then I’ is a partition of [a, b.

Also U®, ) -L@®, p
= [UP,, H +UP, N - [L(P,, N+ L(P,y, N]
= [UP . N = LI, N1+ ([BEP, N =L, NI

E . E _ } .
<gtg=E [by (D}

= [ e Rfa, bl

b
Theorem 24. Iffe Rle. bland f(\) 20 ¥ x € [a, b then J flx)dx =0.
i3
Proof. fe Rla, b] = fis bounded on [a, b]. '

Let m, M be the infimum and supermum of fon [a, b].

Since f()z2z0 Vvxe [fa, bl mz0
For all partitions P of [a, b], we have (P, i <m (b—a) 20
&
- >
= L f(x) dx=sup [L(P, ) }pem.m >0
b b
But. j Flx)dx = J’ f(x)dx since f€ Rla, b]
a 2
b
[ rwaxzo.

] b
Theorem 25. /1, g€ Rla. bl and ()2 (9 ¥ x€ [a, b). then | flx)dx > j glx)dx.

Proof. f.g€ Rie, ] = [-ge Rla, b]
Also J(x) 2 g(x) Yxe o b
= f(x) -g(x) 20 Y xe |abh]
= -2y =20 Y€ [a, b

By Theorem 25, r(f - gx)dx =0
& b b
= [ -gandxzo = [ fxdx- [ gw x>0
b b
[[rwdsz j gix) dx.

Theorem 26. Iff€ Rla, bl and m, M are the infimuem and supermaum of fin [a, b],

b
j f(x)dx = (b —a) where w € |m. M].




Proof. For every partition P of [a, b], we have

b —@ =P AU HMb-a) (1)
b b
Now sup fLp,n} = J‘ f(x) dx = j f(x) dx [ fe Rla.b]]
b
= L(P, ) < j fx) dx (2
b b
Also inf {U®,H}, = J' Fx) dx = j flx)dx [ fe Ria, b]]
b
- f fx)dz < U(P, f) e
From (1), (2) and (3), we have ‘
b 1 &
m-a) < J. f(x) dx<Mb-a) = m= b J. fldde<sMforazb
-] . —{a Ja
= 5 1 be(x) dx 1s a number p (say) lving hetween the bounds.
- -a
= 1 Ibf(x) dx = where m £ u <M
b —a Ja
= jbf(x) dx=pb~a) wherepe |m, M]

For a = b, the result is (rivially true.
Theorem 27. If fis continuous on [a. b), then there exists ¢ € |u, b] such thut

jb f(x)dx =(b-a) flc).

Proof. {is continuous on [a, b].
= fisbounded on {1, b] and fe Rla, b} Hmn, M are the infimum and supermum
of fon {a, b], then we know that.

b
mih—-a) < I flx)dx <M((b-a)

b
- 3ue m, M] such that j f(x) dx = u(b - a) ()

Sinee fis continuous on [a, b], it aliains every value between its bounds m, M.
pe [m, M = 3anumberce [a, b} such thas f(c) = p.

b
From (1}, we have J flx)dx=(b-a) fle).

1.15. INTEGRATION AND DIFFERENTIATION

In this seciion we discuss the famous the fundamental theorem of caleulus, which
stated that integration and differentiation are, in a ceriain sense, inverse operations.

We shall made this study for Riemann integrals.
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NOTES

Integral Function. If fis Riecmann integrable flunction on [g, b] then a function

Fx) = _[: flt}dt is called an integral function, Further if £ (1) is differentiable on

[a, b) and F'(x) = f {2), then Fx) is called the primitive or anit-derivative of fon fa, D]

Here, we note thal. the primitive of £ (x) is not unique also an integrable function
is not necessarily continuous but the function associated to fis always continuous as
shown in the {ollowmg theorem.

x
Theorem 28. Let f € Rie, b). For a € x £ b, put F(x) = Ia f¢)dt Then F is

continuous on [a, b]. Furthermore, if fis continuous at a point x, of {a, b}, then F is
differentiable al x,, and F'(x;) = f(xy). In other word “The integral of a Rizmann
integrable function iz continuous and is differentiable if fis continuous™.

Theorem 29. (First Mean Value Theorem)
Iff, g € Ria, bl and g heeps the same sign on [cr. b} then there exisfs a number n

b b
beticeen the infintrnr.and supermum of fon. [a, b} such thut I flx) glxydx=p _L glx) dx.

Proof. Let g be non-negative on [a, b]
Then, gyzV ve |a, b
fe Rla.b] = [isboundedon |a, b}

If m. M are the infimum and supermum of fon [a, b}, then

msfixysM ¥ ae |, b]
Since g =20 ¥ x€ [a,b]
mg() < f(x) g(x) < Mg(x)
b b b
= j mglx) dx < j F(x) glx) dx < _[ Mg(x) dx
b b b
= m _[ g(x)dxsj' £(z) g(x)dstJ' £(x) dx

b b
= 3Jue [m, M]such that I flx) glx)dx = _I.a g(x)
If g be non-positive on [a, b), then g} <0 Y xe o, D]
K3 m<fixysM Ve [ab]
= mg(x) 2 f(x) gla) 2 Mgy

b b b
= m [ gtx) dx 2_[ f0) glx) dx=M j g(x) dx
' b b
= Iu e [m, M] such that J flayglx)dx = uj glx)dx.

Note. [f we 1ake g) =1 VY x€ [a, D], then g€ Rlo, bl and g() >0 Ve [, )]
By the mean value theorem, we have

b b |3
I f(x)dx:pj 1dx, where p € (m, M] eor I Fix) dx = pib - a).
a a ) 1
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¢

Cor. If {is continuous on |a, b), g € Rla, b] and g keeps the same sign on a, b],

. b b
then there exists ¢ € |a, b] such that L flx)glx}dx =f(e) L g{x)dx.

Proof. fis continugus on {ar, ] = fe Rla, )
By Theorem 14, there exists p € [m, M] such that.

b b
j ftx)g(x)dx=uj' g(x) dx D

Since fis continuous on [a, b], it attains every value between its bounds m, M,
e [m, M} = 3anumberee {a, 6] such that fle) = .

b b
From (1),'we have L flx) glax)dx = f(c)I g(x) dx.

Primitive (Def). If [ and F are two functions defined on [u, b] and
Fx}=fx) ¥ x € a, bl, then Fis called a primitive of fon [u, b].

1.16. FUNDAMENTAL THEOREM OF CALCULUS

Thercem 31. If [ € K [a, b] and F is « primitive of { on {a. b], then
) .
[ Fxydx = Fo) - Fla).

Proof. T is a primitive of fon [a, b}

= F=f) v xe o] (D

Consider a partition P={o=x,x,, ... , X, = b}of [a, b].

Since F is differentiable on [«. b], it is differentiable (and hence coniinuous) on
cach sub-interval

L=[_.x}r=12 .. . N

Applying Lagrange’s Mean Value Theorem to FF on each sub-interval [ = [x,_,, x .

r=1,2 ... , it, we have

Fa) —F, )= -2, DFE)=E)§, [by (D]
where X, <€ <x,r=1,2 .. ,H
= Y fE)8, =Y [Flx,) - Flx, ) = F(v,) = F(xy) = F(b) - F(0)
r=1 r=1
iy X €8, = i ) - P = o) - F

0 B Z b
But _lim 021 fE)S, = j fx) dx

b
j f(x) dx = F(b) - F(a).

Remarks I. The fundamental theorem does not state that if fis integrable, then fhas a
primitive on [, b]. It only states that-it [ has a primitive on [¢, b], then this primitive can be

b
used to evaluaie I flx) dx.
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2. A function may have a primitive without being integrable. Censider the functions F
and f defined on |- 1. 1] as follows :
s . 1 . 1 2 1,
Fo = x° sin 1—2, ifx20 and [ = 2x sin x_?'_ ;cos — ifx=0
0, ifx=0 Q, ifx=0
Clearly, F'(x) = f(x} =+ Fizaprimitiveol fon [-1, 1]
But. fis nol integrable on [~ 1, 1] because fis not bounded on [- 1, 1}.

J" sinm:dxsg.

Example 15, Prove that is 5
0 1+x n

b4

Sol. Let fi) =

Lo 2 and g(x) = sin my, then £, g are continuous on [0, 1] and hence
+x

integrable on [0, 1].
Also gy =sin vz 0on [0, 1].
1

Sinee fis decreasing on [0, 1], inf f=/(1) = 5

and sup f=fi0)=1

By the first Mean Value Theorem, there exists 1 € [-21, 1] such that

1 i . L g 1
Jof(x)g(dexzu_[Dg{x}dx re.. Jsmmdx=uL sin nx dx

o 1+ x?
) 1
Butl. I sinnxdx=—cosm:| =E
0 g on
1 gin mx 2
dx=u.— (1
L T2 M. (1)

. . . 1
Since fis continuous on [(, 1], it aliains every value between its bound 2 and 1.

ne l:%, 1] = Janumber ce [0, 1] such thae fle) = p.

7l sinnx
From (1), Hey = _5-[3 1+x2dx
But 0<e¢=<1andfis decreasing on [0,-1]
1 =n ¢!sinmnx 1 1 gin nx 2
(1} = K1 —=— desl . —< des=.
= (022D = <[ T dx n-[01+x2 ;
2 2
n ~2 oy 2n
E le 16. Pr .-et!al.—-—ﬁ‘[ : <
xampte rore ;i Tg n/6 Sin x g9

Sol. Lel f{v) =

- and g(x) = x, then f, & are continuous on [E E] andl hence
51n x

62
: T n
integrable on {—, —].

6 2

Also gly=x>0on [%, %]

] B W 1T o EE y = E = > : = E B
Since fis deereasing on [6’ 2], ind [ f{2) 1 and supf /(6] 2.
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by the first mean value theorem, there exists u e |1, 2] such that Riewmenn Integration

/2 ni2 . &2y dx /2 de
Infﬁf(x) g(x) dv= u-l.:tfﬁ g(x) dx i € -['r!ﬁ sin x “K m’Gx
T
But r;zx e x2 ]’“’2 1 (nz 2 ] 22 NOTES
ut 2| =c|=-—===
/6 2|, s 21 4 36 el
2 5 1'[2
de=1u.—
-Lfs sin x H 9 (D

\- . . n ol . . ) . .
Since fis continuous on |:-6-, E], it aliains every value beiween its bounds 1 and 2,

e [1.2] = Janumberce [-g-, %] such that fiey=n

From (D), floo=p= ﬂiz _[:: i dx

Bui %SC s% and f is decreasing on I:—z,%]

= I(g] zf(c)zf(g] = ‘5,% E:si:x sl
%2£.{;;25i: x dx 5%'

TEST YOUR KNOWLEDGE 1.2

Prove thed: ‘

2
L@ xdx=% (i) jf (x2+2x+3}dx=%‘

2, Evaluate _[_]2 flx) dx, where fix)= | x |.
3. Show that f: cos x dx = sin a; for a fixed number o,

12
4. Prove that I: sinxdx =1.

5. Show that \

o e ()

o[ 11 1
i) 1 + + Foet— | =log, 2
(.)nl—??w[n+1 nt2 n+3 2n] Ok

(i) Jim -1-+ 1 + ! +oe +i = log, 3.
noein n+l n+2 3n
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Show that lim l(earn +e¥ e 4 +e¥iny = l(ea‘ -1}

n—w

1 1 %2 1

Prove that < dx s —.

3;2 Io :fl +x2 3

Answers
5
2
SUMMARY

Upper and Lower Darboux sums: The sum M8, + M5, + ... +MS + .

n
+M3 = E M, 3§, is called the upper Darboux sum of f corvesponding (o the

non
r=1

partition P and is denoted by U(P, /) or U(f. P).

n
The sum nt 8, + n, 3, + ... Fmd + . +md = m, 8, is called the lower
171 ava nen

r=l
Darboux sum of f corresponding to the partition P and is denoted by L(P. fy or

L4 P).

n A
'i‘hus, U(l), f} = Z Mrar; ]J(I): I) = 2 m,.ﬁr
r=1

r=1

Lower Riemann Integral of f on [a, b] is defined as sup {I.(P, Nip.p, g and is

b
denoted by L flx)dx.
Upper Riemann Integral of [ on {a, bl is defined as nf {U(, Mpppy, 5 19
5
denoted by I flx)dx.
[

A bounded funcéion fis said to be Riemann iniegrable (or simply R-integrable) on
ja. b] if its lower and upper Riemann integrals are equal i.e.. if

j:f{x) dx = _[ff(x) dx.

A bounded function { is integrable on [a, b] if and only if for each £ > 0, there
exists a partition P of |a, b} such that U, ) —L(P, /) <e.

If fe R {a, b] then f2€ Rla, b].
If /. g € Rla, b] then fg € Rfa. b].
If f€ Rla, b]. and there exists { > 0 such that,

| fa) 4 21 ¥V xe {a, b], then %e Ria,b].




If £, g € Rla. b] and there exists 1 > 0 such that. Riemeany Integration
fg@l=zt ¥ xela b then £ € Rla, b].
g
tHffe Rla, bl and ¢ < ¢ < b, then f & Rlg, ¢]. f& Rle, b] and NOTES

b b
[ raas=[ faac+ [ faax.
If fe Rla. ¢]. fe Rle, b] and g < ¢ < b then fe Rla, bl.

Iffe Rlg. bl and f(x) 2 (¢ ¥ 1€ 0. b] then J‘: flx)dx z0.
& b
I/ ge Rja, bland ()2 g(x) ¥V xe [a,b]. then j f(x)dx z_[ g(x)dx.

If fe Rla, b] and mt, M are the infimum and supermum of /in [n. b], then

b
J flx}dx = p{b —a) where pe [m, M}

If {is continuous on |a, b, then there exists ¢ € [e. b] such that

J'b'ffx)dx=(b-a)f((.-),
OQa
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NOTES

UNIT

2

ARBITRARY AND POWER SERIES

STRUCTURE
2.1, Inwroduction ,
2.2 Abel's Lemma (or Abel's Inequality)
2.3. Abel's Tese
2.4,  Dirichlet’s Test
2.5. Rearrangement of Terms
| 2.6.  Riemann's Theorem l
2.7.  Cauchy Product of Two Infinile Series
2.8.  Theorem |
2.9, Cauchy's Thegrem
2.10. Merten’s Theorem
211, Cesaro's Theorem I
2.12.  Abel's Test
2.13. Tauber's Theorem
2.14. Power Series
2.15. Convergence of Power Series
2.16. Working Rule for Finding Radius of Convergence and Interval of
Convergence
2.17. Power Series as Functions
— — —=— _‘-J

2.1. INTRODUCTION

32 Self-instructional Material

So far we have been discussing series of positive terms or alternating series, In
this chapter we shall discuss the convergence of series of arbitrary terms i.e., series of
icrms having any sign, We shall also discuss rearrangement of terms of a series.
insertion ahd removal of brackets, Cauchy preduct of two series and the convergence
of infinite products.




2.2. ABEL’S LEMMA (OR ABEL’S INEQUALITY)

If the sequence < S > of the partial sums of the series 2 o, salisfies m< S s M,

n=l
(ne Nyand < b, > is a sequence of non-increasing, non-negative real numbers, then
n
mb, < 2 b, s Mb,.
k=1
Proof. Since S, =q,S,=a;,+a, S;=a, +ta,+a, ...

S,Fata, v ta,
a, =8, a4y, =85, -5, 4,5, -8, ... ca, =8 =5
]

2 by =a b +ab, + . +ab,
k=1

=8b + (S, -8)b, + ... + (5, -8,. )b,
=5,(b, by +5,b, - b} + ... +S5, b, =b)+S b, (1)
Novw, mb, =m[b, —by + by, —by+ ... +b, ,~b)+d]
=mh, —by+mb,-b)+ ... +mb, _ b))+ mb,
SSyhy —b) + 8y, =b)+ ... +8, (b, ,-b)+8b,
[ m=£§,ne N

R
=Y ab, by (1)]
k=1

=850 =b)+Sb, b+ +8,_ (b, -b)y+S b
SMO, -by)+ M, by + ...+ M@, - b))+ Mb,
’ I~ S, <M ne N

= Mb,
n
= mb, < Y ab, <Mb,.
k=1
n
Remark. If | S, | SM Vue N, then| 3 apby| < Mb,
) k=1
e,  lajta,tagto ta, | EM = |ab rab,+ab,+ o+ ab | SMb,
In particular, if' | o a, ta,isM
ihen ba, b g ta b+ tab | <Mb, | <Mb,

[~ the sequence < b, > is non-increasing]

2.3. ABEL’S TEST

i E a,, is convergent and the sequence < b_ > is monotonic and bounded, then

n=j

z a b, is convergend.

n=1i

Avbitvary and Power
Series

NOTES
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Real Analysis Proof. Since the sequence < b, > is monotonic and bounded, it is convergent. Let
it converge {0 b.

