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The principle can be alternatively stated as:
The motion of the system from instant {1 o instant ty is such that the line integral

t2
J={ Ldt (5.3.1)

L3

where L = Kinetic energy - potential energy =T — V, is an extremum for the path of the motion.

For a system with n degrees of freedom, the Lagrangian L therefore can be expressed in the general
form as

L= L(qlqu: cey Gu: 1, G2, '":q'n; t)

In terms of the calculus of variation, we can state Hamilton’s principle as

15}
6] =6 / Ldt =0 (5.3.2)
t

1

with variations zero at t =1, and t = {4.

Equation (5.3.2) can, therefore, be written as

t2
8J=9 L(Q11Q2:"':qn:q.laq‘2)"'!q'n;t)dtzo

L1

L2
= sJ=4 / L{gs, dis )t = 0 (5.3.3)
3

Note !

It must be remembered that the Hamilton’s principle in this form is consistent with dy-
namical }:;roblems under holonomic constraints, i.e., constraints that are dependent on
coordinates only, not dependent on velocity or other quantites except time. Further, holo-
I nomic constraints must be expressed as equations, connected by equality sign; and not
| related through inequality. However, the principle can be extended to systems with non-
holonomic constraints. Under holonomic constraints, also one can separately view the
principle applicable to conservative systems, where the Lagrangian is explicitly indepen-

at
jf L. . . oL
{ explicitly depends on time, i.e., 5 # 0.

L
' dent of time (— = 0) ; and to non-conservative system where the associated Lagrangian

Comparing equation (5.3.3) with equation (5.1.21) we obtain Euler-Lagrange equation (5.1.16),
viz.,

af daf

dy;  dz Oy
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become
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Sqt_an, . i=1.2,...n
d 0L OL
—_— = =1,2 ... 3.
= @95 9 0, i ;2,1 (5.3.4)

Equations (5.3.4) are the Lagrange’s equations of motion of a system of particles and the quantity
L = T—V is called Lagrange’s function or the Lagrangian of the system. In terms of the Lagrangian
L, Hamilton’s principle can be stated as:

Of all the possible paths, along which a dynamical system may move from one point to another in
the configuration space within a given interval of time, the actual path followed is that for which
the time integral of the Lagrangian function for the system is an extremum.

5.3.1 Hamilton’s varitational principle for holonomic and conservative systems

For a conservative system, the applied forces can be expressed in terms of a scalar function which
is the potential energy of the system. The kinetic energy T = T (¢;(t), ¢i(t)) for such a conservative
system is a function of the generalised coordinates and generalised velocities where the time
appears implicitly, through generalised coordinates and generalised velocities. T is not a function of
time explicitly. Similarly the potential energy V = V{g:(2)) is a function of generalised coordinates
with implicit, and not explicit time dependence. The Lagrangian L = T — V for a conservative
system is then reduced to the functional form as

L = L(g(t), ¢:(2)) = T(g:(t), &: (1)) — V(a:(8)) = Tqu. §:) = Vig)

The Hamilton’s principle for a conservative system can therefore be written as

7]
Y t [T(qi,d:) — V(g))dt =0

2= oT aT av
o /. ?[(a_w‘s‘” i) = o] =0
iy or BV) 8 aT
or — —— |4 ‘d,f,-i-/ —dq;dl =0

As the delta variation and the total variations are independent of each other, we can interchange
the operators i.e.,

d d
8g; = 6—q; = —bq;

. Hence the above equation reduces to

or oV ) ] arT d
Sg;dt + )dt =0
-/1.4 ; (BqJ aq; 9% Z 9¢; dt 595)
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Integrating by parts, the second term, we have

* te
ar ty d {dT
—— — o | Sqidt + > Z—dg; —/ —-(—_—)6-dt=0
‘ / Z(% 3?3) vt 25 YT 2 i\ )
A

Since in variational problems, the variations are considered in such a way that they vanish at the
3:]

end points, ¢.e., 6g;| =0 Therefore, the above equation reduces to

ta

fg .[agj V)- jt (gT)]éqjdt 0

The delta variations é¢g; are actually independent of each other in the sense that variations in one
generalised coordinate does not influence other. So we can equate the coefficients of every dg; to
zero. Equating the coefficient corresponding to the variation of the j-th generalised coordinate,

< Al

Now, for conservative systems, V is not a function of velocities ¢;, but only of the co-ordinates.

Therefore,
d {8(T -V) d
dt ( B4; ) - [qu(T V)] °
or i @ —@=0, * where L=T-V
di 3Qj 6(}’3'

This set of equations is the Lagrange’s equation of motion corresponding to a holonomic conservative
dynamic system.

5.3.2 Hamilton’s varitational principle for holonomic and non-conservative sys-
tems ‘

When a dynamical system is acted on by non-conservative forces, i.e., forces that are not derivable

from a scalar function, the Hamilton’s principle is written in the form

y: .
§I=6{ (T+W)dt=0 (5.3.5)

ta

with fixed end points, where W =§ ZF | = Z F..67; represents the amount of work

done by the force on the system for a vxrtudl dlsplacement from the actual path to the varied paths.
The possible varied paths can be parametrised in the generalised coordinates through a quantity
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L

a. That is, the varied paths can be represented by the generalised co-ordinates ¢;{¢, o}. To proceed
further, we write the transformation equations can be written as

i = T_;[QJ(t} 0.’), t]
from which we find,

P or; P
;= —_—
1 aqj Q_j'

The expression for the components of the generalised force is then

§W =Y F.om
= OF;
= Z Fi.—dq;
i3 9g;
J
.
where (); = ZE é
: 3
Substituting these values to (5.3.5), we have

ig ig
5 / Tdt + / S Qs845dt = 0 (5.3.6)
La ta j

Further, the kinetic energy term is a function of the generalised coordinates ¢; and generalised
velocities ¢, we can write the first termn of the left hand side of equation (5.3.6) as

ts ty aT ar
5 [ e = [ Y (Groas+ 5oty )
g (g;:d5) w2 \ag % 5g; 04

ty
/; Z (aTrﬁqj) dt + Z —5q3
a5
t

A

= J (9T
-, G ) o

The middle term reduces to zero in view of the fact that the variations at the fixed end points are
considered zero. Therefore,

te

te ar d far -
[ ripan [TE [T ()]s,

ta

Hence (5.3.6) can be written as

ts ar arT
/t > [6—% - = (3%) + QJ] Sgidt =0 (5.3.7)
A7
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_'f}s we know, for a system with holonomic constraints, §g; are independent of each other. Hence,
for the above integration to vanish, if and only if the coefficients of each dg; separately vanish, i.e.,

" d(ory_or _
j dt \8¢;) 8¢

‘which are the Lagrange’s equations of motion for holonomic and non-conservative system.
:

:5.3.3 Hamilton’s principle for non-holonomic systems

'For certain types of non-holonomic system, it is normally possible to extend Hamilton’s principle.
Flrst we take note of the fact that for systems with non-holonomic constraints, the generalised
,Ico~0rdmates are not independent of each other, and it is not possible to reduce the number of
jindependent coordinates by means of constraint equations of the type f(g1,42,...., gn,t). Another
[jpoint to be kept in mind that the virtual displacements that are considered in variational problems
‘imust be consistent with the constraints that operate on the system. With non-holonomic systems,
i‘fthis may not be always possible to construct variational paths consistent with the constraints.

J'J, It is however possible to use variational technique when the equations of constraint can be put in
the form of linear relation connecting the differentials of the ¢’s, i.e..

_! > adgy + agedt = 0, (5.3.8)
{ k

4
i We assuming that there are m such relations so that ¢ = 1,2,3,...., m, and the coefficients a;;. , a;

| in each such relations, may be functions of the ¢’s and time.

j
! The virtual dispalcemnets referred in Hamilton’s variational principle are actually taken at constant
times, i.e., 8t = 0 and hence from the constraints as laid in (5.3.8) we can write its variational form

I as

i > aubg =0 (5.3.9)
k

il: which is the set of m equations. These equations can now be used to reduce the number of virtual
p displacements to only that of the independent displacements, or the independent generalised coor-
| dinates. To implement this, we use the method of Lagrange’s undetermined multipliers.

. Let us consider m number of unknown constants A, i=1,2,3, ..., m, which may be, in general,
" functions of time. Multiplying {5.3.9) by these constants, and integrating over time t,4 to ty, we

| get

- 4] .
! / Z Aiaipdgrdt = 0. (5.3.10)

A g

As per the prescription of the methaod of Lagrange’s undetermined multipliers, we now combine this
equation with the Hamilton’s principle for holonomic system (conservative system in particular)

tm e |\ /OL  d OL
5 / Ldt = / ( )5 dt =0
LA : [; dgc  dtog) "

A

with the (5.3.10) so as to get
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ts | X (8L  d 8L
ge @ gk e | g | dt = 311
[ |5 (B - onem s o 6oty

The fact to be noted here is that all the n number of dg;’s are not independent of each other and so
we cannot equate the integrand to zero for each k from 1 to n. In fact, the m equations in (5.3.9)
connect the dgi’s. Once we choose first (n — m) number of the égi’s independently, the rest m
number of Jg,.’s will be given from (5.3.9). Now since we are free to choose m number of \;'s, we
make our choices of each of the A; in such a way that

, d
E——Q‘FZMH%‘:O: k=n-m+ln—m+2,...,n (5.3.12)

holds true. These are the equations of motion for the last m of the generalised coordinates gy.
Now with the choices of A;’s through (5.3.12), we can write (5.3.11) as

w I faL  d oL
/ [ (aqk a1 3, Zﬁ ‘“) q"] (5313

Note that the dg;’s involved in (5.3.13) are independent of each other and hence the integrand is
zero separately for each &k from 1 to n —m, i.e.,

L daL
OL 4 OL | S yam =0, k=1,2,30.,n—m. (5.3.14)
i

Combining (5.3.12) and (5.3.14), we get the complete set of Lagrange’s equations for nonholonomic
systems as

d
__‘ai J— '21:- — ZAlalk! k = 1] 2, 3’ ...... ,'n.. (5-315)
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Note !

1. Deducing the equation of motion for nonholonomic systems using the Hamilton’s
variational principle involves n + m quantites to be determined (n generalised co-
ordinates and m undetermined multipliers A;), with only n available equations.
The extra m equations for complete solutions, come from the constraint equations
(5.3.8) expressed in differential form as

Za:‘k‘j’k +aiy =0, with i=1,2,....,m.
k

Thus the complete solution of the equations does not only provide the generalised
! coordinates but also the values of the undetermined multipliers.

? 2. The physical significance of the unknown multipliers A;’s can be seen by consider-
ing a holonomic system, additionally being acted on by constraint forces. These
constraint forces can always be thought of as some equivalent external forces Qf,
{supposedly not conservative) that keep the motion of the system unchanged i.e.,
the governing equations remain the same. The forces @}, are then given from

d oL 8L /

dtdgx g

and must be identical with (5.3.15). Hence we can identify 3 Ay with Qf, the
generalised forces of constraint.

5.3.4 Summary

In this unit of study we have discussed the variational calculus which forms the essential ingradients
to deduce the Lagrange’s dynamical equations from an integral principle. The integral principte
i basically tells that the governing equations follows from the minimization of a given integral when
varicd between two points in configuration space with some constraints. Starting with the defi-
nition, the discussion progressed towards the concept of the d-variation and the deduction of the
Euler-Lagrange equation. A few general applications have then been discussed so that the readers
can grasp with the basic concepts concerning the calculus of variation. The connection of the Euler-
Lagrange equation with the Lagrange’s dynamical equation was then established so that once the
quantities to be minimized are found out as integral, the Euler equations can be directly written
down. The minimization principle were then extended to discuss problems by altering for varieties
of constraints inchuding the non-holonomic constraints and the relevant equations of motions con-
forming to the constraints are deduced.
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Self study questions:

1. Describe the method and philosophy of the calculus of variation and deduce the relevant
equations.

9. In some unknown space, the distance between two infinitesimally separated points in a given
plane is described by ds? = dz? — dy?. Find the equation of the shortest distance drawn
between two general points, say A and B in this space.

3. State the Hamilton’s variational principle for the case of a holonomic and conservative system
and apply this to deduce the relevant Hamilton’s canonical equations.

4. Tlustrate how one can modify the Hamilton’s principle in the case of a nonholonomic system.
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"UNIT 6

Rigid Body Dynamics-1

Preparatory inputs to this unit

)
1. Newtonian dynamics.

2. Lagrange’s equations.
3. Basics of vecotor Algebra.

4. Basics of ordinary differential equations.

133




134 UNIT 6. RIGID BODY DYNAMICS-I

6.1 Introduction

|’\/Iost of the objects we deal in our daily life are not the point masses, the hypothetical constructs,
|or the particles occupying zero volume, but essentially the extended bodies. The extended bod-
‘jes or masses consist of a large collection of particles occupying a definite non-zero volume in
.3-dimensional space. In the previous chapters we could see the extensive use of the concepts of the
| point masses in deducing various results in Newtonian dynamics. The dynarnics of extended objects
‘on the other hand needs special and careful attention in the deduction of the results concerning the
:system. This is because of two reasons- (1) a large conglomeration of mass points which apparently
irequires the dynamics to be developed for each points; (2) the relative locations of any pair of such
”mass points may keep changing, either in magnitude or in direction, during the course of motion,
‘a5 exemplified by the case of compressible materials or in rotating bodies. If the distance between
!a.ny two mass points does not alter with time, the body is said to be incompressible. If this condi-

tion prevails strictly, the body is not at all compressible and such bodies may be called rigid bodies.

Buler began work on the general motion of a rigid body and found necessary and sufficient con-
ditions for a body to possess permanent rotation, without actually looking for solutions. He also
argued that a body cannot rotate freely unless the term called the products of .inertia vanishes
entirely. His experience of earlier researches in hydraulics during the 1740s, helped Euler to adopt
a fundamentally different approach to mechanics in general and rigid bodies in particular. Euler's
approach consists in how the Newton’s equations F = md defined in rectangular coordinates can
rbc used to write down the governing differential equations for the general motion of a rigid body
(in particular, three-dimensional rigid bodies). He assumed internal forces within the body can be
ignored for forming the correspondng torque since such forces cannot change the shape of the body.
f:I’hus, Euler eventually arrived at the Euler’s equations of rigid dynamics, expressed in terms of the
angular velocity vector and the intertia tensor. Euler’s equations of motion for a rigid body, in fact
consists of three non-linear, coupled differential equations and its complete general solution is yot
to be known. Only in some special cases the solution could so far be found-the torque free motion
Qf rigid bodies and the motion of symmetric rigid bodies.

h
16"1°1 Rigid Body

A rigid body is defined as a system of mass points subject to the holonomic constraints of the
distance between any pair of mass points remaining a constant throughout the motion.

Iln fact, rigid body is an abstract idea: there is no such material body which is perfectly rigid
because the constituent particles of a body are never at rest. But compared to the magnitude of
displacement of the centre of mass of the body, the individual motions of the constituent particles
are very small so that the distance between any two particles may be reasonably considered to be
constant and the body can be assumed to be sufficiently a perfect body. We will also consider such
a body to be a perfect body during our discussion below.

A rigid body can have two type of motion - a translational motion and rotational motion.

The motion of a rigid body can be completely described if the position and the orientation of the-
body is given. If the body is fixed at one point. it can rotate about any axis passing through that
pomt For one additional point of the body is fixed, {.¢.. for a rigid body with two points fixed, the
body can rotate about the axis passing through these two fixed points. H we fix one more point,

\i
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not lying on the straight line passing through the earlier two fixed points; the now cannot execute
rotational motion and the coordinate of the third point will help to locate the rigid body in space.

6.1.2 Degree of Freedom of a Rigid Body

The number of degree of freedom of a free rigid body is the minimum number of independent co-
ordinates required to describe all possible configurations of the rigid body. In the discussion above,
we sce that the distance between any two constituent particles of a rigid body remain unchanged
throughout the motion of the body i.e., the motion of a rigid body is restricted by the requirement
that the distance between any fwo of its particles remain same for all time. Mathematically this is
expressed as equations of the form

Tij = Ciy (611)

where 7;; is the distance between the i-th and j-th particles of the rigid body and the c’s are
constants.

Now consider a rigid body consisting of N particles. Ideally there should be 3V degrees of freedom,
had all the N particles been free to move in 3-dimensional space. But as the body is rigid, the
restriction (6.1.1) is in operation and hence the number of degrees of freedom will be greatly reduce.
To find the degrees of freedom for a rigid body we proceed as follows:

The idea is to place a given rigid body into a 3-dimensional coordinate system. To do so, we first
choose any three particles of the rigid body which are non-collinearly located. Now we place these
threc paricles in the coordinate system one by one.

Choice of location of the first particle: We can move the first particle in three independent ways
to fix in a given location in a coordinate system. As for example, in the Cartesian coordiantes, we
can cause it to move along the z-axis, y-axis or z-axis by any amount at our choice. So the degrees
of freedomn in placing the first particle is 3.

Choice of location for the second particle: Once the first particle is fixed, the second particle has
to be fixed so as to maintain a given fixed distance by virtue of (6.1.1), i.e., the second particle:
is placed such that the constant distance between the first and the second particle r13 equals the
constant cj2. This means the second particle can move to take a place anywhere on the surface
of a sphere of radius ¢z with the first particle at the centre. The degree of freedom of the second
particle having freedom to move on the surface is therefore; 2.

Choice of location for the third particle: The third particle which needs to maintain a constant
distance between the first as well as the sccond particle, i.e. r13 = ¢13 and 723 = ¢z can have the
freedom to move anywhere around a circular path the axis joining the first and the second particle
and thus its degree of freedom, moving around a circle is 1.

Now considering the location of the fourth particle maintaining the conditions r14 = ¢14, 724 =
C24, T34 = c34, we find that there is no freedom left for the fourth particle to move, i.e., the
location of the particle is fixed by the locations of the first three particles and thus its degree of
freedom will be zero. Similar is the case for other particles wiz., fifth, sixth, seventh and so omn,
building up the rigid body conforming to the constraints (6.1.1) and in all these cases the degree
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Iéof freedom will be zero.

Thus the total degree of freedom for a complete specification of the configureation of a rigid body
jis the sum of the degrees of freedom above, which turns out to be siz. This means, a total of six
iindependent generalised coordinates is sufficient to describe the configurcation of a rigid body.

That 2 rigid body has six degrees of freedom, can also be understood from the following:

: As the degree of freedom decides the number of independent generalised coordinates required for
| specifying the configuration, we can start counting this requirement by constructing sonie orthog-
| onal axes.

First, we will require three independent coordinates to specify a point in the rigid body which allows
ijthe latter to undergo a transltational motion relative to some fixed or inertial frame of reference,
This means three degrees of freedom will be used up to describe the translational motion in the
F?rigid body in a 3-dimensional! orhtogonal coordinate system, which is an inertial frame of reference
I in the external space. This frame of reference is known as the space frame of reference in relation
‘to the rigid body in question.

' Next, the rigid body may also execute rotational motion about any axis passing through the origin
 of the body system of coordinates, which can be shown to be a vector sum of three independent
rotations about the three mutually perpendicular axes which form the body frame of reference, a
.non-inertial reference frame for specifying rotation components. Correspondingly three more inde-
pendent coordinates, and hence three degrees of freedom are required to describe the rotation in
the rigid body.

So, we see that in a rigid body, the available six degrees of freedom are shared
for the description of the translational and rotational motion in the rigid body
taking up three degrees of freedom each.

f; Thought Capsule 6.1 Does it require that the origin of the body system of coordinates to describe
; the rotational motion of the rigid body need to be within the physical boundary of rigid body? Ezxplain.

ii
l 6.2 FEuler’s theorem

f Euler’s theorem is one of the basic theorems used for describing the motion in a rigid body. The
| theorem states that

Theorem 6.2.1 Any general displacement of a rigid body, one point of which is fired is a rotation
about some axis passing through the fired point.

As per the statement of the theorem, one point of the rigid body has been fixed, so the body cannot
execute translational motion. Hence according to the theorem it is aloways possible to find out a
single rotation about some axis when the body rotates from its original to final orientation.

I

T
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To elaborate, we take the body-set of coordinates fixed within the rigid body so that the origin of
the system coincides with the fixed point. During the rotational motion in a body we see that the
position vector of any particle does not change in its magnitude. Now if we can find a straight line
such that every particle of the body maintains a constant distance from the straight line during
the course of its rotation, the Euler’s theorem is established and the straight line will be the axis
of rotation.

Let us consider the positions A and B to be occupied by two particles in the rigid body, which
occupy positions A" and B’ respectively after an arbitrary rotational displacement. Let O be the
fixed point (Figure 6.1). The rigid body with the initial configuration OAB has now been changed
to OA’B’. We draw two perpendicular planes P1 and P2 as shown in the figure 6.1. Let the planes
divide the angles of the triangles OAA’ and OBB’ at O and intersect each other long the straight
line OC. Now we can see that every point on the plane Pl is equidistant from points A and A’ and
B and B’ are equidistant from the plane P2. The straight line OC formed by the intersection of the

Figure 6.1; Euler Theorem

.

planes ’1 and P2 is the line which maintains equal distance from the two positions before and after
the rotation. The straight line OC is therefore the axis of the rotation, both of A to A’ and B to
B’. As the particles at A and B are the part of the rigid body governed by the distance constraint
(6.1.1), we can say that the line OC remain unchanged and the displacement is equivalent to a
rotation about OC. This proves the theorem.
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Note!

There also exists a general version of the Euler theorem and is known as the Chasles’ Theorem. The
Chasles’ theorem states that the most general dispalcement of the rigid body is a translation plus
a rotation about some azxis. The essence of the Chasles’ theorem is that it is possible to separate
the discussion of the rigid body motions into two parts - the translation and the rotation, with
the proper sharing of the available six degrees of freedom wiz., three describing the translational
motion and the rest three the rotational motion. Further, it is convenient to choose the centre of
mass of the rigid body as the said fixed point. It then turns out that the total angular mmomentum
or the total kinetic energy of the body equals the sum of the angular momentum /kinetic energy
r of the centre of mass and the angular momenta/kinetic erergy of the constituent particles about
the centre of mass.

63 Rate of change of a vector: Rotating co-ordinate system

Though it appears slightly digressing from the main course of the rigid body dynamics, it still
forins a preparatory part in the analysis of rigid body dynamics, particularly when the rigid body
executes rotatory motion. Let us consider an orthogonal cartesian coordinate system O'(z’,v',2’)
with its origin O’ fixed in space and another similar coordinate system O(z,y,2) whose origin
O is coincident with O’ and rotatmg with an angular velocity w about some instantaneous axis
pa.ssmg through the common origin (figure 6.2).