Lo _{b-b, if <b, >is increasing
et n = b, ~bif <b, > is decreasing
NOTES . . . ‘
When < b, > Is increasing, b is the Lu.b. of the sequence so that b, bV n
= b-b,20 - u,20 VneN
and i, = 0=0)-0-b,)=b,-020
= Hy2t,, YneN

= < i, > is a non-increasing sequence of non-negative numbers.
When. < b, > is decreasing, b is the g.1b. of the sequence so that

h,2b¥n = b -b20 =~ 1,20 Vne N
and H,=H, = (f}u - (bml - = hn — bn+i >0
= w2z, vneN

= <un, > is a non-mereasing sequence of non-negative numbers.
t,2u,,20vneN

N b = b-u, if <b, >is increasing
ow ‘s T b+ u, if <b, >is decreasing
_ ab = ba, ~a,u, ff{bn > is increasing
n'n - |ba, +a,u, if <b, >is decreasing
Since 2 a, is convergent. = E ba, is convergent.
n=1 n=1

2 a b, will be convergent if 2 a,u, s convergent.

rn=1 n=1
Now, since Z a, s convergent.
n=1l

By Cauchy's general principle of convergence, given > 0, 3 a positive integer
n sueh that

Vit Y0+ T, | <ewhenevern>m

Applying Abel's Lemma, we have

| g,y T O 0o+ ... dagr, | <en, e [ <n >is decreasing]

m+2 el

By Cauchy's general principle of convergence, z @, 15 convergent.
n=1

Hence E a,b, is convergent.

n=1

2.4. DIRICHLET’S TEST

Iy E a, has bounded partial sums and <b > is a monotonic sequence converging
n=1

to zero, then E a,b, is convergent.
n=1
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Proof. Replacing b, by — b, if necessary, we assume that <b_ > is a monotonically Arbitrary and Power
decreasing sequence converging to (. Series
[.et S,7a,va,+ . ta,nelN

Since Z a, has bounded partial sums, therefore, the sequence <S> is bounded.
n=1
= 3Jarcal number M>Osuchthat | § | <MvVneN

NOTES

For n=>m, we have

e
+
+

=
|

| a =|8,-5, |

[ S, 1+18, I'<M+M=2M 40
Since < b, > converges to 0, therefore, given € > 0, 3 a positive integer m,, such

that

m+l +

1A

b, < ﬁ Vazm, .(2)

From (1). by Abel's Lemma, for n > m 2 m, we have
b bm+2 o + ﬂ"bn | = 2h|b.m+l
<g fby (2)]

+ 4

I a R L

ekl el

By Cauchy’s general principle of convergence, E a b, is convergent.
n=1

Cor. Leibnit2’s Test as a particular case of Diricklet’s Test.

The series Z {(— 1)*! has bounded partial sums. since 8§, = {1 if n is odd

n=1

0 ifniseven

If < o, > is a monotonically decreasing sequence of positive numbers, converging
to 0, -

te, if a, >0 @a,za,,, Ve N (iya, = 0asn— e

then by Dirichlet test, the series E 1™ a,, ie, the alternating series a, —a, + a,
n=l
—a, T ... 15 convergent.

ILLUSTRATIVE EXAMPLES

Example 1. Test the convergence of the series.:
1 I 1 .. 1 1 1
+ - + ... () I + -
322 538 74° 1 4.3 4°5 457
Sol. () The given series can be considered to have arisen as a result. of multiplying

017

. 1 1 1 . 111
the terms of the series | - o + Py aabrs +..... with the terms of the sequence 1, 357
_ -1 o
Let a, = ( 1}2 by = 1 (hen the given series can be written as E a,b,.
n 2n-1 =

1 .
| = =5 . therefore Za, is convergent.
n

Now | a,
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Since Za, is absolutely convergent, therefore, Za, is convergent.
Algo < b, > ig a monotonically decreasing sequence of positive terms.
By Abel's test, the series Z a, b, is convergent.
n=1
(i) The given series can be considered to have arisen as a result of multiplying
the ferms of the series
1 1 1

-—— .. with the terms of the sequence 1,—,

l-=+—=
4 4% 4 3

o e
= p

-1

1y 1 : : :

bet @, = (" —} , b, =——, then the given scries can be written as
4 2n-1 :

E ar."bn.

n=1
1 n—1 hisd ) )
Now |a, = (Z) . thereflore, Z | @, | is a geometric series with common
n=1
ratio 3 [l rl=4+<1]
s r}
= %1 a, | is convergent.
= I a, 1sconvergent.
Also < b, > is a monotonically decreasing sequence of positive terms.
By Abel's iest, the series 2 a,b, is eonvergent.
- n=1
R NG Vet
Example 2. Show thai the series ———————— {5 coniliergent,
n=2 !’O‘g n
4 13 1 - . ; :
ol. Let «_ = (' -, b = , ¥ . en series ¢z
Sol. Let «, = (0* + D —n. b = Tog then the given series can be written
asz ab,.
n=1
138
Now a, =@+ B _p= u(l+ —SJ -n
n
1 1 1¢-1 1 11 1
=5 1+—.—3+-—'—-—-.—6+ ...... —1 =—? 5 g e
3 n 2! n n‘l3 9n
1 a 1 1
Take ¢, = —g . then —maae—
n ¢, 3 9n
. a, e
lim & = = which s finite and non-zero.
n—e C, 3

By comparison test, Zu, and Ze, converge or diverge together,
1

But. E c, = 2 2 s convergent.

Za, 18 convergent.

* 1

Also < b, > is a monotonieally decreasing sequence of positive terms.

By Abel's test, the series 2 a,b, is convergent.

n=2
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i 1 . . . -~
Sol. () Let b, = —, then the given series can be writlen as z ab,.
n

=1

Now E a, 1s given o be convergent.
rR=1
Also < b, > is a monotonically decreasing sequence of positive (erms.
By Abel's test, the series 2 a, b, is convergent,

n=1

. then the given series can be writien as E ab,.
n=1

(i) Let b, =

;’al""

Now E a, is given 1o be convergent.

n=1

Also < b, > is 4 monotonically decreasing sequence of positive terms.

By Abel's test. the series 2 a,b s convergeni.
n=1
(i) Let b, = n'7  then the given series can be writien as E u,b

n=1

n

Now Z a, is given o be convergent,

n=1
Also, 1+1 =1+n.l+jﬁllﬂ'j;+ﬁﬁgjlilﬁnj_
n n 21 n2 31 n3

nn=-1)Xn-2)
+_———-——_
n!

e (a2 (-3
o 2152 i

1 1 .
E+1+EE+§ ...... +E{€{3

1A

Arbitrary and Power

NOTES

Example 3. Show: that the convergence of E a_ tmplies the convergence of each Series
n=1
L oof the following series
R o 1
() E - a, (1) E v a,pzl
n=1 n=1
(i) i niin gn (i) i ! ]
ned aeplogn "
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n
. _ 1 (n+1)" "
Fornz3 wehaven>fl+—| =—"— nttl> e+ 1"
n n
= i > (n + 1)t = b >b,
< b, > is monotonically increasing sequence.
Also, lim b, = lim '™ = 1

n—yw =)o
= <b, >isconvergent. = <b > is bounded.
Since < b, > is monotonic and bounded, therefore, by Abel's test, the series 2 18

a=1
convergent.

() Let b, = 1 .n =2, then < b, > is a monotonically decreasing sequence of
og n
posilive terms.

By Abel's test, the series 2 a b ik convergent.

HH
n=2

2.5. REARRANGEMENT OF TERMS

A series z b, is said to arise from a serics Z a, hy a rearrangement. of terms
n=1 n=1
if ehere exists a one-to-one correspondence between the terms of the two series so that
every a, is some b, and conversely.

F ample, th i 1-|~1 1+1+1 1+

y, Lhe series s 5ttt

or examp serie 3 3T s 7T g

. : 1 1.1 1

i5 a rearrangement. of the series | — -+ —=—+—=——+

2 3 4 5 6
If we add finitely many numbers, their sum has the same value. no matter how
theterms of the sum are arranged. But this is not so when infinife series are involved.
An arrangenient (or equally well derangement) or change in the order of the terms in
an infinite series may not. only alter the sum but may change its nature all together.
The following theorem gives the condition under which we may rearrange the
terms of the series without altering its sum.

2.6. RIEMANN’S THEOREM

By a suitable rearrangement of the terms, o conditionally convergeni series
2 a, can be made
n=1I

(i) fo converge to any pre-assigned under o, or
(i) lo diverge 1o oo or — o, or
(1) to oscillate finitely or infinitely.
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Proof. Let 1, u,, 1y, ... be the positive teyms and - vy, — vy, ~ 1y, ... be. the

negative terms of 2
n=1]

For n. € N, we define p,=%@ +1la, ) and g = % (a,—la,l)
q

so that a,=p,ifa, >0 and a, =

= p, is the nth positive term and ¢, ts the nith negative term of E

n=1
= p,=u,and q, =-u,
Sinee Z @, converges conditionally,
R=1
Z a, is convergent and 2 [ a, | is divergent.
n=1 a=1
E i 2 q,, are both divergent, Z P, diverges to eoand E g, diverges to—oo,

r=1l r=1 n=1

Also E a, converges = lim a =0 = Ilm | @, =0sothat hm p,=0
R e
n=1

and lim ¢ =0.
n—se

Let S and S, " denote the nth partial sums of z p, and z q,

nml n=1
(1) We shall now construct strictly increasing sequences < m, > and <k, > of
I positive integers such that

I ¢ P S +pm,+Q1+Q2+ '''''' +Qk,+pm1+1+pm,+2+

...... FPmy, Qa1 Qa2 oty L (D)

is a rearrangement of Z @,. tonverging o o.

a=1

Sinece 2 p, diverges (o =, it is always possible to find a partial sum of E D,
) n=1 _ n=1
which exeeeds any pre-assigned number.

Also E g, diverges to — o, therefore, it 15 possible to find a partial sum of E
n=1 n=1
g, which falls short of any pre-assigned number.

Letm, be the smallest positive integer such that the sum of firsw m, terms of E
=1

P, exceeds o
Then Pytpyt . Py PO

but. Pty t ot Py <asothat Sy g <o<8,
Let &, be the smallest positive integer such that

g, + gy + .. g Lalls short of o —p, —p, ... — P, =0 Sy,

Avrbitrary and Power
Series

NOTES
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Then gty t o TGy <=8, andg, +q,+ . + Gy 1> 00— Sy,
r /
= Sml +Sk1 < 0= Sm] +Skl_1'
Let 1., he the smallest. positive integer such that m, > m, and the sum
2 s 2 1
Py Pyt e tPmy ¥ Pmiar F o FPmy FQy @y +Gy, exceeds o
Then Sp, -1+ S <0< 8y, + S
Let k, be the smallest positive integer such thac k, > &, and the sum
Gy F Gy b o Uy T 1 T Gy, <= Sy,
then Sh, <a—8,, <8, = S, +8;, <o <8y, + S},

and so on. The process can be continued indefinitely because of the divergence of the

Wo series
Z p, and 2 g,
n=1

=1
Let E b, be the new series so constructed and o, be its nih partial sum.
r=1

The last term in 6, will be either b, or gy, . If the last term is P, , then @, — P,
<, ie, 6, ~o <Py andif the last term is Gy, . then o _~q; >0 ie, 6, — 0> Gg.

Sincep, is some positive term of Z a, and gy, is some negative term of

n=1

Z a,. therefore, if the last term in o, is @;, then | 6, -« | <oyl

Since z a, is convergent, ;= O as [ — e
n=1

=lgl>0asloe = o,—-a>0asn—_e = limg,=a -
oo

Hence 2 b, converges to o
el

(7)) Now, we show that a rearrangement of E a, can be found which diverges
n=1
tO oa,

Choose a positive integer ar; such that

PPyt +Pm, > 1—q e, pytp,to.. +Pm, +q,>1
Now choose a positive integer m, > m, such that '

@, eyt + Pm) (P, F Pmy, F o + P, >2-q,—q,

ie., Wy + P+ e TPy H @)+ (Pmy,, Pyt P, t ) > 2
Proceeding in this manner, we have

T R O T a)+F (Prgy T Pm gt +Pm, + Q)

where k is a positive integer, however large.
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Letl 2 b, be the new series so constructed. Then the sequence of ils partial
n=1 .
sums is unbounded above and diverges o .

Hence Z b, diverges 1o o,
=1
H we wan( to make the series diverge to —co, we choose a positive integer n, such
that
Gt @yt ot gy <—l-p de. ¢ +q,+... +Qm, tpy<—1
Now we choose a positive integer m, > m, such that

@ tq,+ ... tlGm )t @y, Yy, o Fm)<=2-p, —p,

l't.(‘f., (q1+‘72+ ----- +qm1 +p1)+(qm|-1 +Qm102 o +qm2 +p2){_'2
Proceeding in this manner, we have

@yt gyt ot G +p)+ Gmy,, Yy, F o + Gy, +py)

where % is a positive integer, however large.

Let E b, be the new series so constructed, Then the sequence of its partial
n=1
sums 1§ unbounded below and diverges (0 — o,

Hence E b, diverges (o — o,

r=1

(t17) Now we show that. a rearrangement of Z a, can be found which oscillates
n=1
between two number o and B.
Take just sufficient. number of positive terms so that the sum is greater than o
and then take just sufficient. number of negative terms so that the sum is less than B.
Repeat the process indefinitely. The new series so formed will oscillate between f-1
and o + 1 finitely or infinitely.

Example 4. Explain the fallacy in the following :

1—i+}-—i+i-£+ ...... =(2—1)—i+(£—i)—£+(i‘2-b£)—-{+_,.,,
2 38 4 5 &6 2 3 3 4 5 5 6
=2y 1,2 1 1,2 1 1,
2 3 8 4 5 5 6
2 1 2 1 2 1
Rl e e R
2= 3 2 & 3 7 4
=2 1—i+£—i+i——1—+i—-{+ ...... ..
2 8 4 5 6 7 8
1 I . .-
Also we know that 1 - 3 + 377 + converges and thatl s sum S is log 2

which is different from zero. Therefore, from (1), we hare S=28or 1 = 2

Arbitrary and Power
Series

NOTES
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) 1 1 1 . ..
Sol. The series 1— 3 +———+ ... is conditionally convergent and, therefore, by

Riemann's theorem, rearrangement of the terms may alter the sum of the series.

Thus R R e ks - +

gret Lol 1.1
0g2=l-Gt o gte
1 1 1 1 r 1 1 1 1
=(I+=+=—+—+—+ 2| =F—=F=+t—+—+
2 3 4 5 2 4 6 8 10
1 1 1 1 1
=|I+=+t—=+—+—+.... —|I+=+—=+=+—=+... =0
2 3 5 2 3 5
- . . 1 ]- . r=1 1 .
Sol. The given series 1 — 5t3 7t = 21 (=1 18 conditionally

convergent. and hence can be made to converge to any limit by a rearrangement of
terms (Riemann’s Theorem). Hence we are not justified in rearranging the terms of 2
conditionally convergent series and expecting the same sum.

Example 6. Whaf is wrong with the followcing ?

24+2+2+2+2+2+ ... =(2+2)+(2+2D+(2+2)+ ...
Sd+4+04 . =2(242+2+ )
d+ 242+ =0
Sol. The series 2+ 2+ 2+ ... is divergent and tends to infinity, so that

22+24+2+ ... y—-2+2+2+
is of indeterminate form oo — oo
On account of this fallacy, we get an absurd result.

' [Note. Riemann's method is of theoretical importance only. For practical applications,
the method given by Pringsheim is useful.

Pringsheim’s Method (Without Proof)
Let fin) be a positive function decreasing Lo zero as n = e, Then by Leibnitz’s lest, the

alternating series E (= 13! f) is convergent.
a=1

Let the terms of the series E (~ D) fG1) be rearranged by taking allernately o positive
n=1

and [} negative terms.

o . ) .
Il g = mf(m) and k& = — then the alteration in the sum due to this rearrangement. is

p

% glog k.

. . 1
so that. E -t )= Z (-—1)"".-;=l-l+%—%+ ,,,,,,

n=1 n=1 2
then we know that the series is conditienally convergent and its sum is log 2.

B

In particular. if f{n) =
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|
|
|

Also, g=mflmi=m. 1_ 1.
m

If the terms are rearranged by taking alternately « positive and § negative terms,

then the sum of the new cerie‘: is

log 2+ & lugf = — (Qiog2+log k)= % log (41).]