Y

|

Figure 6.2: Rotating coordinate system

1
1

It is obvious that the unit vectors (7, 7', k') corresponding to the fixed primed coordinate system
are accordingly fixed in space while those in the unprimed coordinate system, (z 3 L) are constantly
changmg their directions because of the rotation of the system itself.

ll
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The position vector of a particle at P, say, can be written as

Fzgrxf_i_“-r r+£:rzr
rETIYA (6.3.1)
Further, F=1ir+jy+kz

To transform the equations from unprimed system to primed system, first we need to take the dot
product of 7 with the unit vectors 7/, 7" and &', The result is

r=FV)=idz+ 5y +kiz

Y =(F3) =iz +75y+ kyz (6.3.2)
=(Fk)=ikz+ ] ky+kEz

The dot products of the right hand side of (6.3.2) are the direction cosines of the angles between

the corresponding axes. In the similar fashion we can obtain the components in the unprimed

coordinates by an inverse transformation, i.e., by taking dot products of # with the unit vectors :,
J and k:

Pir 451y Y
S T L BTN S / (6.3.3)
Pk )k + K kS

) =
)=
) =

The above transformations (6.3.2), (6.3.3) are not only true for the position vectors, but can also
be extended for any vector function, and also not necessary that the vector function has to pass
through the origin. Thus for a vector function V(1) we can write

-y

I

w R
I

(.
(.
(7.

?--> ‘-o.>

V=1V, + 5V, +kV, = V] + 7V + k'V]
The time derivatives of the vector function does not behave similarly, as we can see from the fol-

lowing.

In the primed or the fixed system, the time rate of change of V can be expressed as

dV‘ = KRV Yt [ RA Vi
(Tﬁf)f = Vi =TV 4 JV 4 RV
1%

Here as the unit vectors as seen by an observer in the primed system are constant vectors, their
time derivatives vanish. However, as the unprimed frame of reference is rotating, the unit vectors

. , e o . ) dVv
will also rotate with the frame and therefore their time derivatives will also contribute to —.

. dV .
Therefore, as seen from the fixed prime frame, the expression of r can be expressed in terms of
the quantities of the rotating frame as

dv di dj dk

- = V .3

(dt)ﬁ Vet gV +k it = Vet o Vyt m Ve (6.3.4)
X

Here the last three terms appear because of the rotating nature of the frame and does not constitute
the actual or the inherent rate of change of V. So subtracting them, from the expression will actually




140 UNIT 6. RIGID BODY DYNAMICS-I
|
represent the actnal rate of change of the vector as seen from the rotating frame, i.e.,

i dt

| av f e o

! ( ) =iVe iV, +E&V; {6.3.5)
' rot

;NOW, the linear velocity of a particle having a poistion vector 7 and rotating with angular veloeity
& about the axis passing through the same origin is given by

|

' dr

— =@ XT
dt

| 7=
f

|

Here 7 represents any position vector rotating in the body and the left-hand side is the time deriva-
tive of it. Hence this formula can be applied to rotating unit vectors too.

%'rhe rotating unit vectors (5 . k) in our case, which are rotating with the same angular velocity &,
we have

i a_—.gx’;, ~=@xj and —=@xk (6.3.6)

i
Substituting (6.3.6) to (6.3.4) along with the consideration of (6.3.5) we get

| - - .
| dl’ _{dV - T
!, ) (E)ﬁ = ( 7 ) t +d x 1 (6.3.7)

{(6.3.7) can be considered as an operator equation giving the relations between the time derivatives
in the fixed and the rotating frames of references, i.e.,
|

|
| (2) ~(2) +ex 63

;which can be operated on any vector. In particular, if we operate on the angular momentum vector
o, then we get

3

| J - -
% B _(_)rot [ wxw:O]
i 5 (6.3.9)

(6.3.9) shows that the angular acceleration i is the same in the fixed and the rotating frames.

‘The second order derivative of V can also be found out similarly. But before it we would simplify

‘the notations as
' d d d d
_ . 2y =2 3.1
(d:) ae 4t and (dt) dt (6.3.10)

rot

|
|
i
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With these, we then write

d?V _d (dV
di2 ~ dt \ dt

o
d+ W%—wa
d+ X dV+ x V
priiiial ll s
_d2V+deV+4xd17+_x d.i7+_x,;,
a2 T a wra Y T
&2V &2V av I
L =l X+ IXGXV + — 3.
or, e T +2w><dt +& X @ % +dt><V (6.3.11)

The relations can be used to obtain expressions for velocity and acceleration of the particle situated
at the point P.

We would now generalise the case to include the translational motion of the oirgin O of the rotating
coordinate system with respect to that of the fixed frame, O’. We recall here that if R is position
vector at any instant of time ¢ of the origin O of the rotating coordinate with respect to the point
(', the origin of the fixed frame, then the position vector 7 of the point P with respect to O’ and
the position vector 7 with respect to O are related by

-

F =R+

and its differentiation with respect to time, as applied to the situation above is

). -(4). -
&t ) \dt) T \dt/g,

Consideration of the results of (6.3.8), (6.3.9) and (6.3.11) enables us to write
b

= AR o .
(dL) il I (‘—i’-) FEXF (6.3.12)
& Jo \ @) T \dt)

and

d2F7 d2R d%F ar did
- - = — 2@ % [ — 3 % (& — xF 31
(dt2 )ﬁx (df? ﬁx+(dt2)rot+ wx(dt)mt+w><(wxf)+dt X 7 (6.3.13)

Let us put these formulae in a compact form by using the suffix f for fir and r for rot so that the
equations (6.3.12) and (6.3.13) appear as
=Ri+v+ax7 (6.3.14)

and v }_i"f+1r+2wxr,.+wx(wxr')+wxr (6.3.15)
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‘where 7 0 = velocity of the moving particle relative to fixed axes,

' 7 ’} = acceleration in the particle relative to fixed axes,

' ﬁ} = linear velocity of the origin of the rotating axes,

I R'} = linear acceleration of the origin of the rotting axes,

E 7 = velocity of the particle relative to the rotating frame of reference,

7 = accelertion in the particle as observed from the rotating frame of reference

0 w = angular velocity of the rotating axes,

1 Wx7 = velocity due to rotation of the axes, )

: 2@ X T = the coriolis acceleration

5 & xd = .angular acceleration of the particle due to the acceleration of the rotating axes,
! and @x7 = angular acceleration of the article because of the acceleration of the rotating axes.

.The Non-Intertial force

To discuss the coriolis force, we first recall that the Newton’s laws of motion, in particular the
second law, is valid only in the inertial frame of lefelence, i.e., if a particle of mass m is acted on

Iby an external force F resulting in an acceleration @ = all the quantities are measured by an

_2,
l(ébserver in a given inertial frame of reference, designated as fiz, then the corresponding Newton'’s
llsecond law of motion can be written as

I . dQT_"

: F=mi=|— 6.3.16
; Jne ( 72 ) . ( )

J'll"he suffix fix here reminds us that the associated differentiations must be carried out with respect
to the fixed reference frame. Now suppose we want to rewrite the equation in a rotating frame
of reference rotating say with a constant angular velocity, such that it preserves the form of the
equatlon Under this circumstance, there is no angular acceleration of the rotating from such that
F.:J = (. If further the origins of the fixed and the rotating frames coincide, then B = 0 so that

—

7/ = 7. Therefore equation (6.3.15) reduces to

(£, (), -+ (8) ,-rsvenr
™m | —= =m| —= — AT -_ — T w T
dt2 rot dt2 fix dt rot

= Fig (6.3.17)

3
H
!
i
i

:Thus, we can consider the equation (6.3.17) to represent a situation where a particle is acted on by
|a couple of forces in the rotating frame, viz.,
|

d2
. the real force F =m ( )

. the centrifugal force —mis x (&5 x 7) arising because of the rotation of the coordinate axes,

and
1

dr
3. the coriolis force —2m& x (d—l) arising as a result of the motion of the particle in the
rol

rotating frame.

{W’hereas the same was seen from the fixed reference frame as the particle being acted only by the
real force. The last two forces are seen to arise out of the selection of the reference frame, e.g., the
I,

i
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rotating frame here which is actually a non-intertial frame. The coriolis force and the centrifugal

dr?
as to give F.g and hence to resemble the equation of motion to that in the fixed frame, i.e., the
equation (6.3.16). Hence the thumb rule to relate the forces in the inertial and non-inertial frames
is

. , a2
forces are thus the non-inertial forces and are to be added to the force term F = m ( ) S0
ot

F + non-inertial forces = I

6.4 Angular momentum and kinetic energy of a rigid body

Consider a rigid body composed of = particles having masses m; (i =1,2,...,n) and rotating
with instantaneous angular velocity &. Let one of the points in the body be fixed. Hence, the body
cannot execute translational motion. The only possible motion of such a body is the rotational
motion. We shall now find out the expressions for the angular momentum and the kinetic energy
associated with the rotation of the body.

The linear velocity 7; of the i-th particle of mass m; and position vector 7; with respect to the fixed
point is given by
v = ?_; =w X 1’_;
The linear momentum of the i-th particle is therefore
Pi = mit;

and the corresponding angular momentum about an axis passing through the origin,

-

Ii =ﬁ' X m,-ﬁ;-

The total angular momentum L of the rigid body is the sum of angular momenta I; of the individual
particle and is given by

n
L = E fi= E ﬁxm;ﬁ-

=t i
= Zmiﬁ- X (@ x7;)= merfﬁ - Zm,-(f",;.cﬁ)ﬁ,
i i i
where, Ff = R =t

The summation is carried out over all the particles of rigid body. If we place a cartesian coordinate
system in the rigid body with its origin at the fixed point, so that

Ty = (i, ¥, 2); T = 15 = (b1, %1, £1) W = (W, wy, w:z)

then expression of the z-component of the angular momentum of the rigid body can be written as
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| L= Zmi ['-‘":2 - (m?wz + Tiyiwy + ﬁfiziwz)] (6.4.1)
H

= Z mi(rf — 22)w, — Z T Yiy — Z T 2. (6.4.2)
i i i
Similarly we can find the expressions for Ly and L. as

| L,= Z miTiYiWr + Z mg(rf - yf)wy - Z ;Y ZitWy . (6.4.3)

1 i 1
and L,=- Z T2y — Z MiYiZitdy + Z mi(r? — 28)w,. (6.4.4)
i i i

Let us now introduce some subscripted quantities /4 for the coefficients of wy, wy and w; of the
%quation (6.4.2), where the suffix ¢ and b may denote any of the three cartesian components, viz.,
x,y or z. We write

s

| Lp=Y m(rf—2l) = mf+22) (6.4.52)

' i i

} Tyy = Z mi(3} + 2}) (6.4.5b)

i

% Iz = Zm,(z? +y7) {6.4.5¢)

E: I:cy == Z HYyEY = Iyz (645(1)

i T

j Iyz == zmiyizi = Izy . (6.4.5¢)

! :

Iz = = Zmifizi = Ir; (6.4.5f)
i

{I’hesc quantities in equations (6.4.5a) through (6.4.5f) actually define moments of inertia about
;various axes and the products of inertia. The quantities I, I, and I, (with matching subscripts)
fare called the moments of inertia about z, y and z axes, respectively, and the terms with the
non-matching subscripts such as Izy, Iz; and [, are the the products of inertia.

iUsing these quantities, we can express the components of the angular momentum vector in a tidy
manner, so that

L; =Ly + Izywy + I;.w;

ilr\lext we proceed to deduce the expression for the rotational kinetic energy of a rigid body by
irecalling and using the relations as above. The total energy T of a rigid body is the sum of the
individual rotational kinetic energies of each particles. For the i-th particle with mass m; moving

|
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with a velocity ;, we have,
1 2 . .,
T = E 5, with || = v
i
2 )
d “milul? = midi A
i i
E myfi. (W X 73)
i
= ) md(f x 1)
i
= . E (?-‘; b m?:ﬁ')
i
= &@. E I
i
1

2

Thus the total rotational kinetic energy of a rigid body is given by halving the result on the dot
product of the angular momentum and angular velocity vectors.

2T

l

T = Z&.L (6.4.7)

We can alter some notations so that the equations (6.4.6) and (6.4.7) look more compact. Let us
number the x, y and 2z axes with 1, 2, and 3 respectively. Then L; — L, wg = wp ete, so
that the components of the angular momentum vector are

L= Ljw;, i=1,23. (6.4.8)
i

and the total rotational kinetic energy is

T = %a.ﬁ
1 I
1
or, T=3 N 5w w; (6.4.9)

i

So, the total kinetic energy in terms of the moments of inertia and products of inertia is given by

1 - -
T = § g Iijwi.wj

Thus from the boxed equations above we see tht once the mass distribution (the mass at each
location { =, y, 2 )) are known, the quantities /;; can be calculated using the relations (6.4.5a)
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through (6.4.5f). It then becomes easy to calculate the components of the angular velocity vector
]%: = (L;, Ly, L) with the knowledge of the angular velocity components (wy, wa, wz) with
rigspect to a given axis. The total rotational kinetic energy of the rigid body is then found out
either by using the angular momentum components and angular velocity components (6.4.7), or
c|1]irectly using (6.4.9).

|E

6.5 Euler Angle and Translation Matrix

We have already found that there are six degree of freedom in a rigid body. We have also learnt that
ﬁhe degrees of freedom in a rigid body can be interpreted in different ways. Out of these six, three
degrees of freedom correspond to three independent co-ordinates which serve to locate a point on
the instantaneous axis of rotation in the rigid body undergoing a translational motion in relation
to some fixed inertial frame of reference. Two more degrees of freedom and hence two co-ordinates
are required to locate the axis of rotation passing through some fixed point already located. Lastly,
Lhe orientation of the body can be specified in terms of ‘an angle. Thus, in summary we find that
thl(‘(‘ co-ordinates are nceded to represent the position of a fixed point and the remaining three
(;_oordlnates are designated by Euler angles, as described below.

The Euler angles (¢, 8, ¢) relate two orthogonal coordinates systems having a common origin. The
tl ansformation from one coordinate systemn to the another is possible through a series of successive
two-dlmensmnal rotations. More specifically, the Euler angles are the three successive angles of
Il'OtathD The sequence starts by rotating the inital system of axes, by an angle ¢ counterclock-
wise about the z axis, followed by a second rotation about the new z axis by an amount 6. The

thlrd rotation in the sequence is the rotation about the latest z axis of the coordinates by an angle ¢.

Essent.lally we have some initial co-ordinates {xo,yo, 20} of an inertial coordinate system Sp in
three dimensions which is rotated to a final co-ordinate system S3 with the co-ordinate (3, ys3, z3)
Tafter a succession of three rotations. Usually,S3 is identified as the body frame of reference as we
]Sald earlier and the Sy as the fixed frame. Let the position vector X? denote the set of initial
comdmates (o, Yo, z0) and the position vecotr X2 to denote the final set of coordinates (z3, y3, z3}.
The details of each of the three rotations, designated as the First rotation, Second rotation and the
’I_thrd rotation are given below.

I
First Rotation

The Sp system is rotated about zg-axis by an angle ¢, (0 < ¢ < 2x) in anticlockwise direction
;é;.o that the plane contained within 2y-yg axes takes new position z1-y;. This plane, including the
same 2p axis as the z; axis forms the new orthogonal coordinate system. Let this new co-ordinate
system is $3. The transformation equations are

, 1 = zgcosd + yosing + 0.2
§

FF y1 = —xosing + yocos¢ + .29
“ 71 =020+ 010+ 1.20
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20, 41
Iy

/ Ui
Ny,

2\

£
Lo Ty -

Figure 6.3: First rotation.

These relations can be written in terms of matrix, i.e.,

1 cosd sing O o g
y1 | = —sing cos¢ O yo | =RA$) v
21 4] 0 1 20 29

where the first rotational matrix is

cos¢ sing O
R¢)=| —sing cos¢ O
0 0 1

If we take the transpose of R;(¢) i.e., find RY(¢) then

cos¢p —sing 0
RT(¢) == | sing cosp O
0 0 1

which, on postmultiplication with R,(¢), results in

»cos¢gp —sing 0 cos¢g sing 0
RT(P)R.(¢) = | sing cos¢p O —sing cos¢ 0)

0 0 1 0 0 1
cos? ¢ + sin? ¢ sin¢gcos¢ —singcosg 0
| = | —sin¢gcos¢+singcosd cos? ¢ + sin? ¢ 0
i 0 0 1

oo

0 0
= 1 0 | =Iaxs
0 1

Similarly, on premultiplication by R.(¢) yields

cos¢g sing 0 cos¢ —sing 0
RAPRI(¢) =1 —sing cos¢ 0 sing cos¢d O | =1Izs
0 0 1 0 0 1

In both the cases we see that the first rotational matrix is orthogonal. i.e., RL {¢) = Ry {¢).

147
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Second Rotation

The second rotation is rotation of the Sy system about zj-axis through an angle 8, (0 <8< 7)
in anticlockwise direction to generate the new co-ordinate system 5;.

!
! 20 21 Yo

Figure 6.4: Second rotation.
Here the transformation is represented in the matrix form by

i
|
: To A
|
!
|
|

v2 | =R(8) | wm
Z2 21
where the second rotational matrix is
| 1 0 0

R.(0)=] 0 cosf sind
0 -sinf cosf

One can prove easily that the second rotational matrix is also an orthogonal matrix.

Third Rotation

li The third rotation involves the Euler angle 3, 0 < @ < 27 . The S, system is rotated about the
z9-axis through an angle ¢ in the anticlockwise direction, generating the co-ordinate system Ss.
Thus we see that the z coordinate in Sy is identical with that of 53, ¢.e., zo-axis remain unaffected
| on the third rotation, which is obvious because the third rotation is about the zp-axis.

| The third transforination can be written as

I s s
ya | = RA) | we
23 29

where the third rotational matrix is

5
cosyp  sinyg 0
R ()= | —singy cosyp O
0 0. 1
|
i
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2, T

™
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Zy £, 52
'\--____.--""‘"”/J

Figure 6.5: Third rotation

It is easy to see that the matrix R,(¢) is also an orthogonal matrix.

As the third rotation completes the required transformation, we are now in a position to find the
single matrix of trnansformation which transforms the reference frame S; to the final S3 frame.
This single matrix is known as the Eulerian Rotational Mairiz.

Eulerian Rotational Matrix

Let us define a vector X© with components given by {(zp, yo, z0) in a fixed reference frame Sp.
Let Sp be rotated as per the prescription of the Eulerian angles to a new reference frame S3. The
components of the vector X are then obviously transformed to a new set of values (z3, ¥3, 23)
and define a new vector X? in the frame S3. The two vectors are related by

X*=R(¢,6,9)X"°
where,

R(¢:9:¢') = Rz(irb)R:r(o)Rz(¢)

cosy sinyg 0 1 0 0 cos¢ sing 0O
= —siny cosyp 0 0 «cosf sin@ —sing cos¢ 0
0 0 1 0 —sin® cosf 0 0 i

cos 1 cos ¢ — cosfsin ¢ sin cosyPsing + cosfcossinyg  sinsind
= —~sintcos$ — cosfsingcosyy —singsiny + cosfcosPcosy cosipsind

sin @ sin ¢ —sinfcos ¢ cost
and,
3 o
X = |w], X'=1 w
<3 20

The matrix R{¢,#,1) which is obtained by the matrix multiplications of the the matrices corre-
sponding to each rotation, ¢, § and 1, taken in reverse order, is known as the Eulerian Hotetion
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]iMatm'x.
|

{We have already seen that the matrices R;, R, etc. are each orthogonal. Their matrix product
igiven by R = R{$,8,+) will also be orthogonal. This fact follows from the transpose and inverse
+ properties of orthogonal matrics; this can be easily shown that the product of two orthogonal ma-
 trices results in another orthogonal matrix. From the discussion, we can easily find that the inverse

- of the Eulerian rotation matrix R(¢,8,) equals its transpose, i.e., X® = R71X?% = RTX3,

6.6 Summary

In this unit we have discussed at length on the basic definition of a rigid body. Starting with an
introduction we have dealt upon the degrees of freedom a rigid body possesses, along with a the
Euler Theorem will tells us about the kind of motion a rigid body may execute. We have seen that
a rigid body may have translational motion as well as a rotation, particularly about an axis passing
through a fixed axis, Further, we have seen that out of the six degrees of freedom available, three
degrees of freedom describe the translational motion and the rest three are used for describing the
rotational motion. An elaboration of the rate of change of a vector in a rotating coordinate system
has been made which demonstrates that such a non-inertial frame are beset with pseudo- forces like
the centrifugal and coriolis force which make their appearances while transforming the results of
the inertial frame to a non-inertial frame. The angular momentum and the kinetic energy possessed
by a rotating rigid body can be well described with the introduction of the inertia tensor. Finally, a
new set of angles as generalised coordinates -the Eulerian angles have been introduced to describe
the rotatory motion of a rigid body.

Self study questions:

1. Justify that a rigid body has six degrees of freedom.

2. State and explain the theorems associated with the motion of a rigid body. What kind of
motions are expected in a rigid body system?

3. Define non-inertial forces and explain their role in the dynamics of a rigid body.
4. Explore the properties of the moment of inertia tensor.
5. Show that the moment of inertia of a system consisting of N particles can be expressed as

nf
I=>"my(f; x &) (7 x /).

=1

where m; is the mass of the i-th particle and the # is the unit vector along the direction of
the axis about which the moment of inertia is sought.

6. What are Eulerian angles. Illustrate the rotations in a rigid body in terms of the Eulerian
angle. Are the rotations of the rigid body by the sequence of the Eulerian angle orthogonal?
Explain.
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Preparatory inputs to this unit

1. Newtonian dynamics
2. Lagrange’s equations:.
3. Basics of vecotor Algebra .

4. Basics of Ordinary differential equations.
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7.1 The Inertia Tensor

We have already seen in the previous unit of study that in order to streamline the understanding of
the angular momentum vector, the comcept of the moment of inertia was introduced. It was also
seen that the moment of inertia has 9 components written in matrix notation and the matrix is
symmetric. The condition of symmetricity renders the matrix to posses six independent componets.
This moment of inertia matrix, often called a moment of inertia tensor or simply the inertia tensor

is actually a mathematical quantity which bears the signature of the nature of the mass distribution
, which in the matrix notation

e
—

in the rigid body. The moment of inertia tensor is denoted by

)
| | takes the following form, i.e.,

AR e

l ISCJT I_ry IIZ
H
I - 7= Iyw Ly Iy
| jf Iz: I:ry Iz:n
‘]I
}:J where,

/ !;l Jr:r:a: = z 7”!‘(19'12 + z?)
] F Iyy=2m;(zf+$?)
I ]
! L= mi(af +f)
" i
Ipy = — Zmiﬂtiyi = Iy
i
{ ]yz = "‘Zm-i?)'izi = Izy
; i

' { )sz = — Z Mzt = Ia:z

J

As the moment of inertia tensor is obviously symmetric, we have
Iij = I

with six independent components. In a rigid body, the matter is continuously distributed and
hence the density of matter can be expressed as a continuous function p = p(r), with functional
dependence on the distance from a chosen point, the fixed point. This fact make it easy to rewrite

the moments and the products of inertia in a generalized form, as

Ls = ] () (7 = 72)dr

and
Ly = -—/p(r):ryd'r

and so om, so that the most general form of the angular momentum vector can be written for

continuous distribution of matter as,

/ L= [p(F) (r*a - (FD)F) dr.
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Here 7 denotes the volume the of the rigid body over which the integration is done.

If the three components of the moment of inertia about the principal axes are equal i.e., if [} =
Iy = I3, the body is called a spherical top. On the other hand, only two of the components of the
moment of inertia about the principal axes béing equal ie., 4 = I, # I3, is the symmetric top.
Finally, if all the components of the moment of inertia about the principal axes are distinct, the
body is known to be an asymmetric top. A body for which J; = I, and I3 = 0 is called a rotor.

Numerical Examples

Example 7.1.1 Find the Moments and Products of Inertia of a uniform rectangular parallelopiped
with respect to its edges.

Solution:  Let us consider a rectangular parallelopiped with edges of length a, b and ¢. We set up
a rectangular cartesian coordinate system at that edge so that the side o lies along x-axis, b along
y-axis and ¢ along the z-axis. Further let p be the mass density of the parallelopiped which is
considered uniform, i.e., the density does not depend on any coordinates. If M be the total mass
of the parallelopiped, then the density p is related to it by

M = pabc.

Under such circumstances, the moment of intertia about z-axis is calculated as the following :

c pb po

: I.= / f / p(z? + y?)dzdydz
i\ 0 Jo Jo

¢ LI
p/ dz/ / (z? + y®)dxdy

0 o Jo

b /g3
pc/ (— + yza) dy

o \ 3

) o (Bl P
‘ TPlTE T

| = %pabc(a2 +b%) = %M(«:r.2 + %) as A = pabe.

)

Similarly we can calculate out the other moments of inertia, viz.,

o

1
\ Iz = %M(bz + ), and Iyy = iM(az +ch

of nertia, which are given by
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c rb 2 b2
Joy=TI4p = —/ / f prydzdydz = w,cuc——-—
o Jo 22

1
= —ZMab
e prb ora ﬂ2 C2
lIey=1I,,.= —/ / / przdrdydz = — pb——
0 Jo Jo 2 2
1
= —4—M(IC
Iy =T, = / / / pyzdrdydz = —pa—%z-
= —ZMEJC

Example 7.1.2 Find the Moment of inertia of uniform hemisphere about
(1) the azis of symmetry, and

(it) a given azis lying in the base plane and perpendicular to the symmetry azis.

Solution:

(¢) As the hemisphere is the half portion of a full sphere, the soltion to the problem will be easier

to work out in spherical polar coordinates, (r, 4. ¢). The transformation of coordinates are
related by

z =rsinfcos¢
y=rsinfsing
z=rcosf

5o that the elemental volume dV = dz.dy.dz transform in spherical polar coordinates to
dV = r? sinfdfdpdr. We calculate the moment of inertia about the z-axis, the axis of
Syminetry as \

Iz = /p(m2 + y2)dV

2x puf2 R
= / / / presin? 8.2 sin” 0d0dgdr
0 Jo 0
2x rwf2 rR
= f ] / prd sin® 8d0dpdr
0 1] 0

5 4
i = p-}-;-—?ﬂ = gMR2, where M = (

2n R3

) =mass of the hemisphere.

S
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(#¢) In the similar fashion as laid in ¢ above, the moment of inertia about a base axis, say the
z-axis as

Ipw = / p(y® + zH)dV
2r pwf2 pR
- / / / P (r2 sin? @sin? ¢ -+ % cos? 7) r? sin 0d@dgdr
o Jo Jo
ar /2 R
= ] f / prt (sin® @sin® ¢ + cos® §sin 0) dfdedr
o Jo Jo
In e f2
= p— / f [sin8 — (1 — sin® ¢) sin* 6] dOde
o Jo
R 2w 2n pwf2
=p— |- / cos 8|37 dp — / f cos? ¢ sin® 8dfd¢
5 0 o Jo

5 2w
= pE— [2?‘[’ - g / cos Gq&dq&]
3 Jo

5
RS 27
=Py [Zﬁ - ?]
2 ) 21T 3 . .
= -MR", M= —é-pR = M is the total mass of the hemisphere.
L) .

We can sce from symmetry that rotation about both the x-axis or the y-axis are equivalent
so that

2
Ty = Iz = 5MR2

7.2  Euler’s equations of motion for a rigid body

7.2.1 Introduction

While discussing the Kinematics of the rigid body in the earlier unit, we observed that one requires
a particular reference point in the rigid body so that the motion in the rigid body can be split into
parts- one purely translational motion and the other purely rotational motion about the reference
point. For a reference point which is made fixed, the motion simply renders to purely rotational;
no translational motion is possible. The reason is also obvious. Because of the fixed point, the
body cannot execute translational motion.

If the reference point is not predecided, the most convenient point to be chosen as the reference
point is the centre of mass of the rigid body. We have also learnt earlier that under the choice
of the reference point as the centre of mass, either the total kinetic energy or the total angular
momentum can be separated to two neat pieces - one corresponding to translational motion of the
centre of mass and the other to the rotation about the centre of mass.

The act of separation facilitates us to extend the method for considering the other aspects of the
rigid body problems and the corresponding solutions separately for translational motion of the
centre of mass and for rotational motion of the body about the centre of mass. Thus if we consider
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a rigid body system under holonomic constraints is acted on externa.lly‘by a torgue-and if the latter
involves a conservative force, we can separate out the Lagrangian into the so-called Translational
Lagrangian L.(gc, d.) and the Rotational Lagrangian Ly(gs, g») involving the generalised coordinates
Iq and generalised velocity ¢ so that the total Lagrangian £{q,q) of the rigid body system is

[’(q) Q) = ‘CC(QC: QC) + Eb(‘}b, l?l'))

t

I

‘The generalised coordinates to be chosen to analyse the rotational motion are obviously the angu-
lar coordinates; the suitable orthogonal set of angles being the three euler angles as discussed earlier.

!
_;!7.2.2 Deduction of Euler’s equations of motion

: For deducing the relevant equations govering the rotational motion of rigid bodies about a fixed
point or the centre of mass, we have the direct Newtonian approach at hand. The Newton’s
second law of motion can be suitably adapted to take into account the rotational motion, i.e., the
momentum is replaced by the angular momentum L and the force part by the external torque 7,
With respect to a fixed point, not necessarily inside the rigid body, the corresponding Newton’s
law adapted for rigid body motion is expressed as

dL
R vl — 5 7.2.
(dt) 7 (7.2.1)
5 LY

iwhere the subscript s referes the tme derivative with respect to a space set of axes, which do
not share the rotation of the body. Now we want to transfer the results of the derivatives above,
obtained with respect to the space set of axes to the body set of axes fixed in the body. For this,
we. use the relation already deduced (Equation (6.3.8)), so that

i d_‘_i: = d—ﬁ +f"><f
it ) ~\d), WL

;Using this to Equation (7.2.1), we can write the equation of motion in terms of body set of axes as

f

" — +@FxL=7 (7.2.2)

wherein the subscript & is dropped, because henceforth the entire equation will be meant exclusively
for the body set of axes. Equation (7.2.2) is the appropriate form of the Newtonian equation of
! motion for a rigid body relative to the body set of axes.
\
We can also write Equation (7.2.2) in the component form, so that the i-th component is expressed
as

1 dL;

E + Egjk ijk =T (7‘2.3)
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Here € is the 3-indexed Levi-Civita symbol defined as

1 for i, j, k cyclic
¢ije = ¢ —1  for i,7, k anticyclic (7.2.4)
0  if any two of i, 7, k coincide

We further adopt the Einstein summation convention on indices that repeated indices in o single
term imply summation, unless otherwise specified.

Let us now arrange the body set of axes for the principal axes of the rigid body relative to the
chosen reference point. The angular momentum components in this case can then be expressed.
simply as Ly = Iywi (no summation), so that the Equation (7.2.3) takes the form

d
i (Liwy) + gpwijwe e = 7 i=1,2,3.
dl

I : + e pwyiwely = T, (' I is independent of time.) (7.2.5)

Expanding (7.2.5) to all values of the index ¢, we have a set of three equations

hin —waws(fo — ) =7 <
Do —wisw1 (s ~ I)=m (7.2.6)
Iswy —wiwr (1 ~ I)=m3

Equations (7.2.6) are called the Euler’s equations of motion for a rigid body with one point fixed.

We now analyse a special case of the Euler’s equations of motion of the rigid body. Let us consider
that the rigid body rotates about a fixed axis, say the z-axis. This means, in the angular velocity
vector & = wyi + wy + w3k, the component w; about the z-axis and wy about the y-axis obviously
vanish; only the component w; survives to maintain the rotation about the z-axis. Let w3y =w
i.e.,

wy =wy =0 and w3 =w (say)
The Euler’s equations of motion (7.2.6) then reduces to

T =7T= 0

and

T3 = [3w3
= T=Iw
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The angular momentum of the rigid body about the z-axis is given by

(
i La = I3

| or, L=T1w
!

and the instanteous rotational kinetic energy will be
I

i
7.2.3 Torque-Free Motion

\This is a special case in the Euler’s equations of motion of a rigid body, if the component of the
torque T along the principal axes of the rotating body is known, a formal solution to the Euler’s
equations of motion can be found. The motion of a frée symmetric top is the simplest type of the
motion of a rigid body. The torque acting on such a system is zero. It is noteworthy to mention
here that a body is called a free symmetric top if Iy = T5 £ I3.

;For such situation, we have

[ m=m=13=0

‘The Euler’s equations of motion can then be written as

i Lin = (Is = I)wsws (7.2.7)
IQ{.;JQ = (13 - Il)wgwl (7.2.8)
I3E.;.?3 - (Il - I:g)wlwg (729)

Multiplying equations (7.2.7), {7.2.8) and (7.2.9) respectively by w;, wo and w3 and adding, we get

t
' hwiw + hanws + Inwswsy = (I — Iy + Is — I + [ — I)wiwows

=0
iwhich gives
d {1 | 1
= (§flw$ + 512(.0% + §I3w§) =0
1 1 1 1. =
= §Ilwf + §Igw§ + Efgwg = §w.L = g constant

-which is the principle of conservation of total rotational kinetic energy in absence of external torque.

I' Further,
dL
= - 4 _,
! T dt
= L = Lwi+ Ingjf + Izwsk = constant
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which is the principle of conservation of angular momentum.
In the following we consider some special cases from the above analysis.

Case 1: The case of force-free motion of a symmetrical rigid body i.e., a symmetrical top, for
which I; = I and the third principal axis (z-axis) is the axis of symmetry of the body. In
this case, Euler’s equations become

¢ Hun = (I — Is)waws (7.2.10a)
Ly = (I3 - Il)w3w1 (7.2.1Ub)
wy =10 (7.2.10c)

From the last equation, (7.2.10c}, we have

wy = constant

Now, multiplying the equations (7.2.10a) and (7.2.10b) by wy and w; respectively and adding,
we get

Honw + Ninws = — I+ I3 — ) wiwews =0

= wWiwq + wewy =0
1d, 5 2
= —— (witws) =0
2dt (1 +02)
i.e., w? + wi = constant = w? (say,)

It is an equation of a circle with radius we = \/w% + wg. The total angular velocity vector is
then given by

w= wli + ng + nge;,

with the magnitude w, with wz=constant, is given as

w = 3| = /w? + wi + w} = constant.

i.€., w = constant

Thus, we can see that the angular velocity vector o rotates about the body z-axis and describe
a cone with the vertex at the origin. This motion of the rigid body is known as the precession
or the precessional motion; the body is said to precess about the z-axis with a precessional
velocity that is decided by the values of I, I3 and ws. The cone described by the angular
velocity vector @ is called the body cone, and its half angle 7 is given by

Vel +uh _ we

3 g

tannp =
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Case 2: If we put a =

UNIT 7. RIGID BODY DYNAMICS-IT

Is—§
L

: (11—13 )
W = w3 | gy = —~Qwe

I
) (f:’. -1 )
I
From which it follows that
. . 2
W = —awg = —Q)
= w) = acosat + bsinaf
= csin (at + )
where a = csin 3, b= ccos f3, c=vVa® b2
Now, at t = 0, we take w; =0, = A=0

wy = csin af.

Taking ¢ =constant= w,, we get
wn = Wesin at.
Thus we see from the equation W = —onws

QW oS al = —aun *

= Wo = —td, COS i

which lead to

wf-i-w%:w

f

Hence, wy and we satisfy the equation for simple harmonic motion.

= constant, in equations (7.2.10a) and (7.2.10b), then

a, b are constants of integration.

and A =tan™! 2.

in the beginning that
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Note !

The Euler’s equations of motion can also be derived from Lagrange’s equations, as the
constraints involved are holonomic and the forces involved are conservative. In this case
first we have to construct the corresponding Lagrangian in terms of the generalised co-
ordinates. The best suited three generalised coordinates are the Euler angles of rotation
and the generalised forces are the associated torques. However, in this case we need to
construct Lagrange’s equation with respect to one generalised coordinates only, i.e., only
one Euler angle. The rest two equations can be constructed from the cyclic permutation
of the corresponding indices.

7.2.4 The heavy symmetrical top

We now consider the motion of a symmetrical body in a uniform gravitational field when one point
on the symmetry axis is fixed in space. There are numerous situations that we can find physical
systems, from the children’s playing top to complicated gyroscopic navigational instruments, are
based on the analysis of such a heavy symmetrical top.

We consider that the symmetry axis of the top is one of the principal axes, which for convenience is
chosen as the z-axis of the coordinate system fixed in the body. The relevant equations of motion
for a symmetric top can be developed either by Newtonian approach, i.e., writing the Newton's
second law of motion in vector form, or one can adopt the Lagrangian approach, which consists of
writing the relevant Lagrangian in terms of some independent, generalised coordinates and their
time derivatives, called the generalised velocities and finally using the Lagrange’s equations for
holonomic systems. Here we follow the latter approach.

The configuration of the top is completely specified by the three Euler angles: ¢ gives the infor-
mation of the z-axis from the vertical, ¢ measure the azimuthal angle of the top, while 1 is the
rotation angle of the top about its own z-axis. These Euler angles form the generalised coordinates
and it will be attempted to write the Lagrangian in terms of these angles and their derivatives. We
denote the distance of the center of gravity from the fixed point by I.

So far as the generalised velocities are concerned, the time rate of change of the three Euler angles
(¢, 8, %) will serve the purpose. But these components will not be convenient for us to use directly;
they must be transformed to usual ’Cartesian type’ body set of axes (z', 3, 2'). This transformation

can be effected through the orthogonal Eulerian rotation matrix R{¢, 8,%). Thus for q_b' = uy being
parallel to the space z-axis, its components along the body set of axes will be found from

(Fp)a = Hsindsinp, (Hp)y = $sin b cos i, (D) = $cosb.

Similarly when 6 = iy are transformed, they take the following form -




|

162 UNIT 7. RIGID BODY DYNAMICS-1I

(P9)e = Bcosyp,  {Tg)y = —fsinty,  (Fg)u = 0.

and as the vector &y lies along the 2’ directin, no transformation of the components of &y are
actually necessary. Thus the angular momentum components in the body set of axes are given by
the addition of the above two transformations, t.e.,

W = Wy = qﬁsinﬂsin'qb+6-'cosd)
Wy = wy = $sinfcosy — §siny

Wy = Wy = qzlflCOSE +1,!:v

Since the body is symmetrical, with the angular velocity components (w) = Wy, wy = Wy, W3 = Wyr)
and the Inertia terms (/1,Jo = I1, I3), the kinetic energy of the top can be written as

1 1
T = 511 (w? +wy) + §f3W§

or, in terms of Euler’s angles,

T = ‘;—1(92 + ¢%sin? 6) + %(;b + ¢cos ) (7.2.11)

At this point we refer to a well known elementary theorem that in a constant gravitational field the
potential energy is the same as if the body were concentrated at the center of mass. The potential
energy of the body, expressed in terms of the Euler angles, is given by,

V = Mglcos@,

Here, [ is the distance of the centre of gravity from the fixed point. The Lagrangian of the system
can now be written as

I . . .
L=T-V= 51(92 + ¢%sin” 8) + %(w + pcos8)? — Mglcos®

Since the torque of gravity is along the line of nodes, there is no component of the torque along either
the vertical or the body z-axis, because both of these axes are perpendicular to the line of nodes
and hence the components of the angular momentum along these two axes must be constant in
time. This is also obvious from the expression of the Lagrangian where the generalised coordinates
&, 4 do not explicitly appear in the Lagrangian. Two immediate first integrals of the motion will
then follow:

P,\{, = —=13 (‘(ﬁ + (;58059) = Iswz = ha (7.2.12)
oY
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and

a - N
Py = a—z = (I1sin®@ + I3 cos” 0) ¢ + Iypcos @ = I1b (7.2.13)

Here the two constants of the motion are expressed in terms of new constants a and b. Since the
system is conservative the total energy F is constant in time, i.e.,

Li g I
E=T+V =5‘(6P2 + ¢%sin? 0) + -2—3w§ + Mglcost (7.2.14)

From the equation (7.2.12) above, we see that 3 is related to é through
Is = Lia — Isdcos® (7.2.15)

Substitute this in P4 to eliminate P

hésin® @+ Iacos§ = I1b (7.2.16)
b—-acost
o ¢ sin® @ ( )

Substituting equation ¢ back in equation (7.2.15) results in a corresponding expression for P

b= he (Eﬂ) cos § (7.2.18)

T I\ sin?#

Finally, equations (7.2.17), {7.2.18) are used to eliminate & and ¥ from the energy equation (7.2.14),

which results in a differential equation involving ¢ alone. Further, ws is found to equal I_l a,a
3
2
L
constant in time. Therefore E — I3—> has to be a constant of motion, denoted by E’. The energy

equation, then turns out to be

9 12 2
wi L6 I (b—acos®)
5 + 5 + 5 ey + Mglcosf

E=E-I

This equation has the form of an equivalent one dimensional problem in the variable 8, with the
effective potential energy function V/(6) given by

-

2
V'(0) = Mglcosf + I (b_flcﬂ)
2 sin &
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so that, the relavant differential equation for the ’theta-motion’, becomes

| . b—acosf\2 2Mglcosf 2FE
: 2 ittt RSBV S
| "+ ( sin ) 0 7
o 2AE -V'(8 ’
= 6% + AE -VIO) _ 0 (7.2.19)

I

Thus the dynamics of the symmetric top motion can be understood in principle once we solve this
non-linear differential equation in #, i.e.. find @ as a function of time ¢.

To solve the differential equation (7.2.19}, we first write

6= ‘;—f = 1/%[8’ - V()
| o) = [ W

]W’e can then invert ¢{8) to find 6(t), the angle as a function of time and using this to solve for ¢(t)
dlld ¥(t) from the equations (7.2.17) and (7.2.18). But this method of solutions are associated with
{‘Hlptlt integrals and hence are difficult to solve. On the face of the diffienlty, it will be worthwhile
‘to obtain some qualitative features of motion by inspection of the differential equatons, without
actually performing the integrals. We can understand the behaviour of the effective potential
function V'(8) by plotting it against the angle . It is seen that the function V'(8) is infinite at
‘9 =0, , and finite in between. Further, V' (@) is minimum at a value & = 8y in the range and can
be found by setting the first derivative of V/(#) equal to zero. So,

v’ b—acosd b—acosf8\? cosd
P MQ!S‘M*'I‘“(W)_II( sind ) sin @

iand hence

av
dg =0y

| implies

I1{b— ncosby){a — beosby)

— Mglsin 8y +
grsineo sin® g

=0 (7.2.20)

Let us define x = I1{b = acosflp) so that we can simplify (7.2.20) as

2 cosfpy — x[lasin2 6o+ Mgll sin 6y =0
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i T 7 T
§
E )
_______________________________________________ fo o
T i _
=
3 n -
! | | 1 | |
@ (radian) —
Figure 7.1: Variation of the effective potential
which is a quadratic equation in x and hence the roots are given by
Lasin® 6y \/ 410 gl cos by
=— |1+ 4/l - ———— 7.2.21
X 2 cos By ( Ia? ( )

We demand that y is real, so the quantity inside the radical sign must yield a positive number.
i
Now for any choice of ours as fp < 7 e find

1 4 Mgl cos by >0

Ton? = La? < 4 M gl cos By
1

Referring to the equation (7.2.12), we see that Py = Ijws = a. Substituting the value of a, we
can see that there exists a lower bound for ws:

2
wy > —+/ Mgllcosfy,
I3

which suggests that a steady precession is possible at the fixed angle of inclination 6y, only when
the angular velocity of spin exceeds a limiting value.

7.2.5 Precession and Nutation of Earth
Precession

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation
of an astronomical body’s rotational axis. In particular, it refers to the gradual shift in the orienta-
tion of Earth’s axis of rotation, which, similar to a wobbling top, traces out a pair of cones joined
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at their apices in a cycle of approximately 26,000 years.

Precession occurs because:

1. The Earth is rotating,

2. The Earth is not exactly spherical; it has a slight equatorial bulge, and the gravitational fields
of the Moon, Sun and planets affect to produce precession.

Nutation

Nutation is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially
symmetric object. Nutation takes place because of tidal forces that cause the precession of the
equinoxes to vary over time so that the speed of precession is not constant; principal sources of
tidal force are the Sun and Moon, which continuously change locations relative to each other and
thus cause nutation in Earth’s axis.

Precession of the Equinoxes and Satellite

In a broad sense, the earth can be considered a top with the axis precessing about the normal to the
ecliptic. The earth is not a perfect sphere, but slightly distorted so that it can be approximated by
an oblate spheroid of revolution. It is just the net torque on the resultant equatorial bulge arising
from gravitational attraction, chiefly of the sun and the moon, that sets the earth’'s axis precessing
in space.

In order to deduce the kinematics and dynamics of precession of equinoxes, we consider a mass
distribution forming a single body, wherein we take a single mass point with mass M. If r; is
the distance between the i-th point in the distribution and the mass point M, then the mutual
gravitational potential between the two bodies is

i V= “_GMmi

i

It 15 well known that a simple expansions in terms of Legendre polynomials can be given so that

y A
y=_SM (’—') Pa(cos ;) (1.2.22)
: (ot T

i

'Prov1d1ng r, the distance from the origin to M, is greater than any r}, we shall make use of only
the first three Legendre polynoinials that,

Po(w)=1, Pi(z)=2, Pz)= %(3;{:2 —1) and so on.

I

'From the orthonormal properties of F, with respect to Py, the integral over cosy vanishes except
for n = 0, which proves the statement.