Examnple 7, Find Lhc sum of Hr-e sertes:
I 1 1 1 1 1 .. 1 1 1 1 1 1
e R E Y R

A S N S S RS A N S
Dl-- '3 5 5 5 Wi+ -5+5%7"7%3

1 1
r —_——— ¢ —— - — 3
Sol. (i) The given series 1 3 6 875"

terms of conditionally conver gent series
1 1 1 1 1 - -1 1 .
1-=—+ += o= Z (- 1*1 .= whose sum is log 2
n=1 R
Here the rearranged given series is formed by taking aliernately one positlive

. 1
and two negative terms so that. k= E 2

K\D

Sum of the rearranged given series
=log2+3 logh=log 2+ 1 3 log 4 =log 2 - +log2= 7 log 2

11 1 l 1 1 .
(i) The given series 1 + 373 + 5 +-7~ ~7 + 3 + ... 13 a rearrangement of the
terms of conditionally convergent series
1.1 1.1 1 X acr 1
1—§+-§~Z+g—g+ ....... —21(—1) " whose sum is log 2.

Here the rearranged series is formed by taking alternately two positive and one

negative terms so that.

Sum of the rearranged given series
3 .
=log 2+ 3 logh=log2+ 4 log == 10“ 9
1 I 1

Example 8. Inrvestigate what derangement of the series | — 3 + 377 + s ewill
reduce ils sum. lo zero,
. . a1
Sol. The given seriesis 1 — 1 +i -1 +—l- — = E (-t =
2 3 4 5 n

It is conditionally convergent with sum log 2.
Let it be deranged by taking alternately o positive and B negative terms so that

o
k= E
Sum of the deranged series = log 2 + L 5 log k
But it is given 10 be zero.
—_ i Iy 0 1 o 1
log2+1logh=0 = logh=-2 log2=log2%=log + = k= E =7
Hence to get the sum zcro, one positive term should be followed by four ne egative
terms,

1111111111

Arbitrary and Power
Series

NOTES

: ged seriesis 1———-=—-=—-= e
The deranged series is | 2 1 683 101 1 16 e
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Example 9. What derangement of the series I — é + % - % + é — will reduce
its sum to £ log 27
Sol. Proceeding as in Example 5,
log 2+ 3 log ke =3 log 2 =  4logh=-3log?2
= logh=log2'=log 4 = k=1
The deranged seriesis  1.— l--l+l—l~—}~+l--l——i+-1— -

Exampie 10. dssuming that —— =— | find the value o —_—
P gthat ), 5= f /2 =

< 1 1 1
Sol. The series Z -(-2-rz—_1)§_=1_2+§1?+5_2

n=1

of positive terms is convergeni and hence we can derange its lerms in any order.

C 1 1 1
Now Ele—njl—)z=i'2-+3—2+5—2+ .....

n=1
B REUT NS TS W W .
- ‘“n=1.;? 4n:1 n2-4n=1 n2-4 6 - 8

2.7. CAUCHY PRODUCT OF TWO INFINITE SERIES

If Z a, and Z b are lwo infinite series, then their product, called the Cauchy

A=l n=1

= o P 1y TN ' r 2O = g -+
product. is defined as E ¢, where ¢, = @b, + b, + b, T o a, by
n=1

= E a b, . foreachne N

n=1
Thus 3 ¢, =] 2 || 200 | = (0, + a2 + by )
n=1 n=1 n=1
=ab, + (b, +ab)+ (aby+ab,+ab)+ ... =¢ tey byt

The Lerms in the product are so arranged that all the terms which have the same
sum of suffixes are bracketed together.
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Remarks 1. The Cauchy product of E a, and E b, is defined ag 2 ¢, where
n=0 n=0 n=0
c,=wugb, +ab, _ +ub, .t +ab,= Z ab _foreachne N
r=0
2. z u —H1 Z an-l‘*l and Cn = E (I'_ bn—r = E an‘-rbr
r=1 r=0 r=10

a_ and E b, convergent, then it is nol necessary that
n=1

3.1 ),
n=1
2 c, = 2 a, E b, | must converge, 2 ¢, converges if’
n=1 n=1

n=1 n=1

(i} E a, amd E b, are convergent series of non-negative terms, or
n=1 n=1

(i) Z a, and E b, are absolulely convergent, or

n=1

(i) Z , and 2 b are convergeni and one of them is absolutely convergent.
n=1l a=1

Now we prove these assertions,

2.8. THEOREM

If 2 a, and 2 b, are tuo series of non-negative lerms converging to A and B

=} n=1

respeciively, then their Cauchy product 2 ¢, converges to AR,
n=1

13, C, denote the nth pariual sums of the series

PIREDY
n=1 n=1

Proof. Let A,

and i €, = ian Ebﬂ
n=1 a=1

n=1

respeclively,

Since 2 a, converges to A and E b, converges to B,

n=1 n=1]

lim A = A and lim B, =B

fl—F o =y oo
Now C,=ub,
+aby+ah,
+ by +ayby + agh)

tab, +ab tuh o+ Fad

Arbitrary and Power
Series

NOTES
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NOTES

=a,tby+by+ .. +b)

+ayh, +b,+ . +b, )

+hyh, +b,+ . +h, )

+a,b,
=q,B, +a,B,_ +a.B _,+. .. +a,B,

AB, =(@ +a;ta,+ ... +a,)B,
=B +a,BB +aB +. +a B,
and C,,=ub,

+a,b, + ayb,

+aybg + ayb, + agh,

+ab,, tab,  tab, ,+.. +a,,b,
=a b, + b+ ...+ Dy)

tay,b H byt by D

b, + b+ +hy, )

+ a2nb1

=a By, t @By, * 4By, p o ay, By
Since h, 2 0¥ n € N, therefore, 1 > j= B, 2 Bj
~y . F
Clearly 0<C,2A B, <C,,
=< C_> is a hounded sequence of non-negative numbers.
Also < C,, > is monotonically increasing.
. < C, > is convergent. Let it converge to C.
Then lim C_ = C and the series E C, also converges lo C.
ey en n=l
Now, from (1), we have

lim C < lim (A,B)< lim C
H— R~ o L B

= C<(lim A)(lim B)y<C
R =3 oa n—w=

= C<AB=<C = C=AB

2n

Mence the Cauchy product of 2 a, and 2 h, converges to AB.

n=1 n=l

o w0

(1)

Remark. Noie that in Theorem 1, E a, and E b, are convergent series of non-

n=1 n=1l

negative terms.

Self-Instractional Material




2.9. CAUCHY’S THEOREM

Let E a, and 2 b, be tiwo absolulely convergent series such that E a, =4

n=1I n=1} n=1}

andd E b, = B. Then their Cauchy product E ¢, is ulso absolutely convergent and
r=1 n=1
¢, =AB.

n=1I

Proof. Let A, B, be the nth partial sums of the series 2 a, and Z b,
=1

. n=1
respectively.
Singe 2 a,=A and z b,=18
rn=1 r=1
im A =A uand lim B =B
h— o H 3=

Let. A7, B, denote the nth partial sums of the series E | a, | and E [ b, |
. n=1 n=1
respectively.

Since E a, and 2 b, are absolutely convergent, thercfore, Z 'a, | and

n=1 n=1 r=1

2 i b, | are convergen(. Suppose they converge to A’ and B’ respoectively.

n=1

Then, lim A’=A" and lim B'’'=PB"
n—ie n— =
Let the Cauchy product of E a, and Z b, be Z ¢, thene, =a b, +a,b, |
n=1 n=1 a=1
o +a b,
Let the Cauchy product. of z la, | and z [ b, | l)cz d,. then
n=1 n=1 n=1

d,=la I1b, 1+1ayllb, ,|+.. +Ha, b

Since z ba, land E | b, ] are series of non-negative terms, converging to A’
n=1 n=1

and I3 respectively, therefore, their Cauchy produet 2 d, converges to A'B”.
"=

Now le, | =1ab +ab +. .. +ab
Sla b, 1+ 1a,ll b, [+.... tla, b l=d, Vn
and E d, iz convergent.

n=1

= E e, | is convergent (by comparison test) = 2 ¢, is absolutely
n=1 =]
convergent.

Arbitrary and Power
Series

NOTES
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NOTES

Now we shall prove that Z c,=AB. |

n=1

Let C, and 10, denote the nih partial sums of the series E ¢, and E d,

n=1 n=1
respectively,
C,-AB,=mb,
+a,by + ayd,
+ab,+ b, + ab,
+ah, tah,  Fah, ot abh)
—(a v ay, . +a )b, tby+ .. +b,)
= by + b+ +b)
+ag(b + by + +b,))
+agh,+ b+ .+ D, )
+ab,
—a, (b, 4:!12 +..+b)
—ay (b, +by+ ... +b)
—ay by b+ D)
—a, b+ by + . +b)
=—ih, —ayb,  +b)— ..
—a, b, +b+ . . +b)
= | C,—AB Islayt b, 1+lagt b, I+1b D
ot la, Fdb I+, l+. +18 1)
=A,'B,’-D, (1)
Now lim A=A, lim B/=B and lm D =B
s0 that AB =D, = 0asn— e
From (1), | C —-AB I —>0asn— e
Also PAB,~AB | 5 0asn—e
21 C, —ABI=1(C,-AB)+AB,-AR) || C -AB |+ AB -AB l
=|C,-AB| —»0asn—e = ( -AB-olasn—oe = lim C =AB

n— e«

Hence 2 e, = AB.
n=1

Remark. Nete that in Cauchy's theorem, E g, and Z b, are both absolutely
n=1 n=1
cohvergent.
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2.10. MERTEN’S THEOREM

Let E u, and z b, be Lo convergeni series and let E a, converge abso-
n=1 n=] =]

htely. If E a, = and Z b, = B, then their Cauchy product z ¢, converges
n=171 n=1 n=1

to AB,

Proof. Let A B,, C, denote the nth partial sums of the series Z un_.z b, and

n!
n=1 n=1
Z e, respectively.
n=1

Then lim A =A and lim B, =B

n—r= 1 —30a

Lot B,=B,-BVnsothatlim B, =lim B, ~-B=B-R=0
Now, C,=ab,
+a,by+ah,

+ ”"iba + b, + agbh,

+ab, tah,  tah ,+. . +ab,
= (b, +b,+ . +b)
+agb, + b+ . +b,.)

+a, b
=aq,B,+a,B, , +.. +a,B,
=¢,B+B)+a,B+B,_N+ ... ta B+pB) [ B, =B+B, Vnl
=Bu, +a,+ ... ta)+ (@B, taB,  F ... +a,B)

=BA, +y, wherey, =B, + ¢,f,_, + ... + a, B,
. To prove that im C_ = AB, it is sufficient {0 prove that. lim ¥, = 0.
n— e R—3 o

Now Z a, converges absolutely = E | @, | converges.
n=1 n=1

Lt E [ e, !=a.

n=1

Since lim B =0, < > converges,
H—3 =

Arbitrary and Power
Sevies

NOTES
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Real Analysis = < fB, > is bounded. = There exists a real number I > O such that
IB, | <Kv¥n (D

Also lim B, =0 = givene> 0, there exists a positive integer p such that
o~y ca

NOTES £
| B, 1<
200+ 1

Yo p.

Since E | «, | converges. by Cauchy’s general principle of convergence, there
nel _
exists a positive integer g such that

£
+ + + ] - — -3
li i |+ . |+ ... [, Al 11 Yz

2K +

€
f<——= VY n>gqg

+ + +|a
or Lagy T+ T ag, 1+ | «, K1
E 13
If m=max {p, g}. then for n.> m, wehave | B, | < {2
2o+l
£ .
and la, 1+ [, o .. +la | < EE—:I &)
For > 2m, we have n—nmt > m and
Ly, | =1aB, +af, , +. .. +af |

1 Blﬂ'n + Brla'n—l F + B1".-:l+]. u’n—m * Bm +2 a’n—m—l KRR + 6!10'1 l
<(IB Ha, 1 +1Ble, 1+ o tiB, o, 1)

+ ( [ Bm+2 " “n—rrr-l I+ """ + I 6:} " tr\"l'l i)
<K (la,_,t+. . +la,  1+]a,D
£
+ a1 e+ 1ay |+ +la,_, .1
[Using (1) and (2)]
£ E _
<K. o7 Using (3
“2K+1 2a+1 [Using (3)]
2 la, 1=«
< £ + £ £ n=1
5 5 r~-m+tl
22 Z la, l<a
n=1
=5 Given & > 0, there exists a posifive integer 2m such that
Ly, [<evn>2m = limy =0
= e
Now C,=DBA, +7y,
lim C = lim (BA +y)=Blim A +lim y =BA+0=AR
e n—e n—a n—ee

Hence 2 C, converges to AB.

n=1

Remark. Note the in Merten's theorem, 2 a, and E b, bath converge and one of

=1 n=1

them converges absolutely.
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Now 0< byoty +by_yg . +b,
‘ - n
{lbnllall+lbn_llla2|+ ...... +1b 1o,
) n
. |0i1|+|0[21+ ...... +|05n|
<K n s 0asmn—
boo, +b, 0, +...... + b, -0

By Squeeze principle, lim
) 1 n—e=

2.11. CESARO’S THEOREM Series
If hwo sequences <o, > and <b, > converge lo o and b respectively, then the
a,b, +agh,_; +...... ta,b
sequence <x, > where x, = Ln —27n :1 2L converges to ab. NOTES
Proof. Let o, =a+a,¥YneN
Then lim o = im ¢, —a=¢-u=0 = lim | g | =0
=)= e n—y e«
Now © = @b, +ash, ;+...... +a,b, _ {a+a)b, +{a@+oy)b,_;+.... +{a+ o, )b
o n n
alb, +b,_; +...... +&)+{oyb, +05b, 5 + ... +a,b;)
n
by+by+......+d, b0ty + b, j0p ... + b,
=4 + 1)
n n
By Cauchy’s {irst. theorem on limils
. .oyt +b
lm b, =10 = lim 4—2 t=h ()
n—oa 13 ea n
. logg T4 lets [+ +lea, |
and lim |o, | =0 = lim 1 H B —
n— oo n— o n
Since < b, > converges, < b, > is bounded.
Jareal number K> 0such that | b | <KVneN ()]

[Using (3)]

[Using (2)]

From (1), lim x =¢lim
Ny = = an

=alby+0=ab

Hence the sequence < x, > converges to ab.

n

2.12. ABEL’S TEST

Let E a, and 2 b, be fiwo convergent serics such that E
n=}

n=1 n=]

E b, =B If their Cauchy produci z ¢, eonverges, then E ¢, =AB.

A=l n=1 n=1

Proof. Let A, B,, C, denote the mh partial sums of the series 2
n=1
E ¢, respectively,
n=1

<

a, = A und

a, 2 b, and
n=1
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Real Analysis Now C w = hl .
+a,b, + a,b,

+ b, + ayh, + ayh,

NOTES

tab, +ab  tab .+ . +ab,
=a (o, + h,+..+bh)
tay, (b +b,+ .. +b )

+tay bty D)

+a.b,
=a,B, + @B, +... +a B,
= C,=a,B, +a,B,_ +a,B ,+... +aB
Changing nton—1,n~ 2, ....., 1 successively. we get
Cy=a;B,_ +a,B, ,+ ... +a, B

Cn—2 = Bn——2 + a2Bnﬁ3 o + nn--2B!

C,=aB;
Adding, we have
Cy+ 0+ +C o =aB, ++a)B tla,ta,+a)B 4+
Fla,Fa, . +a,)B;
=AB +ADB _ +AB, . +AL, (o a,=A)

C,+Cy+...+C, AB +AB ,+... +A B,
n B n

Suppose E ¢, converges and z ¢, =C.thenlim ¢ =C

n=1 n=1} e
. G+ G+ +C . o .
= lim 2 ——2 2 = (By Cauchy's first. theorem on limits)
n—w
Also < A > converges (o A and < B, > converges to B
. AB +AB, _+...... +A,B :

- lim —— 2 n-l 21 = AB (By Cesard’s theorem)
: n—ye= n
: s From (D), C= AR,

Remark. Note that in Abel's theorem, 2 a, and 2 b, converge to A and B respectively.
=1 n=1
Abel’s theofem does not confirm (under the conditions) the convergence of E c,. Howevoer,
n=1

ifz ¢, converges, then E ¢, = AR,

n=1 r=1
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2.13. TAUBER'S THEOREM Series

Let f (x) =Z¢, & (~1 <x < I} and suppose thal ,fl_ﬁ, ne, =0.lf[(x) 5 sasx - |, NOTES

then Z¢ converges and has sum s.
Proof. Lot s, =¢, +¢,+ ¢, + .+ ¢, and {5 } is the sequcnee of arithmetic means
defined by 6, = (5, + 5, + 5, + ... +8,)n.
or NG, =8 s,y Fs) e e e e te, et
e te, et te)

0
=¢ +2,+3c,+..tne, = ) ke, and since ne, = 0asn— oo
k=1

Then 6, — 0 as n = . Consider x, = 1 — 1/n-then as n — e, v, — 1, therefore

lim f(x,} = s. lence for given € > 0 there exists positive integer N such that

€ 3 £
If(:a.")-—sj<§,|6"—0|<:§ and [ne, —0]|< 3

Now for - 1 <x < |, we can write

§, —8= ickxk i kx -5+ chx - ickxk
figey) =0 k=0 #=0

= flx)— S+ch(1 -x*)- z xa
ken+1
Now for x € (0, 1), we have
(I=xD)=(1-)+x+x2+ .. +2*") < k(] - &) for cach k.