IIf a body deviates only slightly from spherical symmetry, as is the case with the earth, one would
expect the terms in equation (7.2.22) beyond n = 0 to decrease rapidly with increasing n. It will
therefore be suflicient to retain only the first non vanishing term in (7.2.22) to the potential for a
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sphere. Now, the choice of the center of mass as origin cause the n = 1 term to vanish identically,

since it can be written
GM GM

!
——— T COS Y = —
2 i 3

’
THYLT;

Which is zero, by definition of the center of mass. The next term, for n = 2, can be written

G
2—3:.:{?'1'?,t 2(1 — 3cos? ;)

It is useful to write 72 cos? y;the expression in dyadic form :

’
2 Ty

, rir
2 cos® ;=

2

T

So that, with a little judicious addition and subtréction, the n = 2 term in the potential takes the
form

Er—smﬂ[ —T‘T]?— !2

The second part is to seen to involve the trace of the inertia tensor. We can therefore write the
n =2 term as

3GAM GM

——rlr—-—=Tr]

2 pd 273
And the complete approximation to the non- spherical potential as

GM GM
Ve -22 ) T 3L - Ty
T 2r i

Where m is the mass of the first body and I, is the moment of inertia about the direction of r.
From the diagonal representation of the inertia tensor in the principal axis system, its trace is just
the sum of the principal moments of inertia. So that V' can be written as

GMm GM

_— I —(F In+1 7.2.23
V= . 2 -3 31, - (I + I + I3)] ( )

A
Lets now take the z-axis of symmetry to be along the third principal axis, so that Iy = I;. If a, 3,
~ are the dircction cosines of r relative to the principal axes, then the moment of inertia I can be

cxpressed as
L=5L(a®+p)+ Iy’ =N+ - L)y

With this form for I, the potential, equation becomes

G.M:rn GM(I;} [372_1]___GMTR+GM(I3—11)

V= =
r 273 ¥ 293

15167

Of the terms in equation for the potential, the only one that depends on the orientation of the
body, and thus could give rise to torques, is

GM(I3 - I1)
A 42

V2 = 2:"3 P (7)

For example as the earths precession, it should be remembered that -y is the direction cosine between
the figure axis of the earth and the radius vector from the earths center to the sun or moon. As
these bodies go around their apparent. orbits will change. The relation of v to the more customary
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astronormcal angles can be seen from fig where the orbit of the sun or moon is taken as being in
the zy plane, and the figure axis of the body in the zz plane. The anglc # between the figure axis
;smd direction is the obliquity of the figure axis so that

v =sinfcosy

Hence V; can be written
GM{I; — )

Vo =
2 2r3

[3sin% 8 cos?n — 1] !

The averaged potential is then

- GM(I3—- 1) o2 _GM(I;-nhL)[1 3
Ve= =3 [2 il == g 2% |
Or, finally,
- GM({Is-1T
Vo = %QPQ(COS ¢) R

1 3
!where Py = 573 cos? H] is the Legendre polynomial of order 2. It is seen that the torque derived

i
from the above equation is perpendicular to both i-th figure axis and the normal to the orbit.
Fence the precession is about the direction of the orbit normal vector. For any symmetric body in
which the potential is a function of cos 6 only, the Lagrange can be written, following, as

| -

T, .
L= 51(82 + ¢*sin?) + %(w + ¢ cos0)? — V(cos )

|
'
3

The lagrange equation corresponding to # is then

AL v ‘
2 = I1¢?sin 6 cos 8 — Isdsin 8(th + ¢ cos 8) — 20 =0

For slow precession, which means basically that ¢ < ws, the (;52 can be neglected, and the rate of

uniform precession is given by
| 1 av

l: I3ws d(cosb)
[With the potential of equation the precession rate is

!
3GM I3 — I .

7,
Qugrd I 08

b=

For the case of the precession due to the sun, this formula can be put in a simpler form, by taking
r as the semi major axis of the earths orbit and using Kepler’s law, in the form

s (27\® GM
l = — =
‘ Yo T rd

-The precession rate, relative to the orbital angular velocity, wyg is then

cos @ (7.2.24)
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I

I —
With the value of (3—1—— and ¢ = 23927, says that the solarinduced precession would be such

as to cause a complete rotation of the figure axis about normal to the ecliptic in about 81,000
years. The moon is so far less massive than the sun but it is also much closer; the net result is
that the lunar induced precession rate is over twice that caused by the sun. The two precessions
nearly add together arithmetically, and the combined lunisolar precession rate is 50.25year, or one
complete rotation in about 26, 000 years. This rate of precession is so slow that the approximation of
neglecting compared to is abundantly satisfied. Because the sun, moon, and earth are in constant
relative motion, and the moons orbit is inclined about to the ecliptic, the precession exhibits
irregularities designated as astronomical nutation.

Effects of precession

The precession of the Farth’s axis has a number of observable effects. First, the positions of the
south and north celestial poles appear to move in circles against the space-fixed backdrop of stars.
Secondly, the position of the Earth in its orbit around the Sun at the solstices,equinoxes, or other
time defined relative to the seasons, slowly changes. celestial pole, this will change over time, and
other stars will become the "north star”.

7.3 Summary

In this unit we have studied the inertia tensor and its properties which are useful for further
analysis of the rigid body motion. The dynamical equations for the motion of a rigid body, the
Euler’s equations have been deduced with the help of the vectors under rotations of the coordinates
system, or the non-inertial frame that we studied in the previous chapter. These equations then
are found to be helpful for exploring the cases of torque-free motion, the motion of symmetrical
tops etc. Finally, the use of the Euler’s equations are extended to the study of the precessional and
nutational motion of the earth that are induced as a result of the spinning motion of the earth.
The Euler’s equations find its use in the study of the precession of the equinox and the satellite
motion. -

Self study questions:

1. What is understood by the inertia tensor of a rigid body? Analyse the case of the force frec
motion of arigid body with the cmponents of inertia related by Iy = Jo = 2I3. Obtain the
expression for the frequency of precession of the angular velocity about the axis of symmetry.

2. Derive Euler’s equations of motion for a rigid body with a fixed point.

3. If a rigid body, with one point fixed, rotatcs with an angu]ar-vclocty o and has an angular

- 1-
momentum L, show that the kinetic energy of the rigid body is EL nh

4. A rigid body of with its principal components of inertia as { I, I, I3 )} possesses a rotational
kinetic energy, say T. If the external torque applied to the rigid body is 7 and the resulting
angular velocity vector is o, prove that

dT
‘ dt

-

=7 4.
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UNIT 8

Theory of small oscillations

Preparatory inputs to this unit

1. Lagrange’s equation of motion.
2. Matrix Algebra: Eigen equations, Eigenvalues and Eigenvector.

3. Basics of Integral Calculus and Ordinary differential equations.
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Introduction

A particle or a system of particles forming a body is said to be in equilibrium if the vector addition
of the forces acting on it is zero, i.e., the resultant force acting on the body vanishes and the
body cannot execute any motion. But the mere equilibrium condition does not guarantee a body
to continue to be in equilibrium. Three possibilities might arise when the body already under
equilibrium is disturbed or perturbed by some small amount.

-

1. The body might come back to the original equilibrium position or configuration, when the
source of perturbation is removed.

2. The body will move away further and further from the equilibrium without any possibility to
come back and restore the original equilibrium position or configuration.

‘ 3. The body might take up a new equilibrium position or configuration.

The kind of equilibrium in the first case is called the stable equilibrium, the second the unstable
equilibrium and the third is the neutral equilibrium.

We will be concerned more here with the stable equilibrium and attempt to understand the mech-
anism of returning back to equilibrium upon removal of the perturbating agency. Under stable
equilibrium, the perturbed system will generate a restoring force and try to regain its original
| equilibrium, but by the time the system will overshoot the equilibrium and again generates a back
restoring force and it goes on. Essentially the system will execute a periodic motion prior to finally
settle down to the original equilibrium. If the restoring force is proportional to the displacement
from the equilibrium, and also the amplitude of oscillation is small, the system will undergo what
is known as the simple harmonic motion, with definite period, amplitude etc. It is possible thus to
t know the nature of the restoring force along with the parameters related to the internal structure
} or configuration of the system; by studying the simple harmonic motion. This chapter is mostly
dedicated to the discussions in this lines analysing the various situations where simple harmonic
motions are possible.

The theory of small oscillations is extremely important in several areas of physics. e. g., molecular
spectra, acoustics, vibrations of atoms, coupled mechanical oscillators and electrical circuits etc.
Here mainly the motion of the system about the position of stable equilibrium is discussed. Before
this, let us stable and unstable equilibrium. For that we consider a conservative system in which
potential energy is a function of position only. The system is said to be equilibrium when the
generalized force acting on the system vanish:

1%
Qi=—(‘a—) =0, i=1,23,...n
aqi 0

and g;’s are generalised co-ordinates. The potential energy does possess an extremum at the equi-
i librium configuration of the system. We can cite nuerous examples from our day-to-day experience.
A pendulum at rest, a suspension of galvanometer at its zero position. As already said, an equi-
j librium position is classified depending on the behaviour under a small disturbance to the system
from equilibrium : whether a sinall bounded motion about the rest position or an unbound motion
ensures. The equilibrium is unstable if an infinitesimal disturbance eventually produces unbounded
motion. As an illustration we can take a round bottom bowl and a marble. The marble at the
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bottom of an upright bowl is at rest. If disturbed slightly, it executes couple of periodic bounded
motions about the equilibrium, eventually to be at the original equilibrium again, and is therefore
under stable equilibrium. But the same marble, if managed to be kept at the top of the inverted
bowl, will move away once a small disturbance is given to it. This system therefore forms an
unstable equilibrium system.

8.1 One dimensional oscillator

The motion of the system about the position of stable equilibrium is of great interest in varied
branches of science and engineering. As a simple case, we first consider a system to possess one
degree of freedom with one generalized co-ordinate, say g. For small displacement from the equilib-
rium, we can expand the potential energy V{g) in Taylor series about the equilibriuin and consider
only leading order terms:

1

2
Vig) = V(g) + [l?,j—:-]o(q—c,rg)-i-§ [%L(q_qo)h__..

d
At the position of equilibrium (%) = 0. The first term of the above equation V(gq} vanishes
4=dqo

on shifting the origin of the potential energy curve to be at minimum equilibrium value. Thus

1

1 (d*V 5
Vig)= 3 (5‘?)@% (g — 90)

If we substitute (%—?{-)0 = k and take the origin of ¢ co-ordinate at gg = 0 then the equation

reduces to )
V(ig) = §k02

v
where k = |
dq% /4
potential energy does exclusively depend on the generalised co-ordinates and does not involve time
explicity. Further, since in most cases the kinetic energy is a homogenous quadratic function of

generalised velocities z.e., .

is a positive quantitity at the stable equilibrium position. In this case, the

T = sm(q)§", (8.1.1)

where the co-efficient m(g) is general function of g-co-ordinates and may be expanded in Taylor
series about the equilibrium position g = 0,
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m{g) = m(0) + (%—?)0 g+

'}Equation (8.1.1) is already quadratic in ¢, the lowest non-vanishing approximation to T is obtained
by retaining only the first term in the expansion of m(q), ¢.e., m{0). Thus for small oscillations,
the Lagrangian of the one-dimensional oscillation is given by

_ 1 9 1, 4

L=T-V= 2:m(O)q 2kq

and the equation of motion is
d [ AL AL
d2
1 m(O)Eg-{-kq =0 (8.1.3)
i
! 2
d*q 2 2_ _k

E T +w'q = 0  where w*= 0) (8.1.4)

The solution of the above equationis g = c1e®!+c2e™? or, in real quantities, ¢ = acos (Wt + @)
where constant @ is called the amplitude of oscillation, w is the angular frequency and ¢ is the
initial phase.

S——
- r———

8.1.1 Simple Pendulum

In order to proceed systematically, we first discuss the simplest oscillating system of a simple pen-
dulum and gradually extend the concepts towards a more complicated systems oscillating under
varied environments. As we have already discussed in the early units of the course, a simple pen-
dulum is a heavy point mass suspended by a weightless, inextensible and a perfect flexible string
! from a rigid support about which, it can make to and fro motion freely.

{ Let the bob of the pendulum be displaced from its mean position and release for free motion.
.Suppose at any instant of time ¢, the bob has the mass m. The force acting on the bob vertically
.downward = mg. We resolve mg into two perpendiuclar components:

!
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O

Q mgsin
A

mg cos

1. Force along the string =mg cosf

2. Force perpendicular to the string =mgsinf

Let the tension in the string be Fy. The component mg cos # balances the tension Fr. Hence,
mgcos @ = Fr

Thus the only component of the force acting on the oscillating bob to bring it to the equilibrium
position is -mgsin 8. Therefore,

F = —mgsind
(Here, the negative sign signifies that the accelcration is dirccted towards the mean position.)

Taylor’s series expansion of sin & yields

. 8 &
sinf =6 — o) + B
For small angular displacements in @, we can approximate sinf to 8, ¢.e., sinf =@ so that.the
tangential force is F' = —mgf and the linear displacement to be x = {8.

Cosidering the length of the pendulum to be I, the acceleration of the bob can be calculated as

_&d'zx _ dze
“= 3 T A
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!.and the Force, ,
| d°g
_'IFrom Newton’s second law, we have
| ml@ mgl

FTE

%8 49
8 0 1.
I dt2 (8.1.5)
| This equation is similar to the equation of simple harmonic motion
| P
| —
, Frel +wiz =0 (8.1.6)
'From (8.1.5) and (8.1.6),
|
2_9

W T
or,
f. _ /g
1 Y=V

!
iTherefore, the time period of the oscillation is given by

' i
: T=2—ﬂ=21r -
{ W g
i

]
Exercises: Simple Pendulum

Example 8.1.1 Show that the mean kinetic and potential energies of non dissipative simple har-
monic vibrating systems are equal.

‘Solution:  For free vibration in the absence of damping, the displacement at any instant is given
by

y = asinwt

d
_y = at COswt

dt

1
Kinetic energy = 3 X m (i‘?)

= %m(a w? cos? wt)

1
= §Ka2 cos? wit




o
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Here,
K
K = muw?, or, W= =
m
and K is the force per unit displacement. Now,

1
Potential energy = §K Y2

1
= EKa2sin2wt
Total kinetic energy for one complete cycle is
- T1
T= / —Ka? cos® widt
0 2

- %KGQT

Total potential energy for one complete cycle
- LA |
W =/ ~ Ka?sinwtdt
0 2
_ T
T4
Hence the mean kinetic and potential energies are equal.

Example 8.1.2 A spring is hung vertically and loaded with a mass of 100 grams and allowed to
oscillate. Calculate (a) the time period and (b) the frequency of oscillation, when the spring is
loaded with 200 grams it extends by 10 cm.

Solution: Here A = 100 grams, m = 200 grams, z =10 cm, g =980 ZF

(a) Let & be the spring constant of the given spring. When it is loaded with mass m the force is
F = mg and the resulting extension is z. So,

F=—kx = mg=-kz = 1k|=%

As the spring of mass M oscillates with its characteristic angular frequency w, we have

B, I_ jme
M T YV Mz

where T is the time period and it is given by

T=2x (ﬁ)
\p‘ my
100 x 10 2
T=2mf{ o) = =0.449 s
" (200 X 980) 14 i

{b) Frequency v is calculated from

i 1
= T= m =222 Thertz.

Example 8.1.3 A uniform spring of force constant k is cut into two pieces of equal length. What
is the force constant of each piece?
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Solution:  Suppose, Force = F, Increase in length = { and &k = ?

In the second case, we may consider the two halves of the spring pieces to be joined. On application
of the force F’, the extensions in each of the spring pieces will be 1/2 so that the total extension
in the entire length will be {. Now if k), be the spring constant of the each half then for the same
applied force F', we have F' = —kpz/2 for ecach piece. The enstensions accordingly for each piece
is given by /2 = —F/kj. Adding the extensions of each piece, we must get the same effect of the
spring before the cut. So, we get

so that

Therefore kj, = 2k, which shows that the spring constant of one half of a cut piece from a spring
i;always doubles its original value. -

IExample 8.1.4 A body of mass 0.5 kg is suspended from o spring of negligible mass and it stretches

| the spring by 0.7 m. For a displacement of 0.08 m, it has o downward velocity of 0.4 m/s. Calculate
(i) the time period; (i) the frequency and (iii) amplitude of vibration of the spring.

|
{Solution:  Here m = 0.5kg, z=0.0Tm, M =05kg, g¢=9.8m/s?

{(z) Time period

f Mz 0.5 x 0.07
| T =2m | — = 27y [ " = 0.5311
| b — v 05 X 038 0.5311 sec

j(zz) Frequency

1 1
=== =1882 Hz.
| "TT T osan 0
jAngular frequency
" 2w 2w
T 05311 11.8 ra ld.nS/sec

(ii4) For amplitude we first consider the solution y = a sinwt.

dy = aw coswt
dt '

b d 2

! Y man/1-L =2y
dt a?

Now, with y = 0.03 m and w = 11.8 radians/sec we have,

0.4a = 11.81/a2 — (0.03)2

:Simplifying the expression, we have, a = 0.04526 m.
J: .

|

i
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8.1.2 Damped harmonic oscillator

f
We have discussed in the earlier section about a harmonic oscillator which oscillates freely upon the
action of an external force. The external force actually generates an internal restoring force which
acts in the opposite direction of the acceleration and is proportional te the amount of extension,
i.e.,

F=—kg

where k is a positive constant.

But if the space around the oscillator is filled with materials. such as thick gas, fluid etc. which
offers resistance in the form of friction, to the movement, the oscillator will not free oscillate. The
oscillator in fact, cannot maintain the oscillation with same amplitude; the amplitude progressively
reduces, eventually to stop. Such a motion of oscillator is called the damped harmeonic motion. The
damping force is normally proportional to the current velocity of the oscillator. The nature of such
damping in oscillators crucially depends on the coefficients of friction of the medium in which the
oscillator executes its periodic motion. Depending on the friction coefficient the oscillating system
can have varieties of motions:

1. Oscillates with a frequency smaller than in the non damped case,and an amplitude decreasing
with time {(under damped oscillator)

2. Decay to the equilibrium position, without oscillations (over damped oscillator)

In between the boundary of these cases of underdamped oscillator and overdamped oscillator, there
also cxists a solution which is found for a particular value of the friction cocfficient. The oscillators
of this type is called critically damped.

We express the damped oscillator mathematically by Newton’s 2nd law of motion, as
ma+ecv+ Kz=0
d2 dx
~——+c—+ Kx=0
e + “a&t A
This is in the form of a homogeneous second order differential equation and has a solution of the

form
At

r=e
Substituting this form gives an auxiliary equation of A as:
mAZ 4 ed+ K =0,

The roots of the quadratic auxiliary equation are

[ —amK
A= —c+ i;—_g
2m

The three resulting cases for the damped oscillator are :

1. Overdamped : The motion of the oscillation is said to be overdamped when the condition
2 — 4mK > 0 is satisfied. '

2. critically damped : In this case the oscillator satisfies the condition 2 —4mK =0,

3. underdamped : The oscillator executes underdamped motion satisfying the condition e
AdmK < 0.
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Example

'Mass Spring Damper:

|An ideal mass spring damper system with mass m, spring constant K and viscous damper of damp-
'ing coefficient c is subject to a periodic force F; = — Kz and a damping force Fy = —cv = —c’éf
The values can be in any consistent system of units; for example, in SI units, m in Kilograms, K
in newtons per metre, and ¢ in Newton-seconds per metre or Kilogram per second.

Treating the mass as a free body and applying Newton’s second law, the total force F,; on the
body is

d’x

where a is the acceleration of the mass and z is the displacement of the mass relative to a fixed
point of reference. Since Fy,; = F; + Fy, we have

Figo=ma=m

! Py _ B Cd;a:
| T

"This differential equation may be rearranged into

Il

d2 < d.:': K

¢

T 2vVmK’
Ithe first parameter, wy is called the (undamped) natural frequency of the system. The second
pa.rameter 7 is called the damping ratio. The natural frequency represents an angular frequency,

expressed in radians per second. The damping ratio is a dimensionless quantity
,The differential equation now becomes

d’z

dz
—_— =2
diz Yoo

o +w0;r-—0

Continuing, we can solve the equation by assuming a solution x such that
| z=e

where the parameter «y is, in general a complex number.

8.2 Coupled Oscillation

Having discussed about the harmonic motlons involving one degree of freedom we now discuss a
more complex system of harmonic oscillation with more than one degree of freedom. With more
degrees of motion, there is always a possibility that the behavior of each variable influences the mo-
tion of the others. This leads to a coupling of the oscillations of the individual degrees of frecdom.
Coupled Oscillations occur when two or more oscillating systems are connected in such a manner

J

as to allow energy to be exchanged between various degrees of freedom. This phenomenon was first
1

|
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observed by Christian Huygens in 1665.

We define a coupled oscillator as a physical system that contains multiple components of motion
connected together and free to move in consistence with the given constraints. The theory and
the results of coupled oscillations finds many important applications in molecular physics viz., in
studying molecular vibrations of atoms.

A few basic examples are -

1. double pendulums: one pendulum connected to the bob of another pendulum.

2. Solids and fluids are another good examples of systems that are beset with coupled oscillations.
The molecules mostly oscillate around their equilibrium positions, along with the interactions
amongst them to be coupled with each other. If we look at the configuration of a carbon
dioxide molecules, two outer oxygen atoms are bound with forces of electrostatic origin to the
central carbon atom and the oscillation of any one component does influence that in other
components. Another example of such a coupled system is a crystalline solid in which the
atoms constituting the crystal interacts with other via interatomic forces.

In order to illustrate the mechanics of coupled oscillations, and provide a framework for subsequent
extensions to oscillating systems with multiple degrees of freedom, we work out here a system of
two objects connected end to end by three springs. The spring constants of the three springs are
assumed to be ki, ky and ks with their unstretched lengths {y, Iz and I3 respectively. The two
masses, m; and my arc connected in between, as shown in the figure. Two extreme ends of the
springs arc fixed in rigid walls on two sides.

ml m2

o | oo [l v

=

2

Figure 8.1: Coupled oscillator

The objects are allowed to move on a frictionless horizontal surface in a straight line along the
layout of the springs. If the extension in the leftmost spring is x; and the middle spring is z3, then
the kinetic energy of the system can be written as

1
T =




1182 UNIT 8. THEORY OF SMALL OSCILLATIONS

where the dots represent the derivatives with respect to time. Here the extensions are considered
as the generalised coordinates and their dot derivatives the generalised velocities.

The potential energy of the system is written as
|

. 1 | 1
! V= §k1.’£:12 + §k2$§ + 5»‘63(:!:2 - .’171)2

fsa that the Lagrangian of the system is given by

l

1 ) ) 1
i L=T-V = 5(1’?11:!:% + mgm%) —_ § [k]rﬂ% + kg:r,‘g + k3(.'r2 - 321)2]

We now calculate the partial derivatives

oL . 8L oL oL
I 8_111 =mir, a’l- = —kl.’.'C] + k3($2 - :E]), 8—332— = Malsy. 6_.7'2 = —kQIQ + k3(:’132 - 3‘21)

|
|
|

The Lagrange’s equations for the system will then follow as

d { 3L aL N

i (_8:1‘:1) - e 0, == myy + kyzy — k3(xe - 1) =0 (8.2.1a)
" d { 0L oL .
| = (—--8572) ~ 95 = 0, = maZs + koxa + ka(za —31) =0 (8.2.1b)

‘Equations (8.2.1a} and (8.2.1b) form a set of simultaneous linear differential equations with constant
coefficients and therefore, we can proceed to solve them through trial solutions
1

i ay = Aexp A, T2 = Bexp it

with A and B as constants. Substituting these into (8.2.1a) and (8.2.1b) we obtain two homogeneous
simultaneous equations for the determination of the constants 4 and B:

(Wmy+ky + k3)A — k3B =0 (8.2.2a)
—k3A+ (Mo + ky +k3)B=0 (8.2.2b)

'.This set of equations will have a solution if and only if the determinant formed by the coefficients
of A and B vanishes, i.e.,

XNmy + ky + ks —k3
—ks3 X2mg + ko + k3

—0 (8.2.3)

At this point we may simplify the problem by considering the masses to be equal, LE, M) = Mo = m
\(say) and the spring constants of the three springs are aiso identical so that k; = ky = k3 = k (say).

N k C
'S0, the determinant, with further substitution of — = wg is simplified to
i m
Nroud
—ed R+

=0 (8.2.4)
| We expand the determinant to solve for A and get the roots as

A = Liwy, +i/3wp
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As the differential equations were lincar, the superposition principle holds, so that the sum of the
four solutions, will also be solution and will contain four arbitrary constants:

m = ale"“’”t + age_i“’”t + aaei\/Suut + age_i‘/a“’”t (825)

Ty = by et 4 hoe~ 0t 4 paeiVunl 4 b omiviut (8.2.6)

where a’s and b's are each four arbitrary constants consistent with the conditions (8.2.2a) and
(8.2.2b) above. These conditions in fact reduce the number of arbitrary constants to be involved in
the solutions to four corresponding to two second order differential equations (8.2.1a) and (8.2.1b).

1t is obvious that these solutions are represented in complex number form. Trigonometric repre-
sentations of the solutions are also in fact possible. For this, let

Ay g = Al

“="ge 2

With this, the first two terms of the solution (8.2.5) can be rewritten as
z1{12) = A ghntei®t él ~tot o —idn
= il_ i(wot+er) 4 21 A ¢~ Hwot+d1)
2

2
= A] COs (wot + (,ﬁ{]

Similarly the last two terms of the solution (8.2.5) can be written as

T (34’) = A cos (v/3wot + ¢2),

and following the same procedure the first two terms of the second solution (8.2.6} reduce to

z2(12) = By cos (wot + 1),

and the last two terms to

z9(34) = By cos (y/3wot + ¢2).

Combining all, we can have the trigonometric representation of the solutions, with four arbitrary
constants as

21 = Aj cos(wpt + ¢1) + Ag cos(/3wol + d2)
= Bj cos{wpt + ¢1) + Bz cos{y/3wpt + ¢2)

The new arbitrary constants Ay, Ag, By, B2, ¢ and ¢p are related to each other through (8.2.2a)
and (8.2.2b):

2 9 -
_wm,q and By = wo_“A

wh w§

B, =
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fwhere A = fwp and Az = ++/3wgy. The two conditions above relates the constants as B; = A; and
i‘Bg = —A;. Thus the general solution assumes the form

! z; = Aj cos{wol + ¢1) + Az cos(\/3wot + ¢2)}
i

xa = Ay cos{wot + ¢1) — Az cos(+/3wpt + $2) (8.2.7)

Equations (8.2.7) reveal that the motion of each coordinate is a superposition of two hamonic vi-
| brations of frequencies wy and /3wp. The frequencies of oscillation are the same for both z; and
iz7 ; only their relative amplitudes are different.

|

'Now if any one of A; and A; is zero, we will have only one frequency of vibration in the system. If
Ay =0 we have

71 = Ap cos(v/3wpt + ¢2)
z2 = —Ag cos{/3wyt + ¢2)

|
fand the two vibrations arc of opposite phase, i.e., the two bodies will move opposite to each other.
‘On the other hand, if Ay =0, then

| x) = A1 cos{wyt + ¢1)
1' x2 = A1 cos(wyt + ¢1)

the two vibrations will be in phase and the bodies will move in the same direction.

Thus we see that there are two modes of motion in the considered mass-spring system involving a
'single frequency. These modes of vibrations are known as the normal modes of vibration. It is also

‘possible to find a system of coordinates in which oscillation of a single coordinate contains one of
-Ithe frequencies of vibration, irrespective of the initial phase or conditions.

H

1t is also noteworthy that an interchange of the two oscillating bodies does not affect the equations
]_of motion. Therefore, we can look for a coordinate system {q), ¢2) where ¢; is symmetric with
respect to an interchange of the masses and ¢s is antisymmetric in this interchange :

1 1 1
¢ = 5(2?1 +x3)  and gz = 5(151 — z3)

i or, T1=4g1+ ¢ and T2 = {q1 — g2}

JSubstituting these to the Lagrange’s equations of motion (8.2.1a), (8.2.1b) yields

m{g1 + §2) + mud{q + g2) — muwa(—2q9) = 0
and m{d1 — d2) + mwd{q — g2} + mwa(—2q2) = 0

Addition and subtraction gives

(8.2.8)

G +wiq =0
and Go+ 3w§q2 =0
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which are two independent and simpler equations. We may now contrast equations (8.2.8) with
(8.2.7). We obscrve that in the set of solutions (8.2.8), ¢; involves only & single frequency wy and
g2 only /3wy, whereas in equations (8.2.7) both the coordinates x1 and z; consist of both the
frequencies wg and /3wg.

8.3 General theory of small oscillation

Having discussed the systems with degrees of freedom restricted to one or two, we are now going
to discuss its extension to systems with any number say n degrees of freedom and analyse the
oscillations in the system. Further, as the title suggests, the basic assumption that we adopt in the
discussion to follow is the assumption of small displacements of the associated particles from the
position of stable equilibrium and so also the amplitude of corresponding oscillation amplitudes.
Alongside, we will consider that the system for study is a conservative system so that the potential
energy associated with the system is dependent only on n generalised co-ordinates ¢i; g, ... .qn,
represented as

V= (q]}qu R Q’n)
Let us denote the equilibrium positions by ¢ so that the displacements of individual particles from
equilibrium position by uy, i.e.,
gi=q +w

which are the generalised coordinates of the system. Expanding the potential energy about the
position of equilibrium, we obtain

= [ov
V((h, 42, . QT.') = V(g?:qg 1q2)+2 [E]O(ql 2I ZZ lt
i=1 '

i=1 j=1

] - g —g))+. -

dg; 45

Here ( )g = 0 because this represents the force applied to the system under equilibrium which is
Zero. Also the first term V(q?,q3,...,¢") in the expansion represents the potential energy in the
equilibrium position and is constant for the system. As we know the potential is associated with
an additive constant, we can always adjust this constant so that the equilibrium potential energy
function is zero without affecting dynamics of the system. This adjustment leads the potential
energy in equilibrium to zero as said, and writing u; = ¢; — g? etc., we get the leading order
potential energy of the displaced configuration as

1 n n
=3 Z Z Vijuiug

i=1 j=1

where V;; = [%]0 = [-5%]0 =constant which is to be evaluated at ¢; = q? and ¢; = ?‘ The

constant Vi; = Vj; form a symmetric n x n matrix V,

Viin. Vig ... Via
V21 .VZ'Z e V2n.
V=1 . ; i )

Var Va2 ... Vi
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'JThe kinetic energy of the system associated with the displacements is given by

T=Y% %m,-j.q,-.ga,- =) myjaiy (8.3.1)
i j i

The co-efficients m;; are in general, functions of generalised co-ordinates. Expanding m;; around
the equilibrium position, in Taylor’s series, we get
I

am;
mislan o) = my(ah o)+ Y | aq:L weto (8.32)
k—

In order to keep parity with the quadratic form of potential energy function V, the kinetic energy
functlon T is also to be considered in the quadratic form. But the expression for T in Equation
(8 3.1) is already quadratic in ¢;’s, therefore it is sufficient to consider only the first term in the
equatlon {8.3.2).

The kinetic energy is given by

: T = %Z Z ?n%’t}:iﬂj =‘-12— Z ZT,;j.U,;.iJj
i 7 i i

}
where the constant m ;'s are denoted by Ti;s. One can easily discover that the constants Tj; are in

fact the elements of the 7 X n symmetric inatrix 7.
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Note !

At this pf)int it is recalled that a general expression for the kinetic energy of a system
of N particles with masses m;, having » degrees of freedom and with generalised coordi-
nates (g1, g2, ...,¢n) can be derived as consisting of three terms: one independent of the
generalised coordinates one involving generalised velocity and one term associated with
the square of the generalised velocity as

1 . .
T=3 > myedide + Y aig;+b
3k i

where

iE(;_j'qu
or; Or;
a; = zl:ml'é'q':ﬁ

1 A
b— 52??‘.‘.5 (—37)

or; ar; )
My = E T
i

-t

) .

Here 7 = 7i(q1,42, ..., gn, t) is the position vector of the i-th particle of the system. If
the position vector is independent of time explicitly, the terms a; and b above will vanish
and the kinetic energy is a homogeneous quadratic function of the generalised velocities

1 ..
=3 Z};mjk%'qjk
Py

The Lagrangian of the sysem can be written as

1 ..
L=T-V= 3 Z ;[ﬁj.ﬂiuj — Vijusugl
1 -

Using u's as the generalized co-ordinates, the Lagrange’s equations
dfaL)_aL_,
dt | dg; Bg;

will take the form

D [Ty + Vijug) =0 (8.3.3)
j=1
for i = 1,2,---,n. The expression (8.3.3) actually represents a set of n second order differential

equations which are to be solved to obtain the motion near the equilibrium position.
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18.3.1 Secular equation and eigen value equation

Equations (8.3.3) ar¢ second order differential equations with constant coefficients. So, it is worth-
while to proceed with a trial solution of the form

u; = a;e!™ (8.3.4)

Where a; are the complex amplitudes of the oscillations for each the co-ordinate u;. Substituting
11(8.3.4) into equation (8.3.3) we get the auxillary equations

' n
i Z (VIJ - L;J?ng) a; =0 (835)
! Or, in a matrix form
! Va-uwTa=0 (8.3.6)
] 'where V, T are n x n matrices and a forms the n x 1 column vector.
|
' {8.3.7)
I iy i
%Equatlon (8.3.5) represents a linear, homogeneous, algebraic equation is a; and w, ie.,
1 (Vi1 —«®Tu) a1 + (Va2 ~ o®Tiz) aa + -+ - + (Vin —w*Tin) an =0
J : : : (8.3.8)
i (an - w2ﬂ;1) ai + (Vn2 - w2Tn2) (12 + """ + (V - wlzTnn) Qp = 0
|
Assummg that T~ exists, we multiply the equation (8.3. 6) by T1
!
i T Va-uw?a = 0
| Pa—-w?la = 0, with P =T7ty
i (P—w?l)a = 0 (8.3.9)
';Equation (8.3.9) is the well known eigenvalue equation or the characteristic equation or the secular
equation of the system. It is an equation of degree n in w? and hence there exists n roots in w?.
' For the non-trivial solution to equations (8.3.8) to exist, the determinant of the coefficients of a;’s
lin (8.3.8) or (8.3.9) must be zero, i.e.,
b {(P —wI)| =0
]
| or, |(V-u?T)|=0

which gives the eigenvalues of the corresponding to the eigen equations. These eigen values are the
frequencies wy, also called the eigenfrequencies or the normal modes of the system.

The mairices V and T being symmetric, the eigen values w? are all real.

Agaln to every eigenfrequency wy there must exist an eigen vector a, of the system which does not
fhange in direction but in magnitude only and consequently the mode consists of the simultaneous
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oscillations of several degrees of freedom. In case two or more frequencies are equal, the system is -
said to be degenerate (i.e., there is an arbitrary choice of normal modes which corresponds to same
eigen frequencies.

Now, if we use the symbol a;, to represent the j-th component of the r-th eigenvector corresponding
to eigenfrequency w,, then by using the principle of superposition, the general solution for the
displacements g; can be written as a function of time as,

gi(t) = Z\aj,_ exp [t{wrt — 6, )]

or, q;i(t) = Z cos (wrt — &) (8.3.10)

8.3.2 Small Oscillations of Particles on String

We consider a system of n particles each of equal mass m connected linearly with equal spacings !
by small, light and identical springs each with spring constant k. Naturally the system will form
a string, the end points of which are attached to fixed points. Let the string be stretched in the
transverse direction with force F, rendering the different masses to be possess different transverse
displacements.

Let g; be the transverse displacement of the i-th particle from the equilibrium position. The system
will then possess a kinetic energy given by

m.r’.’_‘__,_:ﬂ. “‘_"“H—-—-._._";

ne" | it
| . ;"*'I ,_‘% . 'q . fq' . i“*!

Figure 8.2: String of particles displaced from their equilibrium positions.

1 o
T= gm qu
j

We can see that the total length of the string in equilibrium position is L = (n+ 1){. It requires to
find out the displacement of the j-th particle, in order to calculate the potential energy associated
with it. We can figure out that there is a change in the length between the j-th and (j + 1)-th
particle from its equilibrium length [. We can write the expression for the new displaced length
between the pair by
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146l = \/12 + (qj+1 - qj)2
:I{l L i —%)2}

212

swhere the change of the length is denoted by 4/. Here we have neglected the higher order terms in
jthe expansion of the quantity under the radical sign.

|
|Thus, the work done associated with the displacement 8] = (g;41 — g;)2/2!, is F.8l. Here of course,

iwe have assumed that the tension in the string in cquilibrium position and in a stretched position
are equal. The work done in displacing the mass points from their equilibrium position is stored in
the system as the potential energy V and so we write the expression for V as

F
Vo= 5 [+ (g2~ q1)* + (g3~ @)% + -+ (gno1 — ¢2) + ¢7]

F n+1
= 5 > (-1 — q5)°
J=1

;Thus, the Lagrangian of the system is

! n+-1 1 F

1 p— '2 . . 2
j L= Z [5‘”’1?}' - “é‘l(%—l —-gj) ]
'}. I=1

i‘Using Lagrange’s equations for g;, we get

1

. F
mgj — 7 (@j-1— 295 + gj41) =0

! or, d; = w§ (gj=1 — 2¢j + gj41)

%Here we have replaced % = w?. The equation of motion for the particle here reveals that it depends

‘on displacements g;-1 and g;41 of its neighboring particles only.

i
:iAs the obtained differential equation is of 2ud order with constant cocfficients, the solution can
ibe obtained thruogh a trial solution of the type ¢; = ¢jexp(iwt), we get the set of following

equations:

. (ng - wa; — gag =0

~wp + (2wf - w?ay — whaz =0

) —-wga,l_l + (2w(2} - w2)a,,, =1

We will look for the solution of the secular equation for small values of n. For n = 1, there is only
one particle between the fixed points and hence only the first term of the first equation above is
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relevant, i.e., 2w§ —w? =0 and we havé only one normal mode with frequency w? = 2w?. For
n =2, the characteristic equation is the determinant of

-

2

(ng - w? ;w&

2) = (2w - -wj=0

and accordingly we have two normal mode solutions :

w% = wg with a3 = a2
and wi = 3wd with ay = —ap

For n = 3, three particles are involved and the secular equation is the given by the determinant

2w — w? w0"2 0
2 _ .23 drg 2 2
—w§ Wi —w? - = (2wj — w*)® — 2wj(2wy —w’) =0

0 —-w} 2wd —w?

which has the roots 2w? and (2 ﬁ)wg. The corresponding normal modes are

2 9 a1 1 as
W = (2 - V2)ud, — = =
1 ( ) 0 as \/E as
w%=2w§, & -1, az =10
a3
2 9 a1 1 a3
w=2+\/§w} —_—=—_——= =
3 ( ) 0 as \/Q as
Proceeding in the similar manner it is possible to find out the modes for n =4, 5,... and so on.

It is worthwhile to note here that for any value of n, the slowest mode is the one in which all
the particles are oscillating in the same direction and the fastest mode has the adjacent particles
oscillating in opposite directions. In the limit of a very high value of n, the separation between the
particles will be infinitesimal and the corresponding normal modes approach those of a contimous
stretched string.

Example 8.3.1 Find the normal frequencics and normal coordinates of the system whose La-
grangian is given by

L=>(z"+y?) - % (wiz? + w3y?) + axy.

[N

Solution: Here, the lagrangian is given. The Lagrange’s equation for both the coordinates are

«" +wir—ay=0 (8.3.11)
¥ +wiy—az=0 (8.3.12)
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Now, we seek the solutions in which the system is vibrating in simple harmonic motion at normal

{frequencies w, i.e., we seek solutions of the form
!

‘:- ! = -z (8.3.13)
i and ¥’ = —w¥y (8.3.14)

sting these equations {8.3.11) and (8.3.12) reduce to

x(w% - w2) = ay, and y(w% — w2) =azr
i 2 _ 9
f ie, —= —— = o and == {wp =)
! y (Wi —w?) y o

%These are equal and by equating the right hand sides,we obtain the following equation for the
normal frequencies

| W~ WP (ed 4+ W) + (Wi —0?) =0

I
‘This gives

| 2 (Wl b & O = AP e ,
|

5 (8.3.15)

,}If « = ( then the normal frequencies are wy and wsy.
3
The normal coordinates z and y are obtained by solving equation {8.3.13) and (8.3.14). They are

x = Ay cos(wt + ¢1)
and y = Agcos(wi + €2),

where z = Ay, A, €1, €2 are arbitrary constants. The values of w are given by (8.3.15).

8.4 Summary

In this section we have discussed a relative complex problem of oscillations induced in the particles
‘Iof of a system. As the mathematical treatment and the corresponding solution will be intractable
for any arbitrary oscillations in the first place, the problem is simplified by the assumption that
the magnitude of the oscillations are small compared to the characteristic length considerations in
the system. The corresponding kinetic energy, the potential energy are found out to write down
:the Lagrangian of the system. The corresponding Euler equations of motion for the particles will
give the differential equations governing the motion of each particle. The normal mode solutions
iare then found out to find varicus modes of oscillations that are at work in such a system.

|
’ Self Study Questions:

1. Determine the dynamics of the forced small oscillations of a system where the force F(t)
associated with the system at the initial moment of time is given by

|' {a) F = Fy = constant,

(b) F = at, where o is a constant,




SUMMARY

(¢) F = Fge™#t, where p is a constant,

(d) F = Fpe M coswt, where v is a constant.
. What is a coupled oscillation? Find the equations motion in the coupled pendulum.

. Obtain the normal modes of vibration for the double pendulum, where the bob of the first
pendulum is the point of suspension of the second pendulum.

. The Lagrangian L of a system with two degrees of freedom, is given by

1
L= [(* +§%) - wi(z® +v*)] +azy,

where wyp is the natural frequency of the system and o is a constant. Determine the normal
coordinates and eigenfrequencies of the system.
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UNIT 9

Canonical Transformation

Preparatory inputs to this unit

1. Hamilton’s principle and Canonical equations of motion.
2. Basics of Ordinary and Partial differential equations.

3. Elementary ideas of coordinate transformations.

195




196 UNIT 9. CANONICAL TRANSFORMATION
|
‘9 1 Canonical Transformation

59.1.1 Introduction

{Canonical transformations are considered the heart of the philosophy behind the formalism of the
Hamiltonian mechanics which allows us to regard the coordinates and momenta in the equal footing.
So far we have considered ¢’s as the generalised coordinates and p’s as the generalised momenta
!a.nd use the Hamilton’s Canonical equations to solve a dynamical problem. Now suppose we raise
la question here. While solving a given dynamical problem, can we think of ¢’s and p’s to inter-
E‘,change their roles, i.e., can we consider the quantities ¢'s as the generalised momenta and p’s as
';the generalised coordinates without affecting the outcome of the solution and the results are still

‘identical in both the situations?

|Lagrangian dynamics does not have direct role of the generalised momenta in the equations. Gener-
alised momenta are the outcomes of the equations. Hence the Lagrangian dynamics does not seem
to answer the outcomes of the exchanging of the roles in the generalised coordinates and momenta.
In the Hamiltonian formalism, for a set of the conjugate pairs of the generalised coordinates and
generalised momenta (g;, p;) the canonical equations are

| ) . oH
l o P "0
j

IIf we consider a transformation that the old coordinates ¢ transform to a new momentum P and
the old momenta p transform to new coordinates ¢ so that

qg— —P, and p—Q

then the Hamilton’s equations in the new situation will be given by

_9H p—_9H
) YZ o0,

i.€., the new set of conjugate pairs (Q;, P;) the equations are indistinuguishable from those of the
i_old pairs, which would give the same result even we consider the first of the conjugate pair as the
generalised coordinates whereas it was the momenta in the old system.

oF

' Anther requirement, in view of the solution of dynamical problems is that if a coordinate is cyclic
in the Hamiltonian or the Lagrangiagn, the corresponding conjugate momentum is a constant of
motion and this leads to an easy solution in relation to the cyclic coordinate. If there are more
i cyclic coordinates in the Hamiltonian, the solution becomes progressively easier and in the eventual
icase, if all the coordinates are cyclic in the Hamiltonian, it will be very easy to solve the problem.
i This calls for finding some transformations which will render the Hamiltonian to have all the coor-
' dinates to be cyclic. The condition to be imposed on such transformation is that the the dynamics
:should not be altered by the transformation so that the form of the Hamilton’s canonical equations
'remains the same.

In view of the above requirements, a special kind of transformations in the generalised coordinates
Eand generalised momenta can be defined in such a way that the form of the Hamilton’s canonical
'equations retains the form, although the New Hamiltonian might have a different dependence on
i

|
I
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the new generalised coordinates and generalised momenta. Such a transformation is called Canon-
ical Transformation.

There are many equivalent definitions of canonical transformations of variables, but they all boil
down to the single essence that a set of variables (P, }) are canonical transforms of the variables
(p, q) if they preserve the structure of the equations of motion.

It is imperative to look for some generating functions to obtain canonical transformations such
that operating these generating functions yields the new set of canonical variables in terms of the
old set. It must of course be remembered that no new physical informations are derivable from
any choice of coordinate system. The canonical variables and transformations are purely lead by a
convenience, although a very useful, in describing dynamical systems.

Formal definition of Canonical Transformation: When the set of canonically conjugate
pairs of generalised coordinates and generalised momenta. (g;, p;) corresponding to a Hamiltonian
H(q;, p;,t) and satisfying the Hamilton’s canonical equations

—iil = _9H
qt—‘apia Pa— 3%

are transformed to a new set (Q;, F;} such that )

Qi = Qi(QhQZ: ceesldny P12 D f’)
P = Plq,q2,- - ,qni P, P20~ Pa; 1)

or, in short, »

Qi = Qilg.pj, 1) P, = Py{q;,p;. 1)
and the new hamiltonian K{Q;, P, 1) satisfies

9K b 0K
S T A0

the transformations are known as Clanonical Transformations or Contact Transformations.

o

The Hamiltonian functions H and K in the two sets of coordinates are related by

szpk(_jk_L(qiséht) and KZZPLQ»’C_‘E(QIQ:”
k

k

where £ is the transformed Lagrangian.