Ience for n 2N and x € (0, 1), we have

ls,—s|s|f()—-s]|+(1-x) 2 klc,,|+{£{1—x)}.
k=0 R

Taking.\:=x0=l—l,‘\'(:haveIs"—slﬁ £ + £ ¥ £ =¢. Henee the seriey Ze,
n 3 3 3

converges and has sum s,
(_ IJR—I

Example 11. Show that the Cauchy product of the convergent series E
n

=1

with itself is not convergent.

- 1 n-1
Sol. Let a,=b, = L—, ne N.
n

oa

By Leibnitz's west, the series 2 a, and z b, are both convergent (but not
n=1 n=1

absoluately).
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The Cauchy product of the two series is E ¢,, where
n=1

e, =wb, +tab,  +. . +tab,

0 -1 _ Nl o -2
=(—1) ‘(-1) +( 1 .( 1 .

1 n 2 n-1 n 1
1 1 1
= (- — —=— .. +——
I.n 2(n-1 n.1
{ 1)”‘1|:L+L+ ...... +—1—] [ r<n = 12—]—']
n n.n n.n ron
n=1
= ( 1)"'1-—{;*=( L = le¢, |2-VneN
n n
Since i 1 is divergent, i | ¢, | is divergent. = lim ¢, # 0.
n=1 R n=1 n—k

Hence Z ¢, cannol. converge.
n=1

Nate 1. The condition lim «a, = 01s absolutely essential for convergence of any series 2 a,.
=) e =1

Note 2. The above example illustrates that the Cauchy product of two conditionally

convergent series need not. be necessarily convergent.

. el _1 n-1
Example 12. Shouw that the Cauchy product of the convergent series 2 ( \f)_
=] n

with itself is not convergend.

_1y+1
Sol. Let. a,=b,= (S Yl .ne N

Jn

By Leibnitz's test, the series E a, and 2 b, are both convergent. (but. not.
n=1 r=1

absolutely).

The Cauchy product of the two series 1s 2 ¢, where
n=1

c,=wb +ab ... +tab

0 n-1 1 n—2 n-1 L}
:(—1) (-1) +(—1} (—1) + (-1) _(—1)

NN N A

= (=11, 1 + 1 o +—1—]

Py I S T ]
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Arbirrary and Power
= (- ", [-1 PRI l] =(-pm 1. B gyt Series
non n _ n

= le, 21¥neN = lim ¢, =0
L A

- NOTES
Hence 2 ¢, cannot converge.
a=1

o (-
Example 13. Show that the Cauchy product of the convergent series 2

e’ ,}n+1

witlr iiself [s nol convergendt.

Sal. Let a =b = S , e N

§ odn+l

By Leibnitz's test, the series 2 a, and E b, are both convergeni (but not.
A=l n=1

absolutely).
The Cauchy product of the twao series is E e . where

n=1
: e, =ab, +adh, . +ab
GV o VN o Ul b N G VN GV
N B S N RS e el

SRS 1 RS N TR S
TJ2m+D 3 T Jn+D. 2

> 1. = + L AP S
Ja+Dr+D Jm+Dr+ D Jr+Dn+ D

a1 n n
=(-pmt = >
n+1=>!chl_.n+1‘v’ueN
l n . n
3 i) _—is Wory . T llm =1=0
Smu,zl el divergent { am
n=

Z{e¢, lisdivergenl. = lim ¢, %0
- n—e
Ilence E ¢, cannol converge.
n=1

, , R S B
Example 14. Show thaot the Cauchy product of the series Z —5 with itself

n=]

4

14
converges (o — |
#0510 35

1 c 11 1 x?
Let. =h == ne NthenA = = =k =
Sol. Let a,=b, oZ e en A 2;1 n=12t53 226
2 2
and B"-_-.‘\":% = lim A"=%= lim B,,
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= Z a, =5 and E b,=—
n=1 n=1

Sinee Z a, and 2 b, are convergent series of positive terms, their Cauchy
n=] n=1

N C - . n? n? nt
product Z ¢, is also convergent and E ¢, = [Z ]{Z b ]= F & 38

n=1 n=1 =

NOTES

. ; - 1 nt
Hence the Cauchy product of the series 2 ] 7 with itself converges to e
n=

Example 15. Show (hat:

2
1 1
Sol. Proceeding as in example 20, we have (1— ) +§ e ]

o 1 1 1
= ! + ol ER—
Z ) [ln 20n-1 n.l]

[l d) (12 D) I 1 ),
"2 3 2 4 2 3, 5 23 4) 77 ‘

then Z a, converges (conditionally).
n=1

By Abel's test, if the Cauchy product. 2 c, of E a, with itself converges, then

n=1 n=1
a 2 L]
[E a,,] = E ¢, (D
n-1 ﬂ-?» _ n-2 . n=-1
Now ¢ =1‘(_1) 1 v, +L(_E]+( 1) B
9n—-1 3 2n- 3 2n-3 3 2n-1

n=-1 1 1 1 1
= (=1 + + ... + +
1L2r-1 3(2n-3) {2rn-3)3 (2n-11

_(—1)"—1[{2n-1)+1 (2n-3)+8 +(2n—3)+3+(2n—1)+1]
=T " amy t

L(2n-1 i 3(2n-3) 2n-3).3 (@2rn-1.1
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A=l Avbitrary and Power
_&D 1o —2 e[ le L _Js + 1 =11 Series
2n | 2n-1 3 2n 3 3 3 2n-1
(_ l}n—l B 2
= 24+—=+......
2n | 3 * 2n —3 2n — 1:| NOTES
-1, 1 1
= 1+=+..... +
n |3 2n -1 - @
1+ —]1 o + 1
. _ 3 2n-1 . .
e, 1= — Jas 11 — o= (by Cauchy’s first. theorem on limits)
n
Alsol e, [ —=1e |

1 1 1 1 1 1 1
= 1+—+_..... + + ——11l+=+..... +
n+1l 3 2n-1 2n+1) n 3 2n-1

1 1 1 1 1
-——|1+-+...+ +
(n+l n]( 3 2n—1] n+D2n+1)

-1 1 1 1
l+=+..... + +
nin + 1)( 3 2n - 1] (n+D2n+1)

I

-1 i 1
< + ol =4t >1
nn+l) (n+12n+1) [ 3 2n -1 ]
_ —(2n +i)+n _ —{n+1) _ -1 ;
aln+1)X2n +1) nin+1)2rn+1) n(Zn+1)
= e, l>1c¢,,l

By Letbnitz's tes(, the aliernating series

oa

- 1 n-1 1
::21 2 ) [ gt 2?11— 1] [by ¢2)] converges.

Hence, from (1), we hd\‘e

n=1
—1(1}—1(1+1J+—1—[1+l+1)— ......
1 2 3 3 5
1/, 1 1 1 11 1y 1 11
= —|l-—t+—=——=+.... e 1+ |l =F......
2 3 5 7 2 4 3 6 3 5
I 2 1 3 ?
Example 17. Show that — | x - =x° + = x° —......
ac R
=E(—1)“{1+—+—+ ...... + d ]x_
=% n-1}n

when @G)lx|<lTand(ii)x=1.
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Real Analysis 1 1 = 1y .
. - z_ 1 - — n-l _
Sol.(r.}Lei..t—EI +31‘3-...—2 a1 " —Z a,
n=2 n=2
|x|n+1
NOTES -
then | a, | 1
wa+2
Lty 1= n+2
1+E
laﬂl n+2 1 n 1 1
el nel izl o 10zl izt ?®
[ 2 n 141 1=
n
. 1
Since, (x| <1, —>1

78

"l

By ratio test, the series E | a, | converges.
n=2

= the series E a, converges absolutely.

n=2

n=2 n=

converges absolutely and

L —¥ co

By Cauchy's theorem. the Cauchy produci Z ¢, of 2 a, with itsell also

2

(D

Self-Insnuctional Material

n n-1
Nowe =x. D x"'l—lxz -1 =24
" n-1 2 n-2
- n-g( 1 2] D" . ,
— 29‘7 +n—1x xfornz2
=D " (n—l)+1+(n—2)+2+ n-2)+2 (n-1D+1
T on 1.(n-1  2@w-2) 7 n-1.2 m-1.1
x" 1 1 1 1 1 1
= . — || 1+ =+ +Foerens + +—=|+ +1
n n-1 2 n-2 n-2 2 n-1
x" 2 2 2 x 1 1
= o — 4. =-D" . 1 —
_{“1)'n]:2+2+ +n-—2+n~l} =D n[+ ¥ +n—1]
From (1), we have
9 1 3 2_ - n X 1 1
(x——x +§x ...... } —ZZ(—D ?[1-%54— ...... +nv—1]
n=2
2 o
1 2,1 3 ] n 11 1) 2"
- x—-—=x+=x" - = -1 e R T Jpate!
= 2( 3 22 (1+2+ + +n—1] "




(i) Ilere x =1

Arvbitrary and Pover
We have o show that

Series
2 = . un
i l(1—l+l— ...... ] =E (( b 1 —1-+-1»+ ...... + 1
20" 2 3 ~ 2 n-1 NOTES
; Lot | —1+l — = i Sl = i i, then i a, converges
2 3 n=2 n-']- n=2 n="2 ? -

(conditionally).

By Abel's test, if the Cauchy product. E c,of E a, with itself converges, then

n=2 a=2
oo 2 oo
[E“H] =2 ¢, )
n=2 n=2
n n—1 -1 n
Now ¢ =I..(_1) —l.('l) +....e. +(_1) ‘(_l}_!_(—l) .
" n-1 2 nrn-2 n-2 2 n-1
LV [n-Drl -Br2 m-D+2 (r-D+1
n 1.n-1  2(n-2) n-2).2 ¢-D1.1

G L | PP S Y S S PR S N B
T oon n-1 2 n-2) 77 n-2 2 n-1
2 2

S e 2 s + =(- 1" AT 2
n 2 n-2 n- n n-1
(3
1
i 1 %An —1) 1+2+ ...... +n—1
e, 1=Z(1+=4. .+ = .
n-1 n n-1
1
1+=+..... +—
=2(1-—i] 2 n-1 = 0asH -
n n-1
(By Cauchy’s first theorem on limits)
2 i 1 1 2 1 1
Als ; e | = 1+ —4...., + Sl=—=] 14+ =+...... +
ob e t=te,l n+1{ 2 'n—1+n] n{ 2 n—l]
2 2 1 1 2
= [ 1+ =+...... + +
n+l =n 2 n-1) nn+1
-2 1 1
= 1+—+......+ -
rin+1) 2 n-1
-2 1 1 1
= —+—+...... + <)
nn+1i2 3 n-1
= le, [ >1c.,l
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By Leibnitz's tesr, the alternating series

N N 11 1
n§2 2 - 1", {14’ 2 +—= 3 +. — 1] [by (3)] converges.

Hence, from (2}. we have

2 2 2 3
x Y L o xt+y (x+3y)°  (x+y)
(1+x+§-}-+ ...... ](1+y+-2—;+ ...... ]~1+ 77 + 51 + 57 A

for all values of x and y.

2
. X i
Sol. We know that  e*=1+x+ 57 + . forallxe R
52
and er=1l+y+ N + ... forallye R
The series Z:, E :;,-=l+1+a+ .....
e Lo yn y2
rerge: +* and the series b = — =1+y+=—+ __. converges o
converges 10 ¢, and the s 1%20 n JZ:‘} Y b X converg e

Let 2 c, denote the Cauchy product of the series 2 a, and 2 b, then
rn=0 n=0 n=0

Co=agby=1x1=1
and fornuzl,

¢ =agh, +ab,  tah o+ +a,b,
- 2 n-2 n
y" y o=ty x
=1 — +x. + = + ... +—.1
nl S =D 21 (n-2)! nt
t
= L [y" +ny™ 4 nln—1) Yyl 4 x"i‘:—{y + %)
n! 2! n!
- L Xty (x+y)? (x+y)P ‘
E = TR LT + ,.... which converges to .

2 2 2 3
:[1+x+x—+......][1+y+l—+ ...... ]=1+x+y+(y+y} +(x+y) + ...

By Abel's test, (Za ][i ] Er

2! 1! 21 31
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Example 19. Show that the Cauchy product of the series E )

with iiself
() convergesifp >4 (i1} does not convergeif p s 4 .
(-1t

n?

Sol. Let a,=b, =

The Cauchy product of the series 2 a, and Z b, is E ¢,

n=1 n=1
where e, =ab, +ab,  +tab ,+. . +a,b,
D S G VD S G Vil S o N G ) L o
17 p*f 2F ‘(n—l)"J 3 (n-2y 7 pp 1P
= (-1)*1 1 + 1 + 1 S + !
17 .n? 22 (n-1¥ 3°2(n-2)7 n? 1P
= ()t d,
1 1 1 1
where d = + + + e +
"1 .r? 22 (n-1P 3P (n-2)F n* .17

r=1

n 1 B 1
Z rP(n—r+1)? _21 (rin-r+D]°

Nowrin—r+ D=1+ mn+ r

COR S E|

. n+l
=0 ie, whenr=

=—-|:r2—(n+1)r+(

JHJ

= r@ -7+ 1) is maximum when r— 2 , 5
g (n + 1)2
max. value is .
2
2p
= rQn—r + 1)<( ] o (::,—:-+1)P5(n_;_1)

[r(n~r+1)]" (n+1]

2p 2p
= ] 2 n= 2n .nl-%
T \n+l n+1l n+1l

\2p
{2 R > -2

1

1+—

n

[ ~
VnEN,lSI = 1+l32 = 2 =1

n n 1
1+—
n

Arbitvary and Power

) Series
NOTES
n+ 1)2
2
and the
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Hi-2p<Qie,p> %, . — 0 as 1. — o0 and by Leibnitz's test, the series E e,
n=1
CONVErges.

f1-2p=20ie,p<d,d, 21 and the series Z ¢, does not converge.

<3,
n=1
R
Example 20. Assuming tan™!' x=x — —3—+-5— — vveen, prove that
i 2n+3
. X 1 1
-1 )2 =29 (- ——— I+ -+ +
(an™ ) z;, I 2n+2[ 3 2n+1]
Also, show that the series is abselutely convergend if | x 1 < I and convergent if
r=1 .
Or
2
1 3 5
For — 1 <x £ I, show that -}-Z-(x - %-& x?_ ...... ]
had 2n+2
=Y -2 JNERFE S
- 2n+2 3 2n+1
n=0
3 .5 - 2n+41 o
x x X
Sol.let x——+——... = - ", = a
T3 ;0()2“1 20"
I x |‘2_n+l |x I?.n+3
then la, | = 2n 1 and | o, | Y
1+ 3
ta, | 22483 1 _""on 1
la,n! 2041 |xf 1 4
2n
. lagt 1
lim ==
nq"iamﬂi x2

- . 1 . .
By ratio test, the series Z | a, | is convergent if 2z lLie, il x2<1ie, i
n=0
lx] <1

= the series z a, converges absolutely for | v 1 < 1.
n=0

By Cauchy’s theorem, the Cauchy product, 2 ¢, of E a, with itself converges

n=0 n=0
. 2
absolutely for | & | <1 and [Z an] = 2 €,
n=q n=0
Now ¢,=x.x=x?andfornz1.
x2.n+1 --xj- 1 a x2n—1 +x5 (_1}"‘2 x2n—3 _
=e. N9 T T on-1 5 on -3
2n+l
(-1 E—
n+1
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1 1 1 i Arbitrary and Power
= (— 1) x2te I:]_,{Zn D + 3m_D + 5@ —3) +. + —(2n ey 1] Series
. 2n+21:(2n+1}+1 (2n—1)+3+{2n—3)+5+ ...... +(2n+1)+1:(

2n+2] 1.2n+ 1) 32n-1 5(2n - 3) Zn+1.1 NOTES
2n+2
=E [(1+2n+1] (;+2n1-1]+(31+2n1—3]+ """ +{2n1+1+1]:|
2n+2 2 2 5
={-DH". 2ﬂ+2|:2 g g ...... +2n+1]
2n+2 ]
= 2(— 1)", 2n+2[1+ +oes 2n+’1]

For | x| <1, [ian =i C,.

’ 3 .5 2 - L2n+2 1
—— R =2 (-1 1+—+......
= (x ) ,Z“o n+ ( 3 2n+1}
3 5
But 1—%+x—— ...... =tan™! x

22
1 1
( —i J—‘) — 1)y x -4 ...
(tan~? x) E 1) +2{1+ + + J

The result holds good for x =1 also. (Sec example 22)
Example 21, For all x € R, show thai

X x2 :c3 X x2 x3
I+t t——t..... -+ e ..
( TR ATy J( Z e et

2 ¢ )

— + -—
122! @n%24r 3n%6!

2

X X
Sol. Lei l+—g+—=+—F+ .. = a
T e Zo <n')2 23 "
2 3 = n —
X x x x
- +————-——+ ... = — ) = i
12 @n? @3’ 2‘3( )(n!)2 nz.:u n
x| [x]?*1
Then la, | = (n 2 and | a,,, | = =s1%
la_ 1 (n+1)%
B = —ewasn—=wforally=0.
la, ;| lal

nt+l
L]

= The series Z | ¢, | converges for all x# 0
n=0

For x =0, the series becomes 1 + 0+ 0+ 0+ .
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e

the serics E t,, converges absoluiely for all x € R
n=0

Simalarly. the series E b, converges absolutely for all x € R.
n=0

By Cauchy's theorem. the Cauchy product: Z ¢, of E a, and E b, also

n=0 n=0 n=0

converges absolutely and [E an][ Z b,,] = Z c,.
n=1{

n=0 n=(

Now ¢,=1x1=1 and fornz=1,

= 1 x -{-i (—1}"_1_.x_‘n_1_
6,=1.6D (n 1P 12 [{n—l)!]2

1'2 -2 xn-? X"

e s
+(2!)2 [(n - 2MP

(nh?

..... +{=" m}

a? | .- D1 @UE(-2D® ()2

_w 1_(£J2+ M 2_|_ +(_Dn(1)2
T (nn? 1 at ] T

_ (_ l)ﬂxﬂ
(nh?
_{=-1px" 0 , ifnisodd
T m? (- D2 ."C,,,, ifniseven -
0 , 1fnisodd
= 1y
(n1?

_ (—I“x“[ (n1)? N (n!)?

[1-CC? +(*Cp? -+ (- D"CC,Y

NG ex"™, ifniseven
0 , ifnisodd

_ 1y3n/2 oa _ nl!
= -(-—1)-*—-2- " if niseven - "G =
n!(—;!]

- " w 7
Forall v e R, [E an][z b,.,] = E Cy

l
Le

n=0 =0 n="0
2 3 2 3
x x X X X X
1+ 5+——+—+...... l-—t——-——F+......
= [ 22N @3y’ ]( 2 @n @3y ]
12 x4 xs

T2 @nf4al (3N 6!
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Note. (1 =% = {1 +" ({1 —x)" =+ D' - x)"
= [Co¥!+ Ca™ )+ G2+ .+ C,] [Cy= Cpr# G = o + (= 1)MC, 1)
+C2— L+ {=1)"C 2is the co-efficient of 4" on R.H.S,

(]

a2
Gy =€y

n
Also 2" = (x3)"2, so that the term eontaining 27 in (i — 29" will be (E + 1} th

T£+ . of (1 — _.‘_.2)n = nc_nm A= _T?.)nfi) =(- })11!2 . "Gn-‘fd LAt
2
CRE=CR+ClE -+ (1C2= (- 1) .G,
Moreover, the term containing +” oceurs in the expansion of {1 — 9" only when /2 € N
i.e., only when n is even.
Example 22. If for | x | < I, the series a, + o x +tax®+ .. At ]
absolutely convergent to A(x), then show that

n=0

Hence, show that E (m+ D=0 -x)2

n =i}

Sol. The geometric serics E x" converges absolutely for | x | < 1 and has sum

n=0
B 1—1.1:: =0-97
Thus, i = (-2
n=_0
Algg, for | x| <1, the series Qy=a,x+ 02.1:2 +..... = i a,x" converges absolutely

=0
and has sum A(x).

i a, " = Adx).
n=Q

By Cauchy's theorem, the Cauchy product. Z e, of E x"and E a, X" con-
n=0 n=0

n=0
verges absolutelvfor [ 2 | <1 and

on ngoanx = E ¢, rLe. (1= AQR)= Z ¢, ...(1)

nel n=0

Now GE1xa,=a, and fornzl,
e, =l.ax"+x a_ "+t a
=(a,taj+ ... ta)at=95 xt
From (). for x| <l (1-07. AW@=Y 8§ D)
n=0
fo,=1Vn20,then S =1+1+ ... +l1=n+1

ki 1
F: Afyy = I — _*.—1
and (1) E x 2 (1 —2x)

n=

=

From (2), we have z mtInt=0-"1-x)"=(1-x2
n=1{

Self-Instructionst Maierial
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1 1 - 1 1 1
Example 23.If | x | < I, show that i = I+=+=+.....+—|x".
xamp fhel ’ -z ®71_x EI( 23 ]x

Sol. For | x | < 1, we know that

2 3 bl n hisd

x‘ x x .
x+ Ty — =Z = and T+x+ax%+ . =Z ot
2 3 - n -
n= A=1
1 .
converge absolutely to —log (1 - x) = log and respectively.
I-x l-x
o =3 n -]
. x
By Cauchy’s theorem, the Cauchy product Z e, of Z ~— and Z X
- n=1 n=1 n n=1
L) xn bl o
TP o %) - . > _— xn —
converges absolutely for | v | <1 and 2 - E E C,,. (1}
n=1 n= n=1l
2 3 n
5 X x 1 1 1
Nowe =x. "+ X e T it L+ 0= (1+—+—+ ..... +—) X"
i 2 3 n 2 3 n
- ” 1 n
From (1), we have log =E I+—+=+...+—ix
-x 1- n
n=1
2.14. POWER SERIES
An infinite series of the form
2 a, (x—x)" =ay+ a v —x) +a, (K- LA LI
m=0
is called a power series in (x —x).
Here the co-efficients ag, a,, iy, ... are constants and x is a variable. The fixed

number x, is called the centre of the power series.
In particular, if 1, = 0. then the power series in x 1s
Mt — . B
(A" =yt X Taxtt o
m=0
(x-2)% . (x-2° |
2! 3!

For example, 1 + (x —2) +

centre of this power series is 2.

2.15. CONVERGENCE OF POWER SERIES

Let. E a, (x— .1'0)'" =gyt a, {x—xg+ tryx — xa)'z + ... (1)

m=0

be a power series with centre x,.
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n
Let. S5, = 2 a, (x—ag"
m=0
=ayta (W—xg Fa, (v—xi+ o +a, (x—x)"

The power series (1) is said to be convergentat x = cif’ lim § (¢) where S (@)
I et n

=ayta C—x) Hayle—x)i+ +a, (¢ —x,)", exists finitely. The finite value of (the
himit is called the sum of the power series Z a, (e—x)m.
m=0

Clearly, the power serics (1) is always convergent. at « = x, because in this case
Sn(-"o):“o+0+0+ ..... +0=u0
and m S (xp = Iim g, =a, which is finite.
3w e B
The set of all pomis ¢.e., values of &) for which (1) is convergent. is called the
interval of convergence. If the interval of convergence is finite then it is of the

form {x—x, 1 <R.ie, yy—R<r<x+R or (y,—R, X, + R). The constant R is called
the radius of convergence.

Clearly, if %3 = 0, then the interval of convergence of the power series

The radius of convergence can be determined by the formula

or %: lim ’.'\‘ﬂaml

M=) en

1 :
—= lim
R At —4 wa

B+l
apy

If R =0, then the interval of convergence is (— o2, ea) andl the power series converges
for all x.

If R = 0, then the power series converges only at x = Xy .

2.16. WORKING RULE FOR FINDING RADIUS OF
CONVERGENCE AND INTERVAL OF CONVERGENCE

Let the given power series be a, (¥ 1) where x, mayv or may noi. be zero
B m 0 0 \ 3
m=k
and % is a non-negative inleger.

Gpiel

T+l

ap,

(a) Find () Lei lim =1

@ 1 I=0, then R = « and the interval of convergence i (— oo, w).

(1) I I = o, then R = 0 and ihe power series converges only at x = x,

: _ 1 ,
(e} If L is non-zero and finite, then R=? and the interval of convergence

is (x;, ~ R, 1y + R).

Arbitrary and Power
Series

NOTES
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Remark. If a,, involves ni in the index, then use
1 .

— = lim "Yla,l.

R mae

Naote. Consider z ‘mim-+ 3)% M

m=0
Suppose we want Lo express it in terms of x™.
Pur, m+2=ksothal m=~k-2

Whenm=0, k=2 Asm—oe, e

E mim + 32 2 = E (k-2 (k + 1)2 3%, Replacing k by m
m=0 h=2
=Y (n-2)0n+1)2ym
me2

which follows directly by changing m to (m — 2).

2.17. POWER SERIES AS FUNCTIONS

2.17.1. Uniqueness Theorem for Power Series

1. Theorent 1. Let f(2) = 2 a,(z — 2z )" with radius of convergence R >0, Then f
n=0

is continnous on {z : | z—2, § < R}. That is, we can take the limit under the sum.

2. Theorem 2. 1 f (& = 2, 8.2 —2,) and [ (z) = 3 b,(z ~2)", both with
n=0 n=0

radius of convergence R > 0, then ¢, = b, for all n.

2.17.2. Derivatives and Integrals of Power Series

1. Theorem 3. Let. f (z) = z a,(z —24)" with radius of convergence R > 0, Then
n=0

(1) [ () is differentiable.

) [ =3 nay(z-zy0"!, and
n=1

{¢) The radius of convergence of {(2) is also R.

2. Theorem 4. Let. f (&) = Z a,(z —24)" wiih radius of convergence R > 0. I F(2)
n=0

a 1.
= Y —rlz-z) ! then

n=10 n
@ FE=f@.

(0 The radius of convergence of F(z) is also R.
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3. Theorem 3. A power scries 3, a,(z —2,)" with radius of convergence R > 0

=0

represents a function analytic on the disk {z: | z— 2, | <R}. f'(2) is obtained by {erm-by-
term integration, and the integral of [ is obtained by term-by-lerm integraiion.

Example 24. Find the radius of convergence of the following power series :

v x™ o (-D7
o —_ (i) —x™.
mz;’a (m+2)! Eo 3
Sol. (i) Comparing ¥ with a X", we get.
( ’ P ° mzzﬂ (m + 2)' mgﬁ "
a, = 1 « 1
e . =
" (m+ ! L (m o+ 3!
Gl (m+2)! 1
and = =
a,, {(m+3)! m+3
L i %l |2 i L =
R mo-| a m—e 1+
= Radius of convergence R = e,
. . ) o (_ Dm m ) )
(i) Comparing E 3 x™  with 2 a, v, we get
m=10 m=0
B (- l)m - 1)m+1
@, = gm T 8m+1
) T+l _ -8" = 1
anc @, |~ el
1
== lim |Zmel| = g 1ol
R L K am m—ea 8§ 8
= Radius of convergence R = 8.
Example 25. Find the radius of convergence of the following power series :
Y o (3m)!
) m + 1) x™ 13 X
()mgo ( )2 (”) m:ﬂ(m!)a
Sol. () Comparing 2 (m + 1)% 2" with Z , X", we get
m=0 m=0
a, ={m+ 1) S Gy = (it 2)t
2
2 1+ 2
and Cin+l _ (m +2) _ n
an am |~ m+1? 1+_1_
m
o \2
1 a| . | Y 1+0Y
= = lim = lim 1] = =1
R = e am £l — e 1 4+ — 1 + 0
m

= Radius of convergence R = 1.

Arbirrary and Power
Sevies

NOTES
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.. . o (3m)! X
(1) Comparing E —— " with 2 a, A", we gel
m=o (m

m=0
_ 3m)! _ (Bm+ !
“n = (m )3 “mt = (m+ D1
d Aoy | Bm+3)!  (mD?
an e, | @m+DD? @m)!
B B3m+3X3m+2¥3m+ 1) _ 3Bm+2Bm+ 1)
- (m+1? (m + 1)?
3 (3 + 3] (3 + i]
_ m m
- 2
(143
n
2 1
1 || P [3 ' E](a ' E] _ 3633
R mos| a, _,,}‘flm I = (?
7]
nm
= Radius of convergence R = o7

Example 26. Find the radius of convergence of the following power series :

() X, (m+2mar @ Y (m+ 2m + P,
m=0 m=0Q

Sol. () Comparing E (m + 2y" x™ with Z a,, ¥, we get

m=0

— DRV
a, =(m+ 2)

mfla, | =[Gn+ 7V =m+2

m=0

) I . :
== lim fla, | = lim (m+H=-e
R moe =3 =

= Radius of convergence R=0.

(1) The given power series Z (m + 2)en + 3) x™1 iz in (erms of a1

m=0
To express it in terms of 1™, we replace by (m — 1).
1 ) \

-

Y Aot = Y o )+ D"
m=>_{

m=1

Comparing E (n + Dim + D with Z a, X", we gel.

m=1

g, =m+NDm+2) - «a

‘m+l

m=1

=(m+2m +0

Self-Instructional Material
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1+ 3
Crmvl m+3 n
and o = = 1
m
’ 3
1+—
L= bim S| = im0
R moe| @, Mmoo g2, 1+0
m
= Radius of convergence R = 1,
Example 27. Find the radius of convergence of the following power series :
— = s gym
@ X, (-1 n iy 3 ELL o
m=0 m=g k
] (x _ I)2m
(1)) mz;o om
Sol. () The given power series is
Z (_ ])m yim= Z (- l)m (xam - Z (__ I)m Y where y= 2,
m=1{ m=0 m=10
Comparing it with Z a, ¥y", we get.
m=0
am = (_ i)m ﬂlrrrH = (_ Um+1
am+1 (_ Dm+1
Lo jim |G| = lim 1=1
R mo= @, m— e
= Radius of convergence for the power series 2 ~Dmymisl
m=10
= The power sories E (— Dmym convergesfor 1 y | <1
m=0
f.e., ba?l <l or 1xl2<1 or |x]<l

= Radius of convergence for the given series is 1.

1 . .
-3~m— involves m in the index. Therefore.

lim *‘“.,p‘i e, |,

m = e

Remark, Here a, =

we can also use

1.
R

Arbitrary and Power
Series

NOTES
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(f1) The given power series is

i {_k]im yim = i C D7 Hym = i il y™. wherey=x?
m=0

m m
m=0 k m=0 k

Comparing it with E a, y", we get

m=40
_ (_ Dm ) _ (_ 1)m+1
@, = B™ I U km+1
Ol — km i
a,, P Ikl
1. Hm Tmil} = lim i = i
R nmoa- - moelkl 1k
= Radius of convergence for the power series 2 %1’:_ yris | & |
m=14Q
-n"

y™ convergesfor | vy | < | k|

=> The power serics E
km
m=10

Ix2l< |kl or |x12<|k| or |xl<lkl
= Radius of convergence for the given series is I k.

(fi) The given power series 1s

1 y"
— 2 - > . - Y P 2
E o (= 1Em= 2 om .where y={@x -1

m=10 m=0

Comparing it with E a, y™. we get

m=0
1 1
u’m - 2m Gm+l - 2m+1
m
Cpatl _ 2 _l
a,, - 2m+1 - 2
1 . 1 1
— = lim |22} = lim —=-—
R m—hes a L ] 2 2
m
™
=
= Radius of convergence for E = ig 2
2
m=4_
= g
= The power serics 2 ?— converges for | v | <2
m=0

| =12 1<2 or |lx—11Z<2 or |x~1t<J2
= Radws of convergence for the given series is N2

Remark, Here centre is 1 and interval of convergence is (1 — ﬁ, 1+ -JE),
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TEST YOUR KNOWLEDGE

Test the convergence of series:

o1yl 1
5V2 943 134

1 1 1 1
- + - +
log2 2°log3 3%logd 4%logh

(it}

Show that. the convergence of z a, an implies the convergence of each of the following
Aml

saries:

- 1 "
() RE_,I n;— a, (i) z [ %) a,.

Find the suimn of the series

1 1.1 1 1 1
M I+ttt — -
5 2 7 9 11 4
i 11 11 1 1 1 1 1
N l++=-==-= e el o e
A 5 2 4 775 116 3
1.1 1 1 )
Find how the sertes I — 5 + 371 + FRm should be deranged so that. the sum is doubled.
Show that the Cauchy product. of the two divergont. series
3 3 _(3Y (3}
IR e B i B I
n=1 2 2 2
- 2
1Y.3(2 1Y (8Y(3 1 ‘
anql z,l b,=1+ (2 +—2§]+§[2 +'2—3]+(§] [2 +?] + ... is convergent.
Show that
2
1 1 2 1 3 — +1 1 1 1 I'“l
| x-=x"+=x" = = -1 1+—+=+.... +—|.
2(x 2* "3 ] El( Y 573 n) el
when (@ | x| <land (@ x=1.
_ +1
[Hint:Here a,= (=17 x"]
n
x® x5
Assuming that tan 'y =x - —+ 5 , prove that:
- 1 1
tan! 3 AR E PO S X
ta § } [ 3 2n -1
Find the radius of convergence of the follewing power series:
ol o m
M 3 (m+1lx" (i1) —
mal m=10 5
= m o
{5 E - Gy Y 2m-Dig™
=0 m=1

Avbitrary und Power
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1.