Requirements for Canonical transformations: Generating function

If Q; and F; are canonical coordinates, they must satisfy a modified Hamilton’s principle of the
form

5/52 (Z PQ; — K(Q,P, t)) dt =0 (9.1.1)




t to express the function F in terms of a part of old set of variables and partly of the new. In fact

I
]
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Similarly, the old canonical coordinates too, satisfy

5/£ ’ (Z pigi — H(g, p, f)) di =0 (9.1.2)

These two equations are simultaneously valid only when the two integrands differ at best by a total
| time derivative of an arbitrary function F, i.e., ‘

ta
§| (L—£)ydt=0 (9.1.3)

131

with L = Zp,-rj,— — H{g.p,t) and £ = ZP,;Q,- — K(Q, P, t), lead to
i i

dF
L-f=—
dt
This is because of the general form of the modified Hamilton’s principle which has zero variation

at the end points. Both the statements will be satisfied only if the mtegrands are related by

A (Zpiés — H{g,p, t)) = (Z P,Q; ~ K(Q; P, z)) + % (9.1.4)

Here A is a multiplicative constant independent of canonical coordinates and related to a simple
type of transformation of canonical coordinates, known as a scale transforination. A transformation
of canonical coordinates for which A # 1 will be called as an extended canonical transformation. If
the transformation equations do not contain the time explicitly then they will be called restricted
canonical transformations.

The action integral ((9.1.1), (9.1.2) or (9.1.3)) will vanish for any form of the function; irrespective
of whether F is a function of (g, p, t) only, or {(Q, P, t) only, or any compbination of the new and
 old phase space coordinates since all these will have zero variations at the end points.

il We can use the transformation equations

Qi = Qi(Q: by t)

P‘i = Pi(q:p: t)
And their inverses

gi = qf(Qa P: t)

Pi = pi(Qs p: t)

the function F can be considered as a bridge between the two sets of canonical variables and is
called the generating function of transformation.

1 9.1.2 Generating functions for Canonical Transformation

Depending on the choice of old and new variables we can consider four basic types of generating
{ functions. The generating function will serve to generate a transformation from old set to new set
of canonical variables so that the generated transformation (g,p) = (Q, P) is guaranteed to be a

canonical transformation.

li
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Type 1 generating function

The type 1 generating function, denoted by G, involves only the generalized coordinates-both old
and new, and of course the the time, é.e., G = G1(gi, Qs, ).

To deduce the relations of the transformations, with the generating function we write the total time
derivative of the generating function as

i (G, 8G15\ G
ra _;(qu‘-'- 8Q,-Q’) LT

So, the requirement of canonical transformation

‘ _ O _ ko %G1
Zijpiq,—H—;P,@ K+
. e H_=NT PO 8G. . 8G1,Y , 9G1
o)} Zi:pth H—ZRQt K+Z:(8qs q‘+BQiQ‘)+ P
L _0GN LGNy e g 961
or 2([/‘; Ta'a)(h Z:(Pz‘{'BQI)Qg"'K H ot =

I

Collecting the coefficients of ¢; and Q; is possible for both being independent of each other, i.e.,

oG, 8G, oG,
i = = ;= — =H+—
=5 Fi=-5a. K=H+—7

Thus it is seen that once the generating function G(g,Q,t) as a function of the old and new
generalised coordinates, its partial derivative with respect to the old coordinates yiélds the old
momenta and the negative of the partial derivative of G with respect to the new coordinate results
in the new momenta.

Type 2 generating function

The type 2 generating function G depends on the old generalised coordinates and the new gener-
alized momenta Gy = Ga(q;, Pi, t).

In fact there is a relation between the type 1 and type 2 generating functions. Legendre dual
transformation is a special type of transformation which links between these two types. Without
going through the details of the Legendre transformation we would write down the relation which
goes as

Gala, P t) = Z PQ; + Gilg:, Qi t)
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|
The Canonicality requirement

ZP:% H= ZPQz K'f‘ﬁ;_l
:ZP‘?Q*‘K*E Gz(qf,Pf,t)—ZPiQf

i
|
'|It =ZPs—Qz K+“——ZPQz ZPQI

il or, dG2 Zp,ql+ZPQ,+K H

I
IB

jExpanding the total derivative on the left hand side,

|Z

i oG G IG

! 291"‘2 2 z‘[‘_‘% ZPL%'}“ZPQ;'}‘R—
i

Smce the old coordinates and new momenta are each independent, the following equations must
hold:

_9G» _ G, P

'i‘ype 3 generating function

i

The type 3 generating function Gs is a function of the old generalized momenta and the new
generalized coordinates, i.e., Gz = G3(p;, @i, t) and it is connected to the type 1 generating function
Tthrough the Legendre transformation as

)
) Gs(p;, Qut) = C1(3:, Q) ~ > _ piga (9.1.5)

We again meet the requirement of Canonicality as

Zp;(h H= ZPQ‘t_I{—i_@
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Substitution of the last term through (9.1.5) yields
= ZPQz K+_ (s pg,Qg,t)‘i‘ZP:%

= ZP'Qz K+ 258 +ZP1@'1 + Zprqﬁ

or, dr—GS=-—qu,pt ZPQ,+K H

Expanding the total derivative of the generating function on the left hand side,

BGB ZaGg i3=_2Q£Pf—ZP£Qi+K—H

As before, the generalised quantities are independent of each other, we can equate the coefficients
so that

_9Gs . _9Gs aGs
Op; S0 at

Type 4 generating function

The type 4 generating function G4 involves both the old and new generalised momenta, so that

G4 = Galps, P, t), so that
dG'4 z dG4 dG4
— = P+ E

Further, the function G4 is also related to Gy via Legendre Transformation in the manner as,

Ga(pi, P, t) = Y PiQi— Y pigi + Ga(ai: @i, t)

Using the above result, we can now write down the requirement of Canonicality as

Zp:(h H= ZPQa K+ ‘4&
= ;Pi(?i - K+ az Ga(pi, Q1. t) + ZPéQi - Z Qs

:ZP::Q!. K+'—+szq;+zp.1q; ZPQ% ZPQ1

dG
or, — = ZP;QL+ZRQ=+K—H
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Expanding the total derivative of the generating function on the left hand side,
oG aG
4pz+z 4 —_Zpeqa+ZPQ1+K H

As before, the generalised quantities are independent. of each other, we can equate the coefficients
50 that

|
I

8G, 86, 3G,
= P, K=H+ E

It s intcresting to note here that in all the four types of generating functions, the relation between
Fhe old and new hamiltonians are of the same form, the connecting generating functions appear in
Fxphclt time derivatives. So, it is obvious that if the generating functions are explicitly independent
of time, the hamiltonian does not change on the canonical transformation in question, i.e., K = H.
|
I't will be worthwhile here to demonstrate the role canonical transformations towards simplify-
1ng a problem. We consider the problem of the simple harmonic oscillator. Since the system is
conservative, its Hamiltonian is given by the sum of the kinetic and potential energies.

2
AR T R IR R IR
H=_"—+ k¢ =— 9.1.
2m+2q 2m[;')+qu] (9.1.6)
Oul next objective is to transform the Hamiltonian to a new set of coordinates so as to increase
the number of cyclic variables. As the Hamiltonian here is quadratic in the momentum and the
qpatlal coordinates, we attempt a transformation of the form

= f(P)eosQ, g¢= K )st (9.1.7)

|
1 L
i
)

which leads to 2 p
| gL
! 2m

The next step is to choose f(P) such that the transformation becomes canonical. We select the
generating function as

|

This gives us the canonical momenta

! 6F1 BFl mq2
' = —" = t (), P=
P dq muwg ot Q. aQ T 2620 Q

FI om these two equations we can solve for ¢ and p

! 2P

| q=14/—sinQ, p=V2PrnwcosQ {9.1.11)
mw

!

|

o

(9.1.8)

2

Fi(q,Q) = mgq cot @ (9.1.9)

(9.1.10)
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.

which implies

£(P) = V2mwP (9.1.12)
Therefore the Hamiltonian is
K=H=wP = P= % {9.1.13)

where we have used the fact that a conservative system yeilds a Hamiltonian independent of time
and equals the total energy of the system. We can see that the new Hamiltonian is cyclic and hence
is amenable to easy solution, that since the variable Q is cyclic, the momentum is a constant of
motion. The only equation of motion that needs to be solved is

Q:—P—zw = Q=wito (9.1.14)

Substituting this back into equation (9.1.7), we find
2F
g=\—= sin(wt + ), p = V2mE cos(wt + @) {9.1.15)

9.1.3 Conditions for Canonical Transformation

Let us consider a restricted canonical transformation ¢.e., one in which time does not appear in the
equations of transformations.

Q: = Qile,p) and P, = Pi{g.p)

We have already seen that the hamiltonian remains unchanged in a restricted canonical transfor-
mation. So, the time derivative of Q; and P; can be written as

.00, | 0Q.

Q; = =245 + —p; 9.1.16a
oF; oF;

Po= =g+ —p; (9.1.16b

L4 aqj 4 apj J )
But from Hamilton’s equations of motion

0o
. oH
pJ - qu

Q= (9.1.17)

_OP0H 9 0H
' 8g; Op;  Op; g

(9.1.18)

The inverse of the transformation equations arc

g = a(Q, P)
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pl(Q: P)

All these equations enable us to consider H{gq,p,t) as a function of @ and P. Differentiating H

\i'nth respect to ) and F we get
! OH _ 0H 0p; | OH 0y

oF; ~ Op; OP, " dq; OP,
| OH _ OH dp; | OH by;

oQ; ap_;l o 8‘5'3 8@:
]:E:"ut the Hamilton's equations of motion for @ and P are

| . oH
| Ty
| N
| B =5

Comparing Equations (46) and (48) with equations (49) and {50) we can write

9QidH 0Q:i0H _ OH Op; OH dq;

dq; 3}03 8pJ Oq} apj 9P Oq; OF;
; orF;0H 0P, 6H [@ dp; OH E)q}}
‘5 8q; 0p;  9p; q; | 9p; 0Q;  Bg; 0Q;
i
Equating the coefficients on both sides of the above two equations we get,

]

(F) = (57)
; 095 / qpy  \9Ti/(q.p)
@
! ;5 / () OF: ] (q,p)
| (%)= (),
95/ 0m  \9Qi/(gnp) ‘

B W
' Ip; (9.9) Qi (Q.P)

(9.1.19)

(9.1.20)

(9.1.21)

(9.1.22)

(9.1.23)

(9.1.24)

(9.1.25)
(9.1.26)
(9.1.27)

(9.1.28)

The above four sets of equations are known as the direct conditions for a restricted canonical trans-

formation.

Another version of the condition for canonically can be deduced from the considerations from the
exp11c1t time independence in the generating function, F(g;, @;) which is a function of the old and
new generalised coordinates. If F(g;, Q;) is given then we can write down its total differential as

JF = Z apldqt + Z BFl

But from the type 1 gencerating function. we find that .
9F oF

j 7= B 30
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Therefore, we can write the form of the total differential dF; as
AR =) pidgi— ) PdQ;
i i

We see that in the canonical transformation from (g, p) to (@, P}, the expression Z pidg; — Z P,de);
i i
turns out to be a perfect differential. So, we conclude that

If the expression prdq" - z P,dQ; can be writien as a perfect differential, or in other words, if

T 1
the expression Zp"dq" — ZP,-dQ,; is exact differential or perfect differential, the transformation

i i
from (q,p) to (Q, P) is canonical.

Now we shall take up some canonical transformations and discuss the role of the generating functions
through some simple exampies.

Example 9.1.1 Show that the transformation

Q=tan™!

R~

1«
P=3(¢" +7")

is canonical. Find the new form of the Hamiltonian obtained after the said transformation when
the old one is given by

1
H= §(q2 +p?)

Solution: In order to establish that the given transformation is canonical, we consider the following
differential form

n n
Zpidqi - ZPiin =dF
=1 i=1

with

1
P=_(¢" +p°)

-19
= tan 1—.
Q o 5

50 that .

2
_ P q\ _ pdg—qdp
dQ = 2 2d(_)— 2 2
p+q P petaq
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’:fhe above expression in terms of the old variables is therefore

2 2
+¢% pdg — qd
!f pdg ~ PQ = pdg - 3L P9

PPt
dg—qdp  pdg + qd
zpdq_pq2qp=pq2qp
or, pdq—Pszd(%)

= dF = perfect differential

Hence the transformation is canonical. The corresponding generating function is F' = B, which
can be expressed in terms of the type 1 as the following.

From the given transformation,

Q= tan~t 1

p

| or, ta.nQ:2

l p

! = p=gcotQ

‘ 2

! F=%=%cotQEFl

So the generating function is of type 1 with Iy = -";- cot .

|

1
As the generating function is explicitly independent of time, oo So, the New hamiltonian

i 8t
equals the old hamiltonian, i.e.,
1
K=H= 5(102 +q°).
Example 9.1.2 Prove that the rheonomic transformation
Q = /2ge' cosp, P=+/2qe 'sinp

s canonical. .

i

|

;Solution: Given the transformations
' Q = /2ge* cos p, P= /2 tsinp
i

from which we first obtain

cos pdyg ) ¢ cospdy — 2¢sinpdp |
dQ = ( —\/2qsmpdp)e = e
V2q V2q

Pd@ = sinpcos pdg — 2¢ sin? pdp




9.1. CANONICAL TRANSFORMATION 207

s0 that

pdg — PdQ = {p — sinpcosp)dg + 2¢sin® pdp = Mdg + Ndp (say),

with M =p—sinpcosp
M
== —=1—0052p=251n2p
dp
and N =2gsin’p
oN
= — = 2sin’yp.
dq

The exactness check condition of

OM _ ON
ap  9q

indicates that the expression pdg — Pd(Q is a perfect differential and hence the transformation in
question is canonical.

Example 9.1.3 For a given canonical transformation, the following are supplied:
N ETS)) 1 oo 1
Q=VI(@+)., F=5(+p")tan” % +5ap

From the information find the transformation P(g,p) and the generating function F{g.Q) as a
function of the old and the new coordinates.

Solution: First we solve for p from the given expression of ¢} and substitute it in the given F to
reexress it in terms of F(g, Q), ie.,

p=V@Q*— 42
so that
Q.1 g g
F = —tan + 2/ Q% - ¢2
2 g 2




r
I

1
1
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As this depends on the old and the new generalised coordinates, it is the type 1 generating function.
o, F = Fi(q,Q). Hence

£ 8
‘ p=_95

—_|gsnr2_1_99 1 4@
= [Q.sm RN +3 \/Q2—q2]
| or, P(g,Q) =-Qsin™ 5

Now for obtaining (g, p), we need to substitute Q for /g% + p? to get

RN S T B S
P{g.p) V(g% + p?)sin NCESD)
or, Plg,p) =~ W+ﬁﬂm4%

which is the required transformation.

3 i

9.1.4 Some Special Canonical Transformations

1. Identity Transformation
Let us consider a generating function of the type

F= F2 = qu'PJ'
i

Utilizing the relations for the generating function of type 2

{l .= 2
Pi = 20
| 8
II = —_ P
D (; 9 ’)
_ N 9% ar
-,@ﬁ+2%%
3 i
dg; 1
= Ej:ajipj +0, [ a_q—: = Kronecker delta = d;; = { 0

or, pi=F

i:j]
i# g
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Similarly, 1
a=32
= 6(?% ZJ: 9 P;
= Zj: g_jg;l)j + ; qjg—f)f
=0+ Z 8545, [ g, P are mutually independent.]
or, Qi = qi J

Thus we see that the generator FF = Fy = ), q; P; generates the new transformation such
that the old and new values are identical, i.e., identity transformation. Further since the
generator is explicitly independent of time {, the hamiltonian will also remain unchanged
upon this transformation.

Summarising,

¢ = i, pi = 5, K=H" for the generating function F= Zqu,-

2. Coordinate Swap
We now consider the coordinate swap or the exchange transformation in which the new
position coordinates are the old momenta, and the new momenta turn out to be the old
position coordinates {except for a negative sign, as we can see below). For this we consider
the generating function of the type

3

which is the generator of type 1. In this case we find that

= %R
P e

i3]
= 3 Z%Qj

2

=> §;Q;+0
3

or, pi=Qi




and
oF
b=
9Q;
3
dQJ ; 1T
! =—) 8ig; +0
i
or, P‘i = —qi

Thus we see that the given generator serves to generate a transformation which causes an
exchange of the role of the canonical variables: momenta behaves like coordinates and the
coordinates behave like momenta. This is the ezchange transformation. Further the generator
being explicitly independent of time, the hamiltonian also does not change upon transforma-
tion.

So, we see that

pi=Qi PFPi=-q, K=H for the generating function F= Z giQ;

9.2 Lagrange Bracket and Poisson Bracket

;it"part from the test of canonicality as laid in the previous sections, there exists another viewpoint
of testing the canonicality of the dynamical variables and translations in relation to the volume
ciieﬁned by the canonically conjugate variables. For a dynamical system with n degrees of freedom
we have already seen that Hamilton’s canonicalequations admit 2n canonically conjugate variables
?f which n numbers are the generalised coordinates and rest n the canonically conjugate momentum
coordmates It is then possible to conceive of a "space’ spanned by these 2n coordinates in relation
to the given dynamical system. This space of coordinates and momenta is also called a phase space
gorrespondmg to the given system and every point of this space defines a particular state of the

dynamical system.

Thcre exists two known classes of relations between the dynamical variables which can be used to
test the canonicality of a given transformation. One class is the Lagrange Bracket relations and
the other is the Poisson Bracket relation. There also cxists a mutual relationship in between these
two classes. We start our discussions by defining the bracket relations and get along with finding
tpeu‘ relationships and utilities.
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9.2.1 Lagrange Bracket

This class of relationship in the dynamic variables was introduced by Joseph Lagrange in 1808.
For any two independent dynamical variables u(q, p,t) and v(y, p,t) of a dynamical system with n
degrees of freedom, the Lagrange Bracket is defined as

_ N~ (Qaidpi _ 04 0p:\ _ 5 Ol i)
(U; U)(an) - ; (au Hv S 'a_u - ; a(u_l 'U)

From the definition itself it is clear that the Lagrange Bracket antisymmetric with respect to the
variables u, v, i.e.,

(u,v) = —(v,u)

Properties of Lagrange Bracket

Some of the properties of the Lagrange Bracket are listed below.

1. (% a,vxb) = (u,v).

2. (awn, bu) = X (u,v).

3. {ae. @) = 0= (p, ;1)

4. (gi,pj) = bi5.

5. (. v)(gzaptty = (U V)(gp)-

o

. (u: v){aq,bp)‘z ab(u? U)(‘LP] -

9.2.2 Poisson Brackets

The Poisson Brackets are important algebraic structures available for any Hamiltonian system. The
properties of Poisson Brackets serve to offer an elegant transition from the classical mechanics to
guantum mechanics where the Poisson bracket in the dynamical variables transits to the commu-
tators in the quantum mechanical operators.

Consider any two functions on phase space, f(gi, p:) and g{(gi. p;), such as the components of the
linear or angular momentum, or the energy etc. The Poisson bracket of this pair, denoted as [, g
is defined as

_N~ (2199 93
(f o= (5(; o " B Bq,') (9.2.1)

i=1
The Poisson bracket has a number of important properties, as discussed below.
Some properties of Poisson Bracket
1. The Poisson bracket of any two dynamical variables is antisymmetric, i.e.,

(1, v] = ~[v, u]
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1 and the corollary

fu, w) = (u, u] =0

! The Poisson bracket of u with itself is zero.

3. If cis a constant, independent of the canonical variables g, p and the time ¢, then

| [en, v] = [u, cv] = cfu, v]

4. The Poisson brackets satisfy the distributive property

e e

wtv, w =[u, w) v, w
| fr, v w] = [, v] & [u, w]
luv, w] = [v, w]u + vy, w]

[u, vw] = [u, v]w + vy, w]

5. The partial and the total derivative of any Poisson bracket relation satisfy the following
relations

LI B
. ot T e " T

a T ' dt

6. Poisson brackets of three variables X, Y and Z; [X,Y],[Y, Z] and [Z, X| are related by the
following identity,which are known as Jacobi identity.

{ 2. The poisson bracket of « with any constant ¢ is zero, i.e., [u, ¢/ =0.
and

[X! [Ya Z” + [Yr [Z: X]] + [Z: [X? Y]i=0

l"lom a mathematical point of view, these properties of the Poisson Brackets mean that the set of
phase space functions is endowed with the structure of a Lie algebra. From a more practical point
of view, these properties can be used to simplify the computations in poisson brackets, once we have

the poisson brackets of the canonically conjugate variables, i.e., (g;, pi), called the fundamental
Poisson Brackets:

‘l' [Q‘il pj] = Jij: and [qi: QJ] =0= [.pi: p}]

For example, to compute the Poisson Bracket of f=g¢p with ¢=pe? we get

[f. g] = lgp. pef]
' [f. 9] = qlp, pc?] + plg, pc]

= qplp, €] + qe[p, p| + P’la. €] + peg. p]
. = —gpe? + pef.
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Here we used the fact that

[9(q), flg)] = U = [h(p), k()]
f(p)

[q‘h f( )] = W:
and i 100} = -2

We see that the Poisson brackets have a fundamental role to play in mechanics relative to canonical
transformations.

Example 9.2.1 Prove that the distributive low
[F,G+ K] = |F,G]+ |F, K]

holds good for poisson brackets.

Proof:

(aF NG +K) OF G+ K))
Ogr.  Opx Op O

(BF oG 6F6K) (SFBG SFGK)
= Z = 4 Z — 4

 \9q Ipr O Opy; Opx Oqr ~ Ipx O
(BF oG ar 8G) Z (8F gK aF r'JK)
=~ \Oqk Opc  Opr Ogp Oqr. Opx Ok Oux
[F,G] + [F, K]

Example 9.2.2 If [¢, 4] be the Poisson bracket, then prove that
L2 ¢ 9%
O 1,91 = [ ,w] [,Ot]

Proof: From the definition of Poisson bracket,

9¢ &% _ 8% By
[¢.¢) = Z (qu O Ope qu)

O =S |2 (2804 [ 96 0 (90N O (0¢\0oY 04 0 (0
5[¢’¢]“Z[6q (Bt)apk'*'aqkam(a) o (30 o apkaqk(at)]
_ 2 o _ 9 (96 % 9¢ 9 (04N _0¢ 2 (04
Z[a%( )3% 5Pk( )5‘] ;[3%3}0&(&) apka(Ik(at)]

_ [2¢
= [ra?"”] * [¢, a]




{
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Jacobi Identity

} For any three functions F, G and K of p; and gy, the following identity holds true :

(F,[G, K] + (G, [K, F]] + [K,|F,G]] = 0.

4

This relation is known as Jacobi Identity.