4,

8.

- m _m < xm
W Y m"x @) 2
m=2 m=0 3
. (1 . .
@i 3 S pom wi) 3 {é) £t
mwui) o m=0 4

o _nylm
(I‘L) E (x-2)

o m!

Answers
N . . 1 .
() Convergent (i) Convergent 3. () Elog 12 (i) log Je
k=4,Derangedseriesis1+-1—+—1—+l—l+-1— ) -}-+l—-1—+l— ......
3 5 7 2 9 11 13 15 4 17
mao (i) 5 (Vi) = @) 0 @0
4\
) J3 (vir) ¥ (uiiny (g] (ix) co
SUMMARY

If the sequence < 8 > of the partial sums of the series > a, satisfies

n=1l
m<8 <M, (te Nyand <b, >is a sequence of non-increasing, non-negative real

n
numbers, then mb, < k21 ab, < Mb,.

If Y a,isconvergent and the sequence < b, > is monotonic and bounded, then
n=1

E ﬂ.“bn 15 CONvergen t.
a=1
If 2 a, hasbounded partial sums and <& >isa monoionic sequence converging

r=1

to zero, then Z a, b, is convergent.
n=1

Aseries 3, b_is said (o arise from a series Y u, by arearrangement of terms
n=1 n=1

if there exists a one-to-one correspondence between the terms of the two series so

that every ¢, is some b and conversely.

If we add finitely many numbers, their sum has the same value, no matter how

the terms of (he sum are arranged. Bul this is not so when infinite series are




involved. An arrangement (or equally well derangement) or change in the order of
the terms in an infinite series may nol only aller the sum bl may change its
nature all together.

By a suitable rearrangement of the ierms, a conditionally convergent series 2 a,
n=1
can be made
(t) Lo converge to any pre-assigned under o, or
(t7) to diverge to ee or —ee, or
(rir) 1o oscillate finitely or infinitely.

If z a, and 2 b, are two series of non-negative terms converging (o A and B
n=1 n=1

respeclively, then their Cauchy product Z ¢, vonverges to AR

n=1

Let Z a, and 2 b, be two convergent series such that z a, = A and

n=1 n=1 - n=1 1

Z b, = B. If their Cauchy product Y, ¢, converges, then E ¢, =AB.

noal n=1 n=1

Let f (1) = Z¢ 2" (- 1 <x < 1) and suppose that lim "C, =0. If f(x) =5 sasyx > 1,

then Z¢, converges and has sum s.
An infinite series of the form

. I L . . N - 32
2 @, (-xp) =aytax—x)ta, (®=-x)*+ ...
m=0
15 called a power series in (v — ;).
Here the co-efficients ay, a,, a,, ... are constanis and x is a variable. The fixed
number x, is called the centre of the power series.

A power series is said to be convergent at x = ¢ if lim § (¢} where S (¢)
n =}

=0, +a € —x) Fale—x )+ +a, {¢ — 1", exists finitely. The finite value of

the limit is called the sum of the power series Z a, (€—x)™
m=0

Let f(z)= Z a,(z — 24 ) with radius of convergence R > 0. Then f is condinons
=0
on{z: ] z—z; i <R} Thatis. we can take (he limit under the sum.

-

(@)= 2, 2.2 =2)" andf(@= 3, B{z —2)"  hoth wich radius of convergence
n=90 n=0

R=>0.thena,=b, forall n.

oo
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3

SEQUENCES AND SERIES
OF FUNCTIONS

STRUCTURE

NOTES

3.1.  Introduction

3.2. Sequences of Real-valued Functions
3.3, DPointwise Convergence of a Sequence of Functions I
fi 3.4, Uniform Convergence of Sequences of Functions

3.5. Uniformly Bounded Seguence of Functions

3.6.  Pointof Non-uniform Convergence

3.7.  Theorem (Cauchy’s Criterion for Uniform Convergence)
3.8 A Test for Uniform Convergence of Sequences of Functions i
3.9, Series of Real-valued Functions .

3.10. Convergence {or Pointwise Convergence) of a Series of Functions
3.11.  Uniform Couvergence of Series of Functions

3.12. Theorem (Cauchy's Criterion for Uniform Convergence of a Series of
Functions) l

3.13.  Theorem (Weierstrass's M-test)

3.14.  Abel's Test

3.16. Dirichlet’s Test

3.16. Uniform Convergence and Continuity

3.17.  Uniform Convergence and Integration i

3.18.  Uniform Convergenee and Differentiation

L.:i'lg' Weierstrase Approximation Theorem

S p—— ay—

3.1. INTRODUCTION

| In this unit, we will discuss the convergence of sequences and series of real-valued
functions defined on an interval.

3.2. SEQUENCES OF REAL-VALUED FUNCTIONS

Let:f, be a real-valued function defined on an interval L (oron a subset D of R) and
for cach n e N. Then
<fidy by il >
is called a sequence of real-valued functions on L Tt is denoted by {f, : T— R, n.€ Nior
l briefly by {/,}or <f, >.
|| 96  Self-Instructional Material
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For example :
(1) If f, is a real-valued function defined by f (x) =3, 0<x <]
then <L), f,(), [0, ....>=<xta P, >
is a sequence of real-valued functions on [0, 1).

sin nx

() If £, 1s a real-valued function defined by £, (x) = LO=esg

then < fi(0). 1,00, f(x), ... >=<gin x, sin 2x , sin33x ,

is a sequence of real-valued functions on [0, 1].
If < f, > is a sequence of functions defined on I, then force I
<fl)>=<f0. f,©, ... , £ e}, ...... > is a sequence of real numbers.
For example, if < f, > is a sequence of {unctions deflined by f () =a* 0<r <],
then
11
P

8| =

<[ B> =< B ) G s (), > =<
is a sequence of real numbers corresponding to % e [0, 1].

Thus to each v € 1. we have a sequence of real numbers.

3.3. POINTWISE CONVERGENCE OF A SEQUENCE OF
FUNCTIONS

Let < f > be a sequence of functions on I and ¢ € . Then the sequence of real
numbers < £, (¢) > may be convergent. In fact for cach ¢ € 1., the corresponding sequence
of real numbers may be convergent.

If < f > is a sequence of real-valued functions on I and for each x € I, the
corresponding sequence of real numbers is convergent, then we say the scquence
< f, = converges pointwise, The limiting values of the sequences of real numbers
corresponding to x e I define a function fcalled the limit function or simply the limit. of
the sequence < f, > of funciions on 1. :

Definition. Let </, > be a sequaence of functions on I, If to each x € T and to each
e >}, there corresponds (o positive integer m such that. ] [0 —f(x) | <€ Yz mthen
we say that </ > converges pointwise to the funetion fon 1.

Note 1. </ > converges pointwise {o the function fon L
o lim [ = fa)Vre L f(¥) is called the limit function or simply the lmit or
f— o
the peintwise limit of < £, (x) > on L
Nate 2. The pesitive integer m depends on x € [ and given £ 0, i.e, m = m{x, £).
Let us consider a few examples :

(M) Let /() =x", x € [0, 1)

Since lim ¥"=0for0<sx<1
"= o
we have lim f{(x)=0for 0<x <]
L ]
When v = 1. the corvesponding sequence < f () > =<1, 1.1, ... > 15 a constant

sequence converging to 1,

Sequences end Series
of Funciions

NOTES
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i 0 when0=x<1
Jim f0)=11 whenx=1

Hence < f, > converges pointwise on [0, 1].

0 <x<l
f() = {1 fﬁiﬂ 2 777 is the limit function of </, > on [0, 1}

X

(i) Let f@)= Tene ¥ 20
Then forx >0, lim f () =0
L
Also £(0) = 0V n.e N so that < £ (0) > converges to 0.
: lim [ (x)=0Vvxx0
K =3 0a
[ence < £, > converges {0 zero pointwise on [0, e) and f{x) = 0 is the limit funciion
of < £ (x) > on [0, ).

X
(i) Let f,x)= m xeR
1
For x # 0, [0 = IL —0asn—o
_n2x2 +1
Also [,i=0VneN

lim f(m=0VzxeR

Hence < f, > converges to zero pomtwise on R and f(x) = 0 is the limit function of

<f@>onk
Note 3. For a sequence < f, > of functions, an important question is :

I each function of a sequence < £, > has a certain property such as continuity,
differentiability or integrability, then to what extent is this properiy transferred to
the lmit. function [ 2 In fact, pointwise convergence is not strong enough to transfer
any of the properties mentioned above from the terms £, of </, > to the limit. function.

Let us consider a lew examples :

(1) A sequence of continuous functions with a discontinuous imil function.

2n
Consider the sequence <[, > where f (x) = rpyeit cR
x
0 iftxl<l
Then fo) = lim £, =13 iflxi=1
"o 1 iflxi>1

Here, each f, is continucus on R but fis discontinuous at x =+ 1,
(1) A sequence of differentiable functions in which the limit of the derivalives is
nol equal to the derivative of the linnit function.

S sin nx
Consider the sequence < f_ > where f (x) = Nk re R
n

=0 YaxeR

Then fix) = 3131 s'?nfx
f{y=0 vxeR = f{H=0

But f, )= Jr cosnx
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= f"’(O)zJE—noasn—)m
Thus, acx =0, lim [ (x)# f(0).
R = o0
(1) A sequence of functions in which the limit of indegrals (s not equal to the
integral of the limit function.
Consider the sequence < f, > where f, (1) = nx(l —a%" x € [0, 1]

Then f,(&)=0whenx=00r1i
Also, f 0 <x < 1, then f{x)= lim f,(x) = lim nx(1 - a2y | Form eex 0
== R 3 oo
= lim —= Form —
Ao (11— xz)"" o
. x ==

noe —(1-x2) " log(1-x2) no= log(l-x°)
f)=0Vxe 10 1]

N 1 1
Now L f,(x) dv= _[0 ny {1 — 9" dx
1
——EJ' (1-.r‘~’)n.(—2x) dx
~ (1 x )rH-l
T n+1 2(n +1)
1 n
= lim .[o [, &) dv=lim 2( D 2
Also jl o) de = j 0 dx =0 s0 that lim jl [ Q) dx = Jl f(O) dx
0 ’ 0 o Jo 7 o T

The above few examples show that we need to investigate under what
supplementary condilions these or other properties of the terms [, of <f > are
transferred (o the limit funetion f. A concept of great imporiance in this respect is that.
known as uniform convergence.

3.4. UNIFORM CONVERGENCE OF SEQUENCES OF
FUNCTIONS

We know that a sequence < f, > of function on I converges pointwise to a function
fif to each x € 1 and to cach £ > 0, there corresponds a positive integer m such that

1 f -l <eVuzm

The positive integer m depends onx € Tand given £> 0, i.e.. m = m(x, £). It isnot
always possible (o find an m which works for each x e L.

For example, consider the sequence </ > defined by [=x"xe [0 1]

) . , 0, if0<x<l1
It converges poiniwise to the function fon [0, 1] where f(x) = {1 el
Let £ = & be given,
Then for cach x € [0, 1]. there exists a positive integer m such that

T -f 1<t Vazm A1

Sequences and Series
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If x=0, f@)=0 and f()=0 ¥YneN
[ )=/t =10-01=0<$Vnxl
Thus (1) is (rue for m = 1

Similarly, (1) is true for m = whenx= 1.

If

Il

2 =0t feo=(2)

2 /=0 and [,0)=
(En (—] -<l VILIZS
4 2

3

. 9
Similarly, (1) is true for m =7 when v = To -

Hence there is ne single value of m for which (1) holds for all x & [0, 1]. That.is m
depends both on v and €.

£ — f(x) |

Thus (1) is {rue for m =

Now consider the sequence <{, > defined by /() = 1 .x20
+nx

It converges pointwise (o zero, .e., f(x) = 0 for allx2 0.

<

Now 0< f()— X
1+nx nx

:l
n

Foranye>0. | f(x}~f@) 1 =17, | 5-3;- < g

1 1
fov all x € [0, «) provided o <g Le, n> "

If e is a positive integer > = , then | f () —f(x) | <e Vu2mand ¥ x e [0). =},

Thus, in this example, we can find an m which depends only on € and not on

x € [0, =). We say that the sequence < f, > is uniformly convergent {0 fon [0, ).
E]

Definition. Lel < f, > be a sequence of functions on I. Then < f > 1is said 1o be
unifornily convergent to a fimction fon 1if to each €3> 0, there exists a positive inleger m
(depending only on €) such that

[ [ —f) | <eVyzmandVxe l
The function fis called uniform limit of the sequence <f, >on L

Geometrical Interpretation of Uniform Convergence

A sequence </, (x) > of functions defined on [ is said to be uniformly convergent to
afunction fon 1if for each € > 0, there exists a positive integer m (depending only on £)
such ¢hat

| f(x}—f@) | <e ¥V nzm and Vxel
e, f—e<f()<f(x}+e Ynzm and Vvel
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This shows that the graph of 7 () for all n 2 m and for all x € | lies between the
graphs of f(x} — € and f(x) + ¢, i.e., within a band of heighl 2e situated symmetrically
about the graph of /.

Note 1. In the definition of uniferm convergence, m € Nis the same for every x € [ and
depends only on given £ (.

Note. 2. If a sequence < f, > of functions defined on I converges uniformly 1o a function
fon 1, then the sequence < f, > ronverges pointwise to f also,

Thus uniform convergence = pointwise canvergence.

However, Lhe converse is not true. For example, if £ (¥) = 27, x € |0, 1], then the sequence

o . . . 0, f0gsx<l

< [, = converges pointwise to the function fon [0, 1], where f(x) = {1‘ ezl but < f > does
not converge uniformly on {3, 1).

Note. 3. A sequence < f, > of functions defined on [ does not. converge uniformly to fon
Tiff there exists some € > 0 such that there is no positive integer m for which the statement.

TLO-f) | <e¥ nzm and ¥ xe I holds.

Note 4. Unilorm convergence is a property associated with an interval (or an infinite
subsel & of R} and not-with a single point, On no account we speak of uniform convergenee at. a
single point.

3.5. UNIFORMLY BOUNDED SEQUENCE OF
FUNCTIONS

A sequence < f, > of functions defined on 1 is said to be uniformly bounded on I if
there exists a positive real number K such that.

0 <K ¥YneN and VYyel
The number K is called a uniform bound for <, > on L.
For example, il /, (x) = sin nx, v € R, then | [ =lsinny|<£1¥Vne NandVv
reR

The sequence < £, > is uniformly bounded on R.

3.6. POINT OF NON-UNIFORM CONVERGENCE

Let < f, > be a sequence of funciions defined on 1. A point x € T said to be a point.
ol non-uniform convergence if < £ > does not.converge wniformly in any neighbourbood
(however small) of x.

For example, if £ (v) = 2" x € [0, 1], then 1is a point of non-uniform eonvergence of
< fn -3
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3.7. THEOREM (CAUCHY'S CRITERION FOR UNIFORM
CONVERGENCE)

A sequence <[, > of functions defined on I is uniformly convergenion Tifand only
if for cach € > 0 and for all x € 1, there exisls a posttive integer m such thal

[ £, ()~ fn, (M i<evn,n,zm

Proof. Necessary part. Let a sequence < f, > of functions defined on I be
uniformly convergent on [

Let < f, > converge uniformly (o fon I

Then for each £ > (), there exisis a positive infeger m such that

y f)-f) < -% Ynzm and Vxel

If ny, n, € N arve such thaen,, 1, 2 m. then

| @ —f) | <5 Vrel D)
and | fo, (03— f2) <% viel .(2)

c ) Fa 0 = Fay @)= | Fay 8 = ) + () = £, (0 | =1 (F, (8) = Q) = (i, (0) = f(0)) |
| fy @ = 1+ | Fo ) —f0) 1

£ E )

<3 + 5 =¢ Vo, n,2mandVxel by (1) and 2]
Sufficiency part. Let < [ >be a sequence of functions defined on I such that for

each £> 0. there exists a positive integer m such that.
| f,,l () — 1‘},2 () V<€ Vn,n,zm and Vel (3
From (3), we find {hat for each x € 1. the sequence < f, (x) > of real numbers is a
Cauchy sequence and hence <f_(v) > is convergent. Thus the sequence </, > is pointwise

convergent.

Let the sequence < f > converge pointwise (o the function fon 1.

Then lim [ (x)=f(x) Vxel .. ()

Putting n, = n and keeping n fixed, {rom (3), we have | £ (&) = [, () | <eV n,
m,2mand Vye L
Also, from (4), as ny — =, we have fr, () = ()
‘ [ [ )= f(x) | <e Ynzm and Vxel
= <f >converges uniformly fo fon I,

Note. The above theorem can also be stated as follows :

‘A sequence < f, > of funciions defined on [ is uniformly convergent on I if and only if for
cach £ » 0 and for all x € [, thers exizts a positive integer m such that for any integer p2 1,

[ £ =f ) | <€ Vnzm.
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ILLUSTRATIVE EXAMPLES—A

Example 1. Show that the sequence < f > where f (x) = X" is unifornily convergent
on [0, k], k< bt only pointwise convergent on |0, IJ.
- ] 0, if0sx<«1
Sol. Here, Ji) = nlgr«l» f(x)= 1, ifx=1
Thus, the scquence < £ > converges poiniwise 1o fon [0, 1]
To see whether the sequence < f, > is uniformly convergent, let € > 0 be given.
ForO<x<1. [f-ftwl=]a"-0]=a"<e

1 1 1 1
1) e or if nlog —>log—
X £ X E
1
logg Note that 0 <x <1
or if "n > 1 1
log — = —>1 sothatlog—>0
x X X
log 1 log 1
The number € Inereases with x having maximum value Eon(O, k). k<1
log — log =
0g x . g %
log 1
Choose a positive integer mjust. 2 El . then
log =
&%
LA —f) | <e Ynzm and 0<x<1,
At x=0, Jfa)=ftyi=10~0]=0<e ¥Ynz21

Thus, there exists a positive integer m such that
| fn'(x) —fx) | <e Vazm and Vare [0, k). k<l
= < f >isuniformly convergenton [0, k], k < 1.
log 1

When x — 1, the number £

—> e, Thus it ig not passible to {ind a positive
log =
_ x
integer m such that
P —f@) 1 <e ¥Yn2m and Ve [0 1]

Hence, the sequence </, >is not. uniformly convergent on any interval containing 1
and in particular on [0, 1].

Example 2. Show that the sequence < f, > defined by f (x) =", x € [0, I} is not
tniformly convergend,

Sol. Please try yvoursell.
1
n+x

Example 3. Shows thal the sequence of finclions < f, > where f (x) = 18
!

uniforntly convergent in any inderval [0, k). k> 0.
Sol. Here fly=lim f()=0 vx20
A3

Lat g > 0 be given,

Sequences and Series
of Functions
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L) - | = | —
n+x

NowVare [0, k. O0=sx<h

1
n+x

. 1
-0 <Eg L(n,+.\:>;

1 1
n+hzntx>= = n>—-=h
£ £

\ S . 1
Choose a positive integer m just 2 — — k.
£

Then [ f () —fx) | <e¥nzm and Ve [0 k]

= < f >is uniformly convergent on [0, £].

Example 4. Show that the sequence < f, > where f (x) = n ,x = 04s uniformly
x+n
convergent in any finite interval,
Sol. Here f(x)= lim f ()= lim = lim =tvxeR
R —}oa n—e= ¥x4+n =
—+1
n
Let € > 0 be given.
For x =0, Ifn(.'c)wf(x)lxll—Il={J<E Yzl
For x> 0, we have | £,(0)— /@) | =] —=1=—"—<
For & > 0, we have N=f) | = -1f= = £
or . we have n (x Tin P o
. x+n . n . 1
il >l or 1f1+—>—1-ur 1f'n,>:c[——1]
x € x E £

Now x (-—— 1| increases with x and tends (o mfinity as ¥ — e so that it is not
£

possible to choose a positive infeger m such that
| f @) -ft)y | <e Ynzm and Vxz0
However, if we consider a finite interval {0, ] where & is any fixed positive number,

. 1 . 1
however large, then the maximum value of x [—— 1} is k (— - 1} )
E E

: e . 1
If we choose a positive integer m just 2k | —— 1|, then
£

| ) —f(x) I <eVnzm and Ve [0, k]
Hence < £, > is uniformly convergent on any finite interval,

Example 5. Test for uniform convergence the sequence <, > where f (x) =™ for
20

0, ifx=0
Sel. Here =l ()= B (T'“'={’ .
o Her® 1) n /i) i 1, ifx>0
Let. € > 0 be given,
Forx>0,wehave |f)y—fl}|=1e™-0]=e™<¢
| : 1
if e™*>— Le, if ny>log—
£ £
log 1
or if n> v x>0
log 1
Now £ decreases as v increases.
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3

Choose a positive integer m just. 2 , then
| () —fx) | <e¥nzxm and x>0
= <f >isuniformly convergent on lu, b], a > 0.
1
log ~
£ 5 e g0 that it is not possible to choose a positive

However. when x — 0,
integer m such that
| [ )—fx) | <e Yuzm and Vx20.
Hence the sequence < £ > is not uniformiy convergeni on [0, b].

n
Example 6. Shouw that the sequence of functions < f, > defined as [ (v) = X on
n

(=00, o) s nol uniformly convergent.

n

Sol. Here )= lim (9= lim Z— =0y«
L n—ea 1
Let £ > 0 be given.
" 21" »
| £ —f) | = Zool=2 <£ifn>|x[
vn E
[x1”

— o0 as i3 oo 50 that it is nof.possible to choose a positive

When | x| > I
integer m such that
{0 —f(x) [ <e Vrzm and VxieR.

= <f, > is not uniformly convergent on fa, b]. where v. be Rand u < b.

Example 7. Show that the sequence <f, > where [ (x) = 2 0<xs1 converges
n
uniformly to 0,
Sol. Here f@y = lim f,(=lim *— =0V«
n—3 oo A= N
Let £ > 0 be given,
xﬂ. xﬂ xn
V—f | =|Z=-0)= <gifn>2
| £,(x) —f(x) | n ’ <€ ifn -

Since 03]l = 01"
xn
If we choose a positive integer mr just 2 — | then
E

[ f)—fxl<e Yan2m and Vxe [0 1.
= < f, > converges uniformly to 0.
Example 8. Show that x =01is a point of non-uniform convergence of the sequence

of funclions < > where X)="T""""= 5 .
h /. [8)=

~ L lm % =QvieR

. Here )= li J=l
Sol ore f(‘) 111];1110 f"(l) nhinm 1+n“x n—jae

+ =R

m"“"
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nlxl
l.et € > 0 be given. Then V-l =777z VI 757 <¢
¢ | £, () —f(x) | 1+ nixl 1+ it
if x| <e+néle ie, if ex2—|xlnt+e=>0
o Px |+ a2 —de2x® . 1+ 41— 4¢?
Le, i n> fe, i n» ————
ex? 2elx]
v } 1+1l1-452
Il we choose a positive integer m just. 2 ——————  x 2 {}, then

2elx|
) —fxy | <e Yuzm and xz0

Thus the sequence < /, > is uniformly convergent. in every interval which does not

contain (.
1+ 1/1 - 42

e Txl — o g0 thal it 18 not possible 1o choose a positive
elx

Bui, when x — 0,

integer m such that
| [ —f) | <e Ynzm and YxeR

Hence x = 0 is a point of non-uniform convergence.

Example 9. Shouw thuat the sequence of fumctions < f, > where f (x) =

non-uniformliy convergent on [0, 1).
Sol. When x=0, [ ()=0 Vn

2
When 0<x<1, kim f,)= lim —— = lim ==
PRI noewe 14+n“x n— e _1___+x2 x
2
1 .
f(i')= ;, iflcxxl
0, ifx=0
Let € >0 be given. Then for 0 <x £ 1, we have
2
n°x 1 -1 -1
[ f (- =|—5——|= = <E
A 1+n%® x 1+ n%x%) | x(1+n%x?%)
oo 1 . 0 11
if ol + nid) > — ie. il n>—Jg—-1
E x Vex
. 1
Sinee O<xs1. . 0<'x—£}

. . 1 I 1
If we choose a posifive infeger m just 2 Ve 1 ,then ] f()-fix) i <eVnzm
and O <x< 1.

1171 .. . ..
But, when x — 0. —J—— 1 — oo g0 that it is not. possible (o choose a positive
x

' £x
integer m such that

[ f (@) -fx) | <e VYnzm and Vxe |0, 1].

Henee < /> is non-uniformly convergent on [0, iJ and x = ) is a point of
non-uniform convergence.
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Example 10. Show that the sequence < tan™ nx >, x> 0, is uniformly convergend Sequences and Sevies

on any indervad [a, b, @ > 0 bul is only poinficise convergend. on {0, b]. of Functions

Sol. Here fi@=tan"lny, x>0
. . —, ifx>0 NOTES
f)= im [ (x)= lim (an'mx=72" ~
ks o 0, ifx=0
Let £ > 0 be given.
- -1 n
Forx>0. | [ () —f)|=|tan" nx-— 2
.. -1 -1 _r
= | eot nx | - tan” nx + cot M—E
=col~ nv <e
. . . cot e
if nx>cote e, il n> "
cot g ) ) cote . cote .
Now deereases as x increases. the maximum value of being in

fer, b], = 0.

, then

LW -fl<e Yuzm and Vyelw bl a>0
cote

. c . cot £
It we choose a positive integer m just. 2

Buiasx — 0, — < 80 thal it is not possible 1o choose a positive intcger m
such that
[ /0—f@) | <e vazm and V20
Hence </, > is not uniformly convergent on {0, b] but.is only pointwise convergent
on [0, b].

Example 11. Show thai the sequence < f, >, where [, (x) = daid 7 is uniformly

convergeni on fa, b, a > 0 but is only poiniwise convergent on |0, b).
Sol. Whenx=0. /[ (x)=0vVn

When x>0,  lim f(9= lim = lim —— =
aoe nse Nx+1 now
x4 -
n
L J1, ifx>0
=10, ifx=0
Let £ > 0 be given.
For x> 0, we have
nx -1 1
Y= fo) | = ~1|= =
1.0 -/ | ‘nx-kl ‘ nx+1 mc-i-l‘\:‘E
1 \
if net 1>~ je. if n?i(l—l]
£ x\&

1{1 . . 1/1
Now —|——1| decreases as x increases. The maximum value of =|=—1| on
x\e x\e

fer, bl. a > O is -1(-1-— 1} ]

a\E
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If we choose a positive integer m just 2 l(l— 1} then
ale

[ f,)—f(x) | <e Vnzm and Vaxela bl,a>0

1{1 .. . _ ..
However, when x = (, —(; - 1] — = g0 that 1t is not. possible to choose a positive
X
integer m such that
| [ —f) | <e Ynzm and Vxe 0, bl
Hence the sequence < £, >is not unifermly convergent.on |0, b] but is only pointwise
convergeni on [0, b].

n2x

Example 12. Shou: thal the sequence < f, > wheref (x)= ?—-ﬂ is non-uniformly
+n'x

convergent on [0, 1].

x
-
Sol. Here, fy=lim f(®)= lim ———5 = lim =0¥xe [0 1]
R nosew 1+nyx n—e 1 2
3 +x
n'
Lel &> 0 be given,
For x = (. we have
v o | n’x n?ixl <
V= | = -0f= £
W9 =8 1+n%x? 1+nix?
i n?lxtl<e+exind fe, if ex?ii—lx|nit+te=0
2

[2_4.2.2 [1_4e2
u2>I.1c|+ x“ —4e“x 1-4¢

e, if n>|1+

2ex? 2¢ | x|
ve
J1-4¢?
If we choose a positive integer mjust 2 |1+ ————|
2elxl
then H@-f1<e Ynzm and x+0

= < f > is uniformly convergeni on [£, 1] where 0 <k < L

Asx — 0, L—— "1_452
2elxl
integer m such that
| ) —f@) ] <e Ynzm and VYae [0, IL
Hence < £, > is non-uniformly convergent on [0, ] and x = 0 is a point of
non-uniform convergence.

1/2

— e 50 (hat in is not possible to choose a positive

Exampile 13. Show that x =01is a poind of non-uniform convergence of the sequence

2
<[, > wheref (x)=nxe™™ .

) , —nx® ) nx
Sol. Here f(y=lim f (&)= lim nxe™ = lim — =0forallx.
n—e= a—re n— e em!
Thus the sequence < f, > converges pointwise to 0 on any interval {0, k], k> 0.
Let us suppose, if possible, the gsequence < f, > converges uniformly on [0, £]. so
that for any € > 0, there oxists a positive integer m such that

L@ - | = nee™ <g Vanzmandx20 (D

Self-Instructional Material




. 1
2.2 = =
T.et mg be an integer greater than mr and ¢%e2, then for v = J_ and 1 =m, (1)
My

gives

1

1 Mg~ i .

m,. ——=.e ™ <g or X% <e or my, < %
Jmo e

Thus we arrive at a contradiction,
Hence the sequence < f_ > is not uniformly convergent on {0, k],

3.8. A TEST FOR UNIFORM CONVERGENCE OF
SEQUENCES OF FUNCTIONS

To determine whether a given sequence < f, > is uniformly convergent or not.in a
given interval, we have been uging the definition of uniform convergence. Thus, we
find a positive integer m. independent of x which is nol. easy in most. of the cases. The
following test is more convenient in practice and does noi. involve the computiation
of m. -~
Theorem. (M Test)

Lel < f > be a sequence of functions on I such that

im f()=fly) Vyel

and et M =sup{| [()-f(x) | :xe ]}
Then < f, > converges uniformly on Iif and only if lim M, = 0.

1 3 oo
Proof. Necessary part
Lev < f, > converge uniformly to fon I, ¢o that for a given € > 0, there exists a
positive integer m such that
) —f(x) | <& Ynuzm and VYwrel
= M, =sup{l /,(0) - f(x} | :xel}<e Ynzm
= M <& ¥Ynzm

Since € > 0 is arbitrary, M, —» Dasn oo ie, lim M =0
fi 3

Sufficiency part

Let lim M, =0 then for each € > 0. there exists a posilive integer m such that

e
M, <e Ynzm and vzxel
= sup{l [} -fx| . xelj<e Ynzm
= ) —f) | <e Ynzm and Vyel
= the sequence e < f > converges uniformly (o fon 1.
Note 1. M_ = the maximum value of | f () — f(x} | for fixed n and x € L
Note 2. IT M, does not tend to 0, then the sequence < f, > ig not uniformly convergeni.
Note 3. F(x) iz maximum at x=ce 1if
O F@=0and §d) Fe) < 0.
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ILLUSTRATIVE EXAMPLES—B

Example 1. Show that the sequence of functions < f, >, where f,(x) =

x € R converges uniformly on any closed interval [a, b].

Sol. Here [y = l1m f() = lim s=0vVxeR
= e
x
l [n(-\‘)_/(-‘:) i = 1+RI2 - 1+nx2
Lot =— % hen dy _ (1+rx)® . 1-x.2nx _ 1-nx?
o YT T dx (1+nx2)? (1+ n?)?
dy . 1

For max. or min, ™ =0 = 1l-pnx=0 =2 x=—4—

7

d%y  (1+nx?)?(-2nx)-(1-nx®). 20 +nx”). 2nx

Als0. =
' dx? (L+nx?)?
_ —2nx(1+ nx%) - 4nx (1- nx?)
(1+nx?)®
d% =~2f(1+1)__£(0
d*| 1 1+ D 2
Jn

|-

1
. . 1 .
= ¥ is maximum when ¥ = —= and maximum value of y= £

J; +1 2

h

x

A = maxb | £, —f() | = max

R xela, xe(a, bl

2Jn

1+nx?
Hence < f, > converges uniformly to fon {a, b).
2

=-——~+0a=;n-—9m

Example 2. Show that if f (x)= }% . then <f, > converges non-uniformly on
+n'x
{0, 11.
x
2 2
Sol. Here fy= lim [ ()= lim —— = lim — . =0vxyre [0 1}
naea no= 14+nx n-poa —]l—+x2
4
2 2
nx nx
Y- | =|——=-0|=|—75%
@) =) ] 1+ntx? ‘ 1+n*x?
2
nex
IJel ‘}’ = ——
1+nix?
N dy (L+ntx®).n® —n%x.2n'x  a’[1+n%2% -20%%") _n*(1-n's®)
then = = =

A . ad 1
Formax. ormin. —=0= [-nx*=0= r=—
dx n

Seif-Instructional Material
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Sequences and Series

Also, | ﬁ =n (1+ n4x2)2 - 2n4x) —(1=-n'2? ).2(1 + néx ).2n‘x of Functions
’ dx® (1+nix?)?
_ nf[-2n*x(1+ n*x®) - 4n'x(1-n*x®)
- (1+n%x%)? NOTES
~ =201+ n*x?) + 201 - n*x?))
f - (1+n*x?)®
—on® . L{14nt L
ay ) Zn .n2[1+n ' _—4n4__ﬁ{0
dx®) 1 ( . 1 J:" 8 2
x‘nz I+n S
’ n