Proof of Jacobi identity

' Let us consider the following expression:

(F,[G, K] +[G,[K, F)) =

FZ(OGOK _z_)_c_:ar() (apax gﬁg)
Ogi, Opy Opy Ogy, Oqr Opr Opr Ogy,
oG 0K I9G 8K
= |F, F
[ 2(3% apk)] [ (Bpk 3%)]
oF 0K JdF 0K
6.3 (=] + |G,
[ zk: (d%dpk)] [ (3Pk d‘?k)]

Now, using the property [u, vw] = [u, vJw + [u, w]v, we have

oK IK | 0G aG | OK oK | 0G
F, |G, K])+G, [K, F}] = Foo| g+ |F | —- |F === | = | &
16 K G, [, ) ; {[ 69&] Ipy [ '817!:] Oqk [ 31)1.—] Iqx [ Bq:c] I

oK oK | oF oF | 9K dK | oF

— G, = 7= - |6, 2= | — + |6, —| 28 ¢ |G, 2| 28

[ 3%] Api; [ ' apk] Iqi [ Bpk] Ik [ 3%] apk}
oG OF || 0K oG OF || 0K
= F, G, =—| b — + - 2+ |6, —| V22
. {[ 3qu [ ' 5Qk”3pk g{ [ 3pk] [ apk]}aq:c
dK'| 0G oK | G OK'| OF oK | OoF
Poo— = - |F, —| —=-|6, — 1L 4| Z&| 28
Z‘;{[ ' Bka Iqx { ’ 6%] Aqi [ 6’pJ Ik [ r?q:c] 5‘pk}
G ar|) oK oG aF
= Fo—| =G, —|}—+ F, 2+l —
Sl - le &l o S [F 5 e 5

}
v, 1= {[r. 5] 28 _ [, 9K] 26 _ [ 2K 0 1 0x] 0P

- Ipx | Ogx " Og | g " Opi ] Og

+

(F, [G, KN+ (G, [K, F)] =Z{(53:[F G]) g;i (%[R G]) g—;{;} +7

k

=|F, G|, K|+I=-[K, [F, G])+1I
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Now,
IK | a¢G K| 8G OK| 8F JdK] OF
I = F! - O - F’ " s G} 5. a + [Gl —] _-_}
; {[ 3PJ O { 3%] 4k [ 310J & Ak | Op
_Z{Eﬁaz_ff_ff_f“ PK 9G _9GOF PK | 9G OF B°K
= | Ogk Ogx Op2  Opy OqiOpk Oaqr  Opx Dax OpkOqi  Opx Opr da;;
LOGPKOF 06 PK OF 00 6K OF 0GPKON
Baqx Op2 Oqr  Opk 0qkOpx Oqx  Oqi Opkdax Opr  Opi Oqi, Opx
0
Hence, [F, [G, K] +[G, K, Fl|=-|X. [F, G]]
= [F, G, K +[G, (K. F)+[K, [F, G]]=0

which proves Jacobi’s identity

9.2.3 Poisson Bracket and Canonical Transformation

-~
The importance of the Poisson Bracket essentially lies on its property of the covariance or the form
invariance under canonical transformation. It states that

The Poisson bracket of dynamical variables defined on a set of canonically conjugate variables is
covariant under the canonical transformation.

Proof: Let F(gq, p) and G(g, p) be two dynamical variables at any given moment t and corre-
sponding to a system described by Hamilton’s canonical equations corresponding to n degrees of
freedom and with the canonically conjugate pairs {g, p). Then the Poisson Bracket associated with

the system is defined by
OF 3G 9G OF
.0l = 32 (50 52 ~ o )

i

Now we impose canonical transformation of the set (¢, p) to a new set say (Q, P) such that

g = qu{Qi, Pi)
px = pi(Qi. Pi)

which will modify the form the dynamical variables in the Poisson Bracket as

(200, orony20_ (082, o608 o0
0Q; dgi  OP; dqi ] Op; dQ; dp; 8 Ipi } Ogi

[F, Glam =2

ij

_y[2 5 (e _saze), or s (on s _smicy
. 0Q; <4\ 9q; Ipi  Opi dg; aP; dgq; Opi  9p; Og;

i
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aF aF
(F, Glgpm = Zj: [@[Qj, Gl + Eﬁ[Pj, G]] (9.2.2)
Putting G = Q; and F' =G in (9.2.2) we get

aG T
G, Qe = Z [TQJ{QJ': Qul + B—E[Pj, Qk]]
j

1|Again putting G = P and F' = G in (3.2.2)

6. Pl =2 [% @5, Al
Z OQJ (0%)

_ o6
T 8Qk
From (9.2.2)
OF 9G  9F 0G
[F, Gl = ; (ang'a"ﬁ; - 5@}5@)
= [F. Glq,p)

Therefore the Poisson Bracket is conserved under canonical transformation.

19.2.4 Equation of Motion in Poisson Bracket

|| From Newton’s time there has been the attempt to write down equations of motion for any dynam-

ical system and look for conserved quantities, if any. The Newton’s equation of motion, though
elegant, had some inconveniences as the forces of constraints which are required to be included
in the equaiton of motion yet could not be evaluated apriori. Moreover, in Newton’s formalism
there was no direct way of counting the number of conserved quantities, let alone their estirnation.
The quantitics are first suspected to be conserved quantities requiring the verification subsequently

[}- whether they are conserved quantities or not. In lagrangian and Hamiltonian formalism, these

difficulties are partially removed: the number conserved quantities could be counted and estimated
by reading off the dependence of the Lagrangian or the Hamiltonian on the generalised coordinates.
The number of cyclic coordinates directly gives the number of conserved quantities of the system.

. Moreover the Hamiltonian formalism could provide some amount of symmetry in the structure of
. the equations.

| The equaitons of motion for a dynamical system can also be written in terms of Poisson Bracket.

The Poisson Bracket formalism of classical dynamics is beset with the symmetry in the dynamical
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equations and is capable of not only ascertaining the conserved quantities but also evaluating the
conserved quantities in an exhaustive manner.

Following is the discussion and the deduction of the necessary equations and relations towards the
description of a dynamical system and the associated conserved quantities.

We first suppose that for a given dynamical system, the Hamiltonian H{g;, p;, ¢} is known, where
¢’s are the generalised coordiinates and p’s the canonical momenta.

Let us proceed to evaluate the Poisson Bracket of one of the generalised coordinates with the
Hamiltonian H and also generalized momentum with the Hamiltonian H:

_ Aq, OH 6qk JH
[Qk: H](q, g~ Z (6(} 5}% 8])1 a(h) (923)
3Pk oH 3pk aH
., H = — .24
[Pk, ](q, 7) 21: (a(}i 8}%’ op; qu (9 )
The corresponding Hamilton’s canonical equations of motion are
OH JOH
= o == 2.
% o P dq; (9.25)

With the help of the equations (9.2.3), {(9.2.4) and (9.2.5) we can write the following

OH  JH
, H| = d; Fi 9.2.6
(9, H] ; B~ opr (9.2.6)
o ol )
pr: H] = (—bu) 75— e~ " dg " Pk (9.2.7)

1

Now let u be any dynamical quantity associated with the system such that u = u(q;,p;,t). Then
we can express the equation of motion for v as

du Z du dq; Ju dp,_ + @
8qt dt apt dt at
_ Z % 3 - E.}E 5 ) 4 @
AN P T

g (20 _ouoRY 0w
_i dq; Op;  Op; O ot

du du
sk Hl+ 2=
di = [v, H+ M
. Car . du
If u is explicitly independent of time, then i 0.
du
5 = [u, H]

If the dynamical quantity = happens to be a conserved quantity, we must have
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du
i 0, so that [u, H] =0

z e., If the poisson bracket of a dynamical quantity with the hamzltoman vanishes, the quantity must
be a constant of motion.

Now we consider two case which leads to two important results:

Case(1) If u =g — G = [q;, H]

5Case(2) fu=p =% pi = [pi, H]
]
iConserved quantities

iAn interesting result follows in regards of the conserved quantities of a dynamical system when
|We use the poisson bracket and in particular, the Jacobi identity. If the system has at least two
conserved quantities known apriori, it is possible to excavate all the remaining conserved quantities
Lthought the poisson bracket and the Jacobi identity. To proceed, let © and v be two given conserved
quantltles associated with a system with hamiltonian /7. Then it follows that

r_
L [u, Hl =0 and [v, H]=0 (9.2.8)
i
Using Jacobi identity,

[u, [v, w}] + [v. [w, u]] + ['w, [u, v]} =

tet, w = H. Then Jacobi identity yields

. [«, [v, H]} + [v, (H, «]] + [H, 4, v]] =0 (9.2.9)

Since, we have [u, H] = 0 and [v, H} = 0, the first and the second term of (9.2.9) becomes zero
and we get

| (H o] =0 = [, ], H] =0

Iz",e., the poisson bracket of [u, v] with the hamiltonian vanishes, implying that [, v] = 2z is a
constant of motion.

Note!

Once the hamiltonian for a system is known along with two conserved quantities, the
use of Jacobi identity yields the third constant of motion. Repeating this process with
the choice of a pair of conserved quantities out of the three available now, can similarly
yield another constant of motion. This process can be made to go on till the exhaustive
set of constants of motion associated with the dynamical system are excavated. Any

further repetition of the process thereafter will merely yield some member of the set of
the exhaustive constants of motion.
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Example 9.2.3 A harmonic oscillator of mass m and the spring constant k execules motion in
one dimension such that the hamiltonian is given in terms of a single generalised coordinate g and
single conjugate momentum p, by
2 k 2
_p ke
. 2m 2
Show, with the help of Poisson Bracket that the transformation defined for the system by

2 2
og P
P = — 11 —_
2 (+a2q2)

&
Q = ta?e_1—q, where, a = Vvkm

is Clanonical.

Solution: As the system is defined by the canonical pair (g, p), the Poisson Bracket expression
yields

7, P} =1, [9, 4 =0=[p, 5]
The transformation of the variables to {2, P) will be a canonical transformation for the harmonic
oscillator if

Q. Plig,p =1, with [P, Pl=1Q, Q1 =0.
We fing,
Q___ Q__o or p . 9F _
dp Ao dg p*+a?g? dp a ' dq e
0Q P 9JQaFr
P = 2 - =
(@ Plia) dq 8p Op Oq
_ ap P g g = p? + oq? _
Rrol@ o pPralg P2 + alg?
Hence the transformation is canonical.
Example 9.2.4 Using Poisson Brackets, show that the transformation Q = 15; P = qp? is

canonical.

Sotution: For the old pair of conjugate variables (g, p), we have [¢, p} = 1.
Now we need to show that, [Q, Pl =1

Q. P = B qu]

1 1
= [—, q] P+ [—, :02] q
P P

_ (a%ép) %q _ L;}/?@g_g) P 2 @), o) =0
—0_ 2L

=0-p( pz'l)

=1

Thus the transformation is Canonical.
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|

9.3 Summary

]

'A transformation from (g, p) to (@, P) which preserves the canonical form of the equations of mo-
t10n is known as canonical transformation, provided that the conditions apply to all Hamiltonian
systems Here we have discussed a specific procedure for transforming one set into another set
of canonical variables which may be more convenient. If a problem has been formulated in the
form of Hamilton’s canonical equations, the canonical transformations can be used to cast these
.equations into a more easily soluble form 4.e., to make integration of the equations of motion simpler.

1
|Canomcal transformations are the transformation of phase space. They are characterised by the
!
property that they leave the form of Hamilton’s equations of motion invariant.

1

Further, it has been established that a canonical tranformation of canonically conjugate variables
does preserve the form of the Poisson Brackets. This means, Poisson brackets can be used to check
_1;f a given transformation of the set of variables are canonical or not. Thus,

|
‘Thc fundamental Poisson Brackels provide the most convenient way to decide whether a given

tmnsformatwn is Canonical.

.

;The Canonical invariance of Poisson Brackets implies that the equations expressed in terms of Pots-
son brackets are invariant under Canonical transformation. Therefore we can develop a structure
of classical mechanics paralleling the Hamiltonian formulation, expressed solely in terms of Poisson
fl_arackets Which is especially useful for transition from classical mechanics to quantum mechanics.

|
I‘.I\Self Study Questions:

I, 1. What is a generating function? Deduce the expression for the transformed generalised coor-
dinates and generalised momenta for four different types of generating functions.

2. Deduce the conditions for a trnasformation to be canonical.
3. Find the values of o and B for which the transformation
Q = q* cos fip, P = q%singp
is canonical. Find the gnerating function F3 correponding to the system.
4. Verify the following properties of the Poisson brackets:

(i) j—g=[9:H]+*— () ¢;=la;, Hl,  pj=[p;, H]
! (iii) [t, H'] = 1, (iV) [pk,pj] =0, [qk,qj] =0

(V) lpe,pj] = Ok;

5. Find the Poisson bracket of

ap® + 28pq + v¢°
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with the Hamiltonian H given by

H=ap’+b* +cp+dg+e

where a, 8, v, a,b, ¢, d, ¢ are all constants.

6. By direct calculation, show that the Poisson brackets are invariant under canonical transfor-
mation.

7. Prove that the Poisson bracket of two constant of motion is itself a constant of motion, even
when the constants depend upon time explicitly.
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UNIT 10

Hamilton-Jacobi Theory

Preparatory inputs to this unit

1. Hamilton's Canonical equations of motion
2. Canonical Transformation and Poisson Bracket
3. Basics of Ordinary and Partial differential equations.

4. Central force problem and Keplar’s laws.
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|

:10.1 Hamilton-Jacobi Theory
!.

|The basic programme of the Hamilton-Jacobi theory is to extend the ideas of the Canonical trans-
formations further so that all the new position and momentum coordinates become constants. The
{development of the theory is further motivated by the idea to seek a canonical trnasformation from
the corrdinates and momenta (g, p) at time ¢ to a new set chosen as the initial values of the coor-
dinates and momenta (qo, po} at time £ = 0, which are in fact constant qua:ftities. Essentially this
is to seek for evolution equations in the canonical variables at different moments of time which are
1o be obtained as a sequence of infinitesimal canonical transformations, also known as the infinites-
imal contact transformation from the initial set {go, pao). Such a programme invariably demands a
| trnasformation of the type

J

-

¢ = g{go, Do, t),
p = plqa, po, 1)

To grasp the ideas involving such a transformation, we start with discussion of the infinitesimal
contact transformation.

10.1.1 Infinitesimal contact transformation

The transformations in which the new set of coordinates (Qy, Pp) differ from the old set (gx,;px)

by infinitesimals or by very small amounts, are called infinitesimal contact transformations. In |

other words the relation between the new coordinates and the old coordinates is given as ‘
|

Qi = qr + g
i Pi. = pi + dpr.
i
For any identity transformation we have Qp = g and P = pg. It is first asswined that the gener-
ating function for infinitesimal contact transformation can be constructed from that for the identity
‘transformations with an infinitesimal change in the canonical variables. For simplicity let us con-
'sider the example we have used earlier in the case of identity transformation where F = Z gi Pr

k
and hence F = Fy{qp, Fi,t). The generating function giving an infinitesimal change in the

‘canonical variables can be written as

Fy =" quPi + €Glgr, P)
k

'where ¢ is an infinitesima parameter with G{gg, Px)} as an arbitrary function. From this generating

} function, we can solve for the required transformation relations which we obtain as

i ar, oG
= — = P + £—
P g~ T “Bq
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and
H =H.
Hence,
aG
Qv —aq = 5Qk—6;9-‘}7k
aG
Pi—pe = Ope= -y
- Oq

Since the difference (P ~ pi) is infinitesimal, we can replace Py by py in the derivative in G{gx, Pr)
to write as G(qr, pr)- So the above equations becomes

oG
dqp = €=—— 10.1.1a
\Qk e ( )
and Opr = —EE (10.1.1b)
Ok

Thus in case of infinitesimal transformations, the transformation relations are transformed to the
function & instead of the original generating function ¥. Thus G becomes the new generating
function which generates the infinitesimal contact transformation.

To illustrate the point, we consider an infinitesimal canonical transformation with the hamiltonian
H(g, p) as the generating function G and an infinitesimal interval of time dt as the infinitesimal
parameter ¢ in the above formalism. The corresponding é-changes in the canonical variables can
then be calculated as

oH
dg; = dt— = dt q; = dg;
g B Ctdi=da

and dp; = —dt@ =dip; = dp;
B

These equations suggest that the infinitesimal canonical transformation causes to change the canon-
ical variables, i.e., the generalised coordinates and canonically conjugate momenta, defined at time
t to the new values that are differed by infinitesimal amount defined at time ¢ + di. What is meant
by the statement is that the motion of a system during an interval of time dt can be described
by the infinitesimal cononical transformation generated by the Hamiltonian H. Further, the fact
that a successive canonical transformations equivanlently produce a single canonical transforma-
tion, the canonical variables of a system at time t can be thought to have evolved from those at
the initial time fq as a sequence of successive infinitesimal transformations with the corresponding
hamiltonian at every time interval as the associated generator.

10.1.2 Infinitesimal Transformation and Poisson Bracket

Let us consider a infinitesimal canonical transformation to canonical variables (¢, p) of a dynamical
system, the transformation generated with the generator G{q, p). Any dynamical variable, say
u(q, p, t) associated with the system will then also change accordingly, such that

Ju ou du
Su = u(g; + 8q, pi + 0pi, t+6t) — ulgs, py, £) = (a—quqi + 5;5}9{) Fn
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The values of the changes in canonical variables given in equations (10.1.1a) and (10.1. 1b) are
substltuted here, which yields

ou G Ou OG du
5“*,2(3—%5;;‘336—%)*52

o, G]+6u

For u(g, p, t) = H{q, p, t), the hamiltonian, we can find the change in the hamiltonian as

: 6H

i 6H = ¢[H, Gj + o

If the Hamiltonian is explicitly independent of time, the change in the Hamiltonian out of the
infinitesimal transformation then reduces to

’ §H = €[H, G

From this expression it is clear that if the generator G(q, ) is a constant of motion, then it poisson
bracket with the hamiltonian [H. G} vanishes, giving §H = 0. This result may be summarised in
the form of the statement that a constant serves to generate an infinitesimal canonieal transfor-
mation without offecting the Homiltonian.

|
iITranslational symmetry and conservation of momentum

'iSuppose that coordinate ¢; is cyclic. Then, the Hamiltonian will be independent of g;. It will
;;noreover be invariant under an infinitesimal canonical transformation which involves a displacement
in g; alone. Then, the transformation equation is given by

og; = by
{ 5;0,; =0
Ewhere € signifies an infinitesimal displacement in ¢; The second statement follows from the fact that
canonical momentum corresponding to a cyclic coordinate is a conserved quantity. The generating
If{uncmon corresponding to infinitesimal transformation and satisfying the equations is given as
G = p;. Therefore, we can conclude that the generating function G must be constant of the motion,
since infinitesimal canonical transformation renders the Hamiltonian invariant, viz., [H, G]=0.
|
Rotational Symmetry and Conservation of Angular Momentum

%et us consider that the infinitesimal canonical transformation of canonically conjugate variables
produces an infinitesimal rotation of df in the system. If We consider the cartesian coordinate
system to describe the system. The rotation is assumed to be about the z axis such that the new
coordlnates and momenta upon the df-rotation are given by

X;=m — y;do ; Py = Dix — piydg

| Y =y +xdf ; Py = piy + pizdd
i Zi =z P =pi.
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Thus the infinitesimal changes in = and y of the coordinates will be written as
dx; = —y;dl, oy = x;d8, bz; =0
Similarly the equations involving changes in the momentum components are
0piz = —piydf,  Opiy =pidd,  Opiz =0
Then the generating function G which will yield the above equation with the use of equations

(10.1.1a), (10.1.1b} is
G= Z (Iipiy - yf-pi:tr)

Here the role of the infinitesimal parametere is played by the infinitesimal rotation df. Further, in
view of the fact that the rotation is about the z-axis, the expression for G can also be written as

GZLZZE.é

where I and é are the angular momentum vector and the unit vector along the direction of the
infinitesimal rotation vector.

The generating function G can be used for computing the individual values of §z;, éyi, dpiz, Opiy-
through the equations (10.1.1a) and (10.1.1b).

By using the properties of Poisson Bracket we can verify the relation
Ly, Ly) = L.

If L, and L, happens to be the constants of motion, then L. is also destined to be a constant of
motion. Thus, if any two components of the angular momentum are constants of motion, the total
angular momentum is a conserved quantity.

10.2 Hamilton-Jacobi Equations

Tt has already been discussed that Canonical transformations can be handy to transform the Hamil-
tonian’s canonical equations of motion into simpler forms. The modus operandi towards achieving
the simpler form consists of two methods normally used to solve the mechanical problems. If the
Hamiltonian is conserved, then the solution of mechanical problem is determined by transferring it
to new canonical coordinates. Because in this case, all generalized coordinates become cyclic and
hence the integration of new coordinates become easy.

An alternative approach is to find a canonical transformation from the old coordinates g and old
momenta p at time ¢ to a new set of constants quantities, which may be 2n initial values at t = 0.
With such a transformation, the equations of transformation, between old and new co ordinates
and momenta, are exactly the solution of the mechanical problems as follows:

q= (Q’O;Plilat)s p=p(100-90t)

The advantage of this type of transformation is that in the process of finding the transformation
equations we arrive at the solution also. Here, the coordinates and momenta are expressed as
functions of their initial values go, po and time. The concept of this process was first suggested by
Jacobi.
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! 10.2.1 Deduction of Hamilton-Jacobi Equation

The basic purpose is to reduce the canomical variables of a system to constants via canonical

transformation with the objective that the transformed quantities are constants. To this effect, we
{ seek a canonical transformation from the old set of coordinates (g5, p;, t), to a new set (Q;, Pj, t),
such that

Q___(?E 5 - _ 0K
epy T8
and K =H+ %—‘: (10.2.1)

where K, H and F are transformed Hamiltonian, old Hamiltonian and associated generating func-
tion respectively.

giOur objective is to choose the canonical transformation such that the new coordinate and new
momenta both are the constants of the motion. For this purpose, we invoke some special conditions
| to the problem: first we choose the generating function F to be second type such that F =
Fy(q;, P;, t), and further demand that the new Hamiltonian K reduces to a constant, zero in
! particular. The Hamilton’s equations of motion under these conditions will become

: oK . 0K
| “=ap, =% TiT7gg,
2.e., the new generalised coordinates and momenta are constants of motion. The new generalised
{ momenta I, P,..., %, are usually denoted by the constants o4, a3, ..., a,, i.e., P; = aj.
Thus equation {10.2.1) becomes
IaF
K(Qla Q?: Qn; Pl, P‘Z: ey Pm t) ZH(Qla g2y «+y Guy P1; P2, vy Pns t)+_87 =0
] which implies
i OF;
-] H(Q13Q2193:'”1qn; pl:p2:--'1pn:t’)+ﬁ =0 {1022)
! The generating function F3 is a function of g;, P, ¢ and it should satisfy the equations
BFz 8F2
_ 98 _9f 10.2.
Substituting these values to (10.2.2), reduces the latter to
aky aF; aF, ar,
Hlg,q,- ... 0, , yee e .t — =0 10.2.4
’ (91, et e B B + = ( )

The equation (10.2.4} is a partial differential equation in (n+ 1) variables while equation (10.2.2) is
of (2n+ 1) variables. This shows that the above substitutions have reduced the number of variables
by n. The equation (10.2.4) is called Hamilton-Jacobi equation.
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The solution of this equation is called Homilton’s principal function, denoted by §. Thus the
Hamilton-Jacobi equation can be rewritten as

a8 as a8 a5
H e St — =
(91:‘?2: :Iq H 8q1 6{;’2 aqn )+ 0

ot
This equation can be written with generic notation as

as a8
§+H (Qj: E;;) =0

a8
or simply as H+ i 0 (10.2.5)
We can now see that by the design of the equation, the new generalised coordinates 2;’s are also
constants, generally denoted by 81, B2, ..., Bn. If S(g;, oy, t) is known, then one can determine
Q; from (10.2.3), i.e.,
a5 ,

8]
These n relations can be inverted to find the old generalised coordinates g;'s as the functions of
constants a; and §; as

g5 = q_j(ﬂf,ﬁ,t)- (1027)
Further, the expression for p; in (10.2.3) can be used to write the old set of canonical momenta as

a5 .
Pi= 30, expressed in terms of the constants «, 8 and ¢ as
1

Equations (10.2.7) and (10.2.8) are the solutions of the equations of motion of the system in terms
of the original set of canonical variables g; and p;, 4.e., solution to the original problem follows.