. , 1 ,
= yis maximum when x = — and maximum value of ¥
n

]
1
n2 . ? 1
= ———-1-=§ CAlsoxr=— > 0asn— e
1+ n4 Iy n
n
2
n°x 1
1 = Imax. S — iy = makx. —_— = —
M, xrei0, 1) I @ =10 | xe(0,1) |14 nty? 2
which does pol tend to 0 as 1 — oo,
Hence < f, > converges non-uniformly on [0. 1]
2
Example 3. Show that the sequence of functions < f, >, where f (x) = Tonie? s
+n“x
I nor-uniformily convergent on [0, 1.
r Sol. Whenx=0, [{(x)=0 Vn
2
When 0 <x<1, lim /()= lim == lim _* _1
LT n—oe 1+n°x Reres ] 2 x
- +x
n
1 if0cx<l
f¥={x’ -
0, ifx=0
When0<x<1, |/(9—f@) | n’x 1 !
en x=1, V-l =1 -—f—
" 1+n%x% x| x(1+n2x?)
1 . . 1 .
Let ¥ = ————=—— . then y is maximum when x = = and maximum value of y
x{(1+n“x*) n
. n .
15 5 [Prove it yourself]

1 _ . N 1 f.n
Alsox = T 0asno e, M, = max | f)-fy) ] = max |:x(1+n2x2):( 3

which does not tend to zero as i — .
Hence the sequence < £, > is not uniformly convergent. on [0, 1].
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Example 4. Show: that the sequence of functions < f, >, where f (x) = na(l - x)" is
nol uniformly convergent on 0, 11,

Sol. For0<x <1, fo=Hm f ()= lim nx(l —x)"
R =)= n—ea
= lim — 2~ Form =
n—4oa (l_x)'n o
— _ I
= lim % = lim A1z x
. now —(1-x)"log(l1-x) »—w= log(1-x)
=0since (1 -x)" = NQasn— e
Also, when x =0, =0 Vo;whenx=1/(x)=0Vn
- fW=0 VYxel 1 .
[ [ 0)-f) ] =1 m1-x"-0]=nx(l-x)"
Let y=na(l — x)*
then ay = il = x)* — 1 (1 = ¥
he il ; 25 3
=n(l — )1 — ) —nx] = n(l = )" 1 —(n + D]
F 3 i @ 0 ;= -
or max. or min. il e
dZy .
Also, prey == — DU — 21 =+ Dx] —n(n + {1 -1
x
dzy n n=1
— =—nln+1}.
dxz}ﬂ_l_ nn+1) [n+1] <0
n+l

= yi1smaximumalx=

and the maximum value of y is

n+
n n+l ntl
n - i L _n [1- 1
n+l n+1 n+1l n+l
Also, xr= —0asn e
n+tl

n+l

1

— — HS N —> o,
e

M= g 1 o= 1= (1

Since M_ does not tend to 0 as n — co. the sequence < f, > is not uniformly
convergent on [0, 1]. )
‘Here 0 is a point. of non-uniform convergence since x — 0 as 11— o,

Example 5. Show that the sequence < x™! (1 - x) > is uniformly convergent on
[0, 1].

L

Sol, Ilere [ =x"1(1-x

ForO<x<1, f()=lim f{)= lim «*'(1-x)=0
n—yes n-3oe

Also when x =0, [(=0 Vnr;whenx=1/f{x=0Van

Jay=0 vxe |} 1]
P —fo =110 -20)-0!=x" (I ~1)




Let. y=x"1(1-x

dy
y —_— — R=2 - S =
then e n-Dx2{l-»-—x
=52 [ — N1 - ) —x] = a2 {{(n - 1) — nx)

d -1

For max. or min. Q@ 0= =x= L
dx n

d? . .
Also A G —2) 23 [(n - 1) — nx] — a2

dx?®

d?y n-1y"2
dxz] n—1=_n( n J <0

13

. . n
= YIS maxunnum when x=

and the maximum value of y is
n

)

1 1 n-1
l\'iﬂz max. | fn_(x) “*f(.l’) | =; (1_;]

rel0, 1]
n =i
1
:l(l——) (l—lJ —>0><-1-><]=Oasn,~—ém
n n n e

Ienee the sequence < f, > is uniformly convergent. on [0, 1].

. —nx? .
Example 6. Show that the sequence < f, >, where f (v) = nx e™ | x 2 0 is not

uniformly convergent on [0, k], k> 0.

nxt nx

Sol. Here, f)= lim £, = lim nxe™ = lim —= |Form =
L H—w= H—yes eux o3

= lim x2=[)\f.tel(],k]

Redme plphX

| £, () —f(xy | =1 nye ™™ —() = nve ™

Let. y= nxe ™

dy —nx? —n n?

then 2 e +nx.e (—2nvy=ne (1 - 2ux%
For max. or min ﬁ =0 = x= !
X. . dx Y= o
d2

Also, d_:: = e~ (=2n)(1 = 2na®H + n e (4 nx)

x

dzy] _ 2 i
=

— ——— 2<0
dx? 1 V2n
Jzn
: : 1 : : 1 2
= yis maximum when y = and the maximum value of y is n.. .e”
van Van
n
%
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1
van

R“’H = max. | fu(x) - f(xJ | = Jg —S e A8 I — =

x€[0,1]

Also L= —0asn— o

Sinee M, does not tend to zero as n =3 «. the sequence < f, > is not uniformly
convergent on {0, k|, k> 0. Here 0 is a point of non-uniform convergence.

sin nx

Example 7. Show that the sequence < f, >, where f (x) = N ts uniformly
n

convergend on [0, 1.

Sol. Here f)= lim f (9= lim 2508
H—ea L ] J;
= lim —— sinnx=0Vaxe (0,7
H—yes .J; ’ ) ’
| £ —f) ) = iin_“x_o‘= s nx
T n
sin nx dy
Let . = then =% = Cos Iy
1 ¥ J.; Tx .J; 5 7
F . : dy _ 0 =I =
or max. or mi,, E = = X+ 9 ar X = %n
2
Also g—-‘%’- = — 13 gin nx
d? B .
ﬁ . = n# gin 3°- n <
2n

sin
1

Jn

o=

. . n . .
= y1s maximum when x = o and the maximum value of y is
n

n
Alsg x==— >0asn o o,
2n

M = max.
" x &[0, n]

| 0 —f) | = % > Dasn — oo

Hence the sequence < f, > converges uniformly to 0 on [0, 7]

3.9. SERIES OF REAL-VALUED FUNCTIONS

Def. If < {, > is a sequence of real-valued functions on an interval I, then f, +f,
oo Hf, L is called « series of real-talued functions defined on 1.

This series is denoied by 2 f,, or simply by Zf .

n=1
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For example :

1
@I f {0, =} — R is defined by £, (x) = el then the series is

1 1 1
v f = ) = +

M=t it 1+4x 2+x 3+x
sin nx

7

. =fi i+ =sinx+

(i) Hf R« Ris defined by f (2) = , then the series is

sin 2x + sin 3x

.JE T-!— .....

3.10. CONVERGENCE (OR POINTWISE CONVERGENCE)
OF A SERIES OF FUNCTIONS

Let If, be a series of a functions defined on an interval 1.
Let S,=/.8,.=f+f, ...
{ S, =f,+fy+ ...+

then the sequence <8, > is a sequence of partial sums of the series Xf .
t
i If the sequence < S, > converges pointwise on 1. then the series Xf, is said to
converge pointwise on I. The limit function fof < §, > is called the pointwise sum or
simply the sum of the series If, and we write

E =) Yxel or simply . =f

' n=1

| For example, consider the series Zf, defined by £, () =x". -1 <x <1
I then Zf ()=x+x®+x7+ . +x"+.  where—1<x<]1

, _ x(1~x")

S)=x+xi+.  +x* - a A 1 — oo
[ n 1-x 1+x =

[since—T<x<1, x> 0asn— e«

. . . . . x
= The sequence <8 > of partial sums converges pointwise to on{—1, .
1-x

= The series 2f, converges pointwise (o f(x) = on (-1, 1),

- X
X

= Zf ) = -

on (— 1. 1).

3.11. UNIFORM CONVERGENCE OF SERIES OF
| FUNCTIONS

Def. Lel I, be a series of funciions defined on an interval Tand 8§ =/, + £, + ...
+ f,. Il the sequence < S > of partial sums converges uniformly on I, then the series
‘ 2f, 1s satd 10 be uniformly convergent on L.

|
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of Functions

NOTES

[ Self-snuctional Material

115




6

Real Analysis

NOTES

Thus, a series of functions Zf, converges uniformly to o function fon an interval 1
if for each > 0 und for each x € 1, there exists a positive integer m {depending only on
e and not on x) such that

| S (cl=fix) | <e¥nzm.

The uniform limit function fof < S > is called the sum of the serics Zf, and we
writeXf, =f Vxe L

3.12. THEOREM (Cauchy’s Criterion for uniform
convergence of a series of functions)

A series of functions Tf, is uniformly convergent on an interval Iif and only if for
each £ > 0 and for all x € I, there exisis a positive integer m (depending only on €) such
that

B A - T
[ [, W+ L+ () | <eVuzmpe N

Proof. Xf is uniformly convergenton L.

& The sequence < S > of its partial sums is uniformly convergenion 1.

& By Cauchy’s general principle of convergence of a sequence, for each £ > 0
and for all x € I, there exists a positive inieger m {depending only on € and nol. on x)
such that

|5, =8,() | <evnzm pe N
Le., | @)+ f @)+ + [0 | <eV¥nzm pe N
Note 1. By definition, uniform convergence of a series imphies pointwise convergence.

Note 2. The method of tesiing the uniform convevgence of a series Xf . by definition,
involves finding S which is not always easy. The following (est avoids S, .

3.13. THEOREM (Weierstrass’s M-Test)

A series of funclions E f, converges uniformly (and absolutely) on aninterval 1

n=1
L)

if there exists a convergend series Z M_of non-negative terms (e, M 20 VneN)
n=1
such that

[, sM YneN and VYael

Proof. Since E M, is convergent, by Cauchy’s criterion, for each € > 0, there

exists a positive intne?_,ri;r m such that
IM + M+ +M [ <eVnzmpeN (1)
Now, forallxe 1. | L) | =M, L 2)
S ACO T M 5 L R S €5 T S-S Y 6 1 Bl O JOPY € 5 i PP O S €
<M, +M, o+ .. +M, Thy (2]
- <evVnzmpeN [by (1)]

= By Cauchy’s ¢riterion, the series E £, is uniformly convergent on 1.
n=1
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Also, [ f@ L+ 01+ + | f”,rp(x) l<e¥Ynzm pe Nandxel
= The serics 2 [ £, | is uniformly convergent on J.
n=1

Hence the series z f,, converges uniformly and absolutely on [

n=1

ILLUSTRATIVE EXAMPLES—C

Example 1. Shou thai the series E ﬁ is uniformly convergent in (0, b)
nin

n=1

b= 0butisnol soin (0 ).

-3 1o

Sol. The given series is 2

n(n+1) o1
| [1_;]
g0 that f()—m T
= fl':\')—‘l[]—' E
fz(l)"\'[___
fd(l)_-i["j"".f

. 1 nx
S5, =)+ ,)+ ... +f () =x [1— _— 1] =1

\ . . 0, ifx=0
/ $69= fim §,0= him o7 = {00 H30
For x> 0 and for a given € > 0, we have
A RN
b8, -5w 1 = n+1l n+l| n+1 "¢
il n+lx> z or ifn> z_ 1
£ £

If we choose a positive integer m just 2 X_ I,then | § (x)-S(x) | <e¢Vnzmand
x>0 £

Alsoif v =0.18, (x) -50) | =0<& ¥ n>1sothatm=1worksin this case.

Bul. when x = oo, 1t — oo,

This shows that the same value of m cannot be found which serves uniformly for
every xin (0, o),

Bui if the interval is (0, b) where b is any positive number, then the maximum

b
value of = — 1 is ——1on {0 b).
£ £
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TIf we choose a positive integer m just 2 — — 1, then the same value of m
sarves equally for every value of x in (0, D), b > 0.

Thus. the sequence < S| > converges uniformly in (0, b) bul not in (0, ).

Hence the series 21 e D) is uniformly convergent in (0, b), b > 0 but not s0
in {{), eo).
Example 2. Show: that x = 0is a point of non-uniform convergence of the series
xl+ x” + x” +
1+x% (1+x%)F
) 2 2 <2
Sol. Here S (x) =12 + + e — which is a G.P.
W) 1+x2  (1+2%) Qi K )
x2{1-(1 12)”} 1 1
+
S 2 e+ 1-—5 =+ 2 - ——y
1- 1 (1 " 1+x%)"
1+x?
) o 1+x2, ifx=0
8() = hm 5,() = { 0 . ifx=0
Now for x # 0 and for a given £ > 0, we have
18,0050 | =| @+ 2D -—5— (142D :
-5 | = —_— =
n (1+ x?)n-—l (1+x2)n-1
1 log = log
i 4oyl > — if n—1s———p i o>+ ————f—
if (1 + =)= > o or if n-1 log (1+ 25) or il n>1 Tog (1+ 29)

This shows that if x = 0, then n — o so that £ = 0 is a point of non-uniform
convergence of <S> and hence of the given series.

Note. However, if we consider the interval [a, =), @ > 0, then the maximum value of

1 1
log = log —
0g — ogE

1+ Eo—isl+ :
log (1+ x%) * log(1+a2)

log 1

I we choose a positive integer m just 21+ ythen | S () - 5(x) |<e¥Ynzm

- £
log{l+ a?)
and ¥ x € [d, =)
Thus the series is uniformly convergent in [g, #9), @ > ( and non-uniformly convergent in
[05 00)
x x x

+ + +
x+1 (x+DCPx+1) (2x+DE3Bx+1)
uniformly convergent on [a, <), e > 0. Show: that the series is non-uniformly convergent
near x = 0.

Example 3. Shote that the series

-3 x L]
L. The given series is = X
So e given series is 21 - Dx+ s D ,;2:’1 £
x 1 1

so that [ = 1 Dx+1(nx+D (n-Dx+1 nx+l
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= fi@)=1- x4 1 of Fumctions
1
fz(-‘:) = -
x+1 2x+1
NOTES
f=— -1
T 2x 41 Bx+1
1 1
vy = -
1) (n—-Dx+1 nx+1
Sn =1— 1 o _hx

nx+1 nx+1

S@) = hm 5)= lim

A-te RX + 1
For x> 0 and for a given £ > 0, we have

nx 1, ifx>0
0, ifx=0

nx -1 1
L‘ A _S-- = _— = = -
15,0 -8 | +1 nx+1| nx+1
i 1 1{1
‘ if ne+l>— or if n>—(——1)
i £ X \E

This shows that if v = 0, n — e so that it is not. possible to choose a positive
integer m such that

15,0 -8 | <e Ynzm and Yae (0, )

Thus the convergence is non-uniform near v = 0.
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Simce —| — - 1| increases as x decreases, if we consider the interval [a, «), ¢ > 0,
X\E

11 1{1 Ce
then ihe maximum value of ;(; - 1} is “(E_ 1] . If we choosc a positive integer m
a
1(1
fust = —[ =~ 1] then
: ale
[ PS, 0 -8S@ | <e Yauzm and Ve jn, o).
E Hence the series iz undormly convergent on [, ).
I
N -1 . ‘
i Example 4. Shouw: that the series ,,ZI [x i T j — I]:;.s uniformly convergent
f on any findte interval,
! n-1
‘ Sol. Here [ ()= ~+n xen-l /
1
=—— 0
} i) x+1
{ 2 1
fo) = x+2 x+1
3 2
fo0) = x+3 x+2
n n-1
fﬂ(x) = -
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= 5,00=
x+n

Now proceed as in Example 4, [llustrative Examples—A.

Example 5. Show that x = 0 is a point of non-uniform convergence of the series

i _ (n-Dx
o 1+n2x2 I+(n-1%x% |

nx (n—Dx
Sol. Tiere =717 n2x2 1+(n - )%x?
fl (-1) - 1+ x2
2x x
fol0 = 1+2%2x% 1+x
. 3x 2x
RO =T e
. nx (n—Dx
[0 = 14222 1+(n-D%x?
S (1) = ———
d S =T

Now proceed as in Example 8, Illustrative Exampleg-—A.

. d 1 .
Example 6. Test the series x 1 - nt for uniform con-
P sz [1+n2x2 I+(n+1)%x% f
vergence in [0, 1.
nx (n+ Dx
Sol. Here X) =
fox) = 1+72x%  1+(n+ D2x2
2x
A A R
2x 3x
= T2 " T 32
[0 = 3z _ 4x
VT T 8%x2 144242
nx (n+ Dx
)= -
I 1+n2x%  1+(n+ 1222
2
x {n+Dx
= S (= -
A9 142 1+ (n+ D22
X
. —, f0<xsg1
S = lim S )=11+x* ' x
noe 0 , ifx=0
For (} « x £ 1 and for a given £ > (, we have
. x (n+ Dx x
| S ()-8 | = - -
A9 = 5) 1422 1+(n+1D%x% 1+x2