10.2.2 Physical Significance of S

The Hamilton’s principal function S corresponding to a given dynamical system is a function of
the old generalised coordinates ¢’s, the new generalised constant momenta a’s and the time i, 7.¢.,
S = S{q,«,t). We calculate the total time derivative of S :

ds as . a8
PP Db

i
-y ooy 98
= ‘pJQJ EY;
¥
. as
=Y pgi— 4, v HAe =0
b

das
by
dt

Thus,

1

5= / Ldt + Constant
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~where L = Z pj4; — H is the Lagrangian of the system. Thus we see that up to an additive

j
t constant, the Hamilton's principal function S turns out to be identical with the Hamilton’s action,
i t.€., the indefinite time integral of the Lagrangian.

'10.2.3 Separation of variables in Hamilton-Jacobi Equation: Hamilton’s Char-
: acteristic Function

. We have already seen that for a conservative system, the hamiltonian is explicitly independent
' of time, and at the same time a constant of motion, designating the constant total energy of the
" system. For such a system the Hamilton-Jacobi equation takes a particular form and amenable to

an additive separation of variables, paving the way for directly identifying the constants of motion,

i even without a complete solution.

With the explicit time independence in the hamiltonian, the Hamilton-Jacobi equation can be
‘written in terms of the Hamilton’s principal function S in the following form:

as a8
TfEJFH( 0fij) =0

As we can see, the first term involves the explicit time dependence and the second term depends
only on ¢; the coordinates, time does not appear explicitly. For such a system the solution can be
-written as a sum of two terms- one explicitly depending on time while the other explicitly on qgj

S(gz, 04, 1) = Wigy, a5) — et

ijwith o) as a constant. Such that the explicit time independent part can be written as

aw
(o5 ) =

identifying the constant oj to be the total energy E of the system. Thus the Hamilton-Jacobi
‘equation assumes a simpler form without involving the time in it. The role of the Hamilton’s
principal function S is now played by an explicit time independent quantity W(g;, o;), and this is
.called Hamilton’s characteristic function.

|
t

!r It is very interesting to note that the canonical transformation generated by the function W alone is
-such that the new Hamiltonian will be cyclic in all the new coordinates. This can be seen from the
ifollowing: Let us consider a canonical transformation in which the new momenta are all constants
of the motion, a; and consider ag, in particular, to be the associated constant Hamiltonian. This
gives _

! H(gj,pj) = a1 .

If the generating fanction of this canonical transformation be given by W (g, P), the transformation
'equations must follow

aw aw _ ow
BPJ- - 6(1'}'1

Qs = (10.2.9)
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Therefore, in view of the equation (10.2.9), we can write this as

H (st %) =0 (10.2.10)

which is in the form of the Hamilton-Jacobi equation, with W as the generator. Now in such a
transformation we can write the new Hamiltonian K as
r315%
K=H+4 —
at

=m -+ W is explicitly independent of time.

i.e., the new hamiltonian K is same as the old hamiltonian which is a constant.

We thus observe that the new hamiltonian K = o1, being a constant is again devoid of any
generalised coordinates, i.e., cyclic in all the coordinates.

10.3 Action-Angle variables

There are many occasion in which one needs to discuss and analyse periodic motion, wherein the key
guantity which needs attention is the frequency of motion. In order to handle such a system there
exists a very powerful method based on a variation of the Hamilton-Jacobi procedure discussed
above. This technique consists in considering general constants J; as functions of the integration
constants a;’s appearing directly from the solution of the Hamilton-Jacobi equation. These J;’s
obtained for a system of n degrees of freedom, essentially form a set of n independent functions of
the oy’s. These functions are called the action variables.

To develop the ideas gradually, we first consider a conservative system with one degree of freedom.,
where the conserved Hamiltonian is explicitly independent of time so that it can be written as

H(g, p) = a1

This can be soloved for the momentum of the system as

p=rplg, a1}, (10.3.1)

“This can be interpreted as the equation of the orbit traced out by the system in the two-dimensional
phase space (g, p) with constant value a; of the hamiltonian. The orbit so found in the phase space
actually characterises the periodic motion of the system. Here we can see that there are two types
of periodic motions: closed orbit periodic motion and open path variation with a periodicity of pin ¢.

1. The first type is characterised by the closed orbit in the phase space (10.1a). Here the system
retraces a closed path periodically: both g and p becomes the periodic functions of the time
with identical frequency. This type of situations arise in the system where the motion causes
the kinetic energy function to vary periodically from zero to a certain maximum and back to
zero again. This type of phenomena is known as {ibration in the astronomical jargon.
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(a) Libration (b) Libration

1 Figure 10.1: Libration and Rotation

2. In the second type of periodic motion, the traced path maintains a periodicity of p in ¢ in

the phase space (10.1b). We can find such situtions in the case of rigid body rotations about

certian axes, with the angle of rotation playing the role of the generalised coordinate ¢, where

! the increase in the value of ¢ by 27 does not essentially change the state of the system. In

'[ this type of periodic motion it is not essential that the value of ¢ be bounded between two
fixed values: the value can increase indefinitely.

It is important to note that a single physical system may experience both type of periodic motions
outlined as above. We can look at the case of simple pendulum where g serves to be the angle of
deflection . With the length of the pendulum ! and the zero reference of the potential energy fixed
{at the point of suspension, the energy of the system, a constant, is given by

_ P
2ml

— mglcosé,

which can be solved for pe as a function of theta as

pg = £/2mi2(E 4 mglcosd).

This solution traces out a path the system traverses in the two dimensional phase space of (#, Po)-

A few cases may be considered from the solution:

Case I: E < mgl.

In this case the physical system can execute motion only if the absolute value of the angle,
i || is less than a given bound, &', where & is defined by
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Figure 10.2: The Phase space orbits for the simple pendulum.

Under this circumstarnce, the pendulum executes its motion with §-values between —¢' and
¢, constituting the case of a periodic motion of the libration type. The system then traverses
a trajectory in the phasc space in the form of a curve type 1 as in the figure (10.2).

Case II: E > mgl.

T this casc one finds a physical motion for all values of # which can increase without limit
to produce a rotation-type periodic motion. In the simple pendulum case, this case is chac-
terised by a higher value of energy so as to swing through the vertical position § = = and
thus continued rotation. Curve 3 in the figure (10.2) cooresponds to this type of motion.

S

Case III: The limiting case of E = mgl.
This case corresponds to an energy just sufficient for the pendulum to reach the limiting value
of & = 7 with zero values of both the angular momentum and kinetic energy. As illustrated
by curve 2 or 2, in the figure (10.2), this is the configuration with ustable equilibrium and
in principle retain this configuration for indefinite period of time. But any perturbation, be
the slightest, in the system could the latter to shift to either type curve 2 or 2', in either way
causing the system to shed off its energy.

The physics of the either type of the periodic motion, can be best dealt with the introduction of
a new variable J which can replace the constant momentum after canonical transformation. This
variable is known as the action variable, which is defined as

J=j£ P dq.

Depending on the type, the integration over the closed curve here is to be carried out over the
complete period of libration or the rotation. Now we can see from equation (10.3.1) that J will be
a function of a1 such that we can write the hamiltonian as a function of J, i.e.,
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0.’15H=H(.])

and therefore the Hamilton’s characteristic function is expressible as

W =Wi{q,J).

What we have understood from the above analysis is that essentially the momentum function
of the problem has been generalised to J. The corresponding generalised coordinate, i.e., the
generalised coordinate conjugate to J is termed as the angle variable w, is accordingly defined by
the transformation equation

_ow

The corresponding equation of motion for w can then be written as

_BH(J)
=57

= u(J),

where p is a constant function, exclusively dependent on J. The solution of this equation can be
found in a straightforward manner as

w=pt+p, (10.3.2)

so that w is a linear funetion of time.

Physical interpretation of u

In order to provide a physical interpretation of the function ;, we consider a system to undergo a
complete cycle of libration or the rotation, in ¢ so that the change in w is found as

But as we have w = 2% the above integral can be rewritten as
a7 gr

2
Aw = 0 W

an"
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In view of the constancy of J, the derivative with respect to J can be taken outside the integral so
that
d oW

W g =L § pdg=1 (10.3.3)

bw=759 g a7

Equation (10.3.3) clears states that as g goes through a complete cycle of the libration or rotation
w changes by unity. Now from equation ((10.3.2)) we can find Aw = pAt = pr for the time period
of the cycle as 7. We can then write

Aw = pAt = pr =1, = uw=

4

This means that the constant value of g is the reciprocal of the time period for a complete cycle
or the frequency of the periodic motion of ¢ for the libration or rotation.

Thus the use of action-angle variables can provide us with the technique of obtaining the frequency
of periodic motion without requiring to find the complete solution of the problem. For a periodic
system with one degree of freedom, the frequency can directly be evaluated onces the hamiltonian
is expressed as a function of J and finding the derivative of H with respect to J: the derivative is
the frequency u of the motion in ¢.

10.4 The Keplar problem of planetary orbits

The Keplar problem, which has been attracting the attention of scientists from centuries towards
finding its solution from various angles. The same problem can also be discussed as an ideal prob-
lem for finding solution by usc of Hamilton Jacobi equations. The problem, cssentially consists in
determining the orbit of a planet under the steady, inverse square gravitational force of attraction
due to the sun. The problem thus falls in the category of the time independent central force; the
associated hamiltonian being time independent and hence recognised as the total energy of the
planet-sun system,.

Let us consider a planet of reduced mass u moving round the stationary sun in a given plane.
Clearly the degree of freedom of the planet is 2. We consder the two dimentsional polar coordinate

system {r, §) to describe the motion of the system. If the radial and tangential components of the
momentum are p, and pp respectively, the hamiltonian of the system is given by

As the system is conservative, the Hamiltonian equals the total energy ay = E of the system, i.e.,

H=m=F.




| 236 UNIT 10. HAMILTON-JACOBI THEORY

T e

Since the Hamiltonian is explicitly independent of the time ¢, the solution of Hamilton Jacobi
equation can be obtained through separation of variables, and the Hamilton’s characteristic function
W, the spatial part of the Hamilton’s principal function S of the system, is involved in the solution
as the generating function for the transformation. Let us assume the function S to be of the form

S(gj, a,t) = W(gj, a5) — ent

Then,
05 oW
P= 0T 0y,

which gives the radial and tangential components of the momenturn as

_os_ow
pr_ar_ or

and in view of the fact that in a central force motion , the agnular momentuam is a conserved
quantity, we can write

s oW
p‘,:%:W:ag:aconstant
Thus the expression
2 2uk

2, Pg _
pr+r—2—2;1E+T‘

facilitates to write down the Hamilton-Jacobi equation for planetary orbits in plane polar coordi-
nates as

OWN\? 1 raw\? 2k
(E) +*2(?5‘a‘) =WE+= (104.1)

Since this differential equation is cyclic in #, the solution can be written as
W(r,8) = pgf + W1 (r).

Substituting this to equation (10.4.1), we get

awi\? k
(dr) —i-?‘2—2,u E+r

k P2 3
or, Wi(r) = / [Qp (E + —) - -%] dr,
' X r T
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Hence

213
S{r,8,pg, E,t) = —Et + paf +/ |:2,U (E + ;k-) - I;—g:\ dr + A. (10.4.2)

where, A is the constant of integration. Going further, we have

oW
= Do =1+ f,
a

and — =0 when 171
day;
ow .

= = =f2
do:'z

Using equation (10.4.2), 8, can be expressed as

ow d: -
Bo=——=10— / G2dr =8+1 (say,) (10.4.3)
do 2 [[2p (E+ %) - %
T [ M ( +3) -3 ?
. . . 1 dr
The integral I can be evaluated by changing the variable r as u = o S0 that du = 5
Thus
J=— aadr

rQ\/[Z# (B+%) - 4]

— / Ofgdu
\/[2th + 2pku — ne%u?]

Now, in order to evaluate the integral, we consult the standard handbook results:
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Given R = a + bx + cz*

d—\/i—iln(ﬁx/_}?+2r1+b), e> 0.
=%sinh_1(-2—cj—-%—b), c>0, A>0, A=4dac—b
:\/‘_icsin—l(zf/"%b) c<0, A<O
:\%m(zcwb) c>0, A=0

The result displayed in the boldface inside the box is the appropriate one to evaluate the integral,
finally yielding,

/ =sin~! ik — ofu
. \/QpEOzg + p?k?

so that from the integral expression for f2 in (10.4.3), u can be written as

_ pk [1 + (1 + 2%"2) sin (B - .9)]

“’2

4

Rewriting 8, = B2 + ¥ and substituting  for u we have

which is in the form of the polar equation for a conic

= é (1 - ecos (8 ~ 53))

with the eccentricity
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Thus we have found that the orbit of the planet is described by a conic with a defined eccentricity,
which in turn is decided by the value of the energy E, i.e., which decides the nature of the conic,
viz., the trajectory of planetary motion is described by a parabola, a hyperbola or an ellipse:

if E<D e<l, the planet moves in an elliptic path.
E=0 e=1, the path of the motion is parabolic.
E>0 €>1, planetary motion is described by a hyperbolic path.

The Keplar problem actually involves an elliptical path signifying that the total energy of the
system E is negative, which means that the system is bound. We can evaluate this value by finding
the length of the semi major axis of the given elliptic orbit by considering the polar equation of the
ellipse, i.e.,

1 1
- = —(1+ecos8),
TP

which relates to the semi major axis a of the ellipse as

_ P
1 — €2

£

Comparing this with the elliptical path of the planetary path as above, we have p = ¢l.

el
1 — €2

i.e., 2a =

2
Further with el = a_; and the expression of the eccentricity ¢ as found above, we find that the semi

major axis @ and the total energy E of the system are related by

k

E=s——
2a

The same result was also found while discussing the particle motion under central force earlier.

Example 10.4.1 The Harmonic Oscillator problem: Work out the details of the simple har-
monic oscillator by the Hamilton Jacobi theory.

Solution: We consider the simple harmonic oscillator problem in one-dimension. The Hamiltonian
of the system has been worked out in multiple occasions earlier, as

1
H= 2—1’;(;}2 +m?u’¢?) = E,
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[k
where w = — k being the force constant.

The Hamilton-Jocobi equation can be written for the principal function § by setting the momen-

A

#f tum p equal to S and then substituting in the Hamiltonian to the requirement that the new
q
Hamiltonian vanishes. )
o i — = 10.4.
Qm[(aq) + m*wq +6t 0 (10.4.4)

Since the explicit dependence of S on ¢ is involved only in the last term, the solution of the equation
(10.4.4) can be obtained through the separation of variables and thus can be written in the form

S{g,a.t) = W{g,a) — o, (10.4.5)

where o is the constant of integration. With the choice of the form of the solution, the time variable
can be separated from (10.4.4), so that we have the time independent part of the equation as

2
#[(%I;—f) + m?w2q2] =q (10.4.6)

L]

The integration constant o is thus to be identified with the total energy £. This can also be
recognized directly from (10.4.5) and the relation

oS
L H=
5 T 0,

which then reduces to H =

Equation (10.4.6) can be integrated immediately to

2.2
W:\/?ma/dqﬂl— m;?aq ,

2,2
so that § = vVZma / dg (1 - m;"’aq ) — ot (10.4.7)

Now, we have

o}
ﬁ=£—\/%/——-——(lj‘fﬁﬁ) ~t,
\i‘ 20

{where B are constants) which can be integrated easily as

1 'le2
: ingy/ —— 4.8
+ 8 = —arcsing 5 (10.4.8)

Equation (10.4.8) can be written as

20
= ) ——=5i A 4.
g =1/ —= sinw(t + B), (10.4.9)
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which is the familiar solution of a harmonic oscillator.

Formally, the solution for the momentum can be written as

1714
= o5 _ 3—— = /2ma — mw?q?

P= 8 " o

So, we have the form of the momentum p as

p= \/Ema(l —sin® w(t + B)),

ie, p=V2macosw(t+ F) (10.4.10)

The constants « and 8 must be connected with the initial conditions go and pp at time { = 0. By
squaring (10.4.9) and (10.4.10) and adding we get

2mo = p% + m2w2gg

The same result follows immediately from the identification of o as the conserved total energy E.
Now, the phase constant f is related to ¢o and pg by

tanwf = e
Po

Thus, Hamilton’s principal function is the generator of a canonical transformation to a new co-
ordinate that measures the phase angle of the oscillation and to a new canonical momentum iden-
tified with the total energy.

If the solution for g is substituted in (10.4.7), Hamilton’s principal function can be written as
1
S =2a /cosz w(t+ f)dt — ot = 2&/ (0032 wl(t+ f5) — §) dt.

Now, the Lagrangian is

1
L= 5 - miuie?) ‘
= o (cos’ w(t + B) — sin’ w(t + B))

= 2a (coszw(t +8) - %) ;

so that § is the time integral of the Lagrangian, in agreement with the general relation

S = /Ldt + Constant.

Example 10.4.2 Projectile motion: Using the Hamilton-Jacobi theory, analyse the problem of
the projectile motion of a particle under the action of the gravity of the earth.
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Solution:  We choose the cartesian coordinates to describe the problem so that the potential energy
for an object of mass m in projectile motion is given by V = mgz. Here g is the acceleration due

to gravity. The form of the kinetic energy is

T=%m(:&2+g2+22)

At tg = 0, the action is given by

t
1
S:/ [gm(:i:2+j2+z'2)—mgz dt
0

The conjugate momenta are then given by

Pr = MZI, Py =My, p;=mz.

The Hamiltonian is ) . .
_ p.]: + py + pz +

H
2m.

mgz.

. . oH ,
Since x and y are cyclic and —— = 0, the corresponding momenta p, and p, are conserved, and

the total energy £ = J{ is also conserved.
The Hamilton-Jacobi equation for the system can now be written as

2 2 2
&G0+ () + 3] + o= -8

with separation of variables,

1 [(88:\?*  [8S,\* [85.\°
— +{2E) +
2m oz dy 0z

or,

+mgz=F

or,

dz

(asz)z -, (%)2 -,
dr dy

2 2 2
(851) + (?—Si) + ((?Sz) + 2m?gz = 2mE,

which is possible only if

where « and 3 are constants.

Now, we have the-z-part of the equation to be of the form

2
(%S—'"-) +2m2gz = 2mE ~ o® — #°
Z

(10.4.11)




10.4. THE KEPLAR PROBLEM OF PLANETARY ORBITS

with

S;=az+ and 8y = By + co.

Let ~? =2mE — a® - £,

so that (?SZ) = /42 — 2m2gz

dz

Sz = 2m2

f \/_d{;', where, & =+%- 2m?gz

-1
= 33’”29 [(72 B szgz)sjz - (72 - 2m2930)3,‘2]

and Hamilton's principal function is

1
S=az+By— ———3 (72 d2ngz)3l2 - Et

3m?

Again p, = /2 — 2m2gz

and the final expression shows that H = E, as expected. The energy may be written as

omE = o? + % + %,

so that p, = \/(.1'2 + B2+ 42 — pk — pl ~ 2m?gz

and S=ax+Py—

3/2 1
e (42 — 2m2g2)*/” - 5o (o + 87+t

Taking constants of integration (a, 3, 7) as the new momentum variables, we have

_ 05 _ o
Jr = % =r - ;L‘
85 8
a5

2 g /2 _ 1
g: = Erie ( — 2m°gz) mﬂyt.

243




7"
- ;’ 244 UNIT 10, HAMILTON-JACOBI THEORY

~ Finally, we invert these relations to find x, y, z as function of the initial conditions and time:

¥
=gy + —1,
m

' y=g+ 2t
- ; m
it and
2
TN 2 2
| ] (Qz + _t) T mig? (v" - 2m7g2),
| '} 74 2?2
= - z
i mig?  mig”
A 1)
or —_— = - —7t] .,
' mggz mig? 9+ m
4
v 2 4z 2,2
mig? - (qz +2m'7t+ AL )
Therefore,
2 4
L N S 2,2
“ = 272 [ﬂt492 P gyt — 't ]
or,
! Lo (2 M\ myat g,
{ 2miPg 297 y 27
%
‘ ie., z=A+ Bt+C#2,
2 2,2
where A= 72 _mgzqz . B=~m, and C=-2
2meyg 2 v 2
Y mPq L iy o
Att=0,wefind z =2 = 5= — 5~ |. the initial value of the position of the projectile.
2mfg 2y
The initial velocity of the projectile can be found by differentiating 2 with respect to time and
evaluating this at t =0, i.e.,
. . mgg:
o = 20=B=—"=
b
Example 10.4.3 Find the frequency of a one dimensional linear harmonic oscillator by use of the
- action-angle variables. The hamiltonian of the linear harmonic oscillator is given as
H= —1—(p2 + m2w?q?)) where W= *
2m ! m
Here m is the mass, k is the force constant, ¢ is the generalised coordinate and p is the conjugate
moomentum associated with the harmonic oscillator.
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Solution: The given hamiitonian is

1
o= ﬂ@‘(iﬂ2 +m?w?q?),
k
w=4{—
m
The corresponding Hamilton-Jacobi equation is
1 [r08\* 4 54| 08
m [('a‘q') MW+ gy =0

whose solution is sought in the form of

S(g,a,t) = W(q,a) — od,

with

with o as the constant of integration, giving the total energy, a constant quantity of the system.
The form of the solution is chosen to be amenable for time separation such that the part indepen-
dent of time is

1 (91’V2 2 22| _
ﬁl(_{i}_) +mwgt = o

oW
and the conjugate momentum p = —— = /2ma — m2w?g?.

Bq
J=fﬁ@

aw
which, with the substitution of the values of p = Fa above yields
g

Now we define the quantity J as

J=f(¢%m—m%%ﬂ@

=mwf( %-(ﬁ)d&]

Let
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so that

{2
dg = ( —0-2-) cos fdd
it

Subsituting these to the equation above,

27
J= 2_0: cos? 8df
WoJo

_ 2

i
1

i

Lt

or, solving for «, we have

Jw
=H=—
/ @ 2w
:r'- ;and therefore the frequency y is given by
N { r{
!
} 1 oH w 1 [k

H= 7 = — —_

J 271'25 m

10.5 Summary

In this unit, we have discussed one of the important tools in classical mechanics namely the Hamil-
ton Jacobi equation and the resulting time dependent and time independent functions- the principal
function and the characteristic functions, along with some ideas of how these equations find ap-

" plications in the simple harmonic oscillator problem, projectile motions and the keplar problem.
The method of separation of variables have particularly been found to be suitable in finding the
solution of Hamilton-Jacebi equations. In particular the following few points have been revealed
during the discussion of the topics in the unit:

1. The Hamilton-Jacobi equation is a single, first order partial differential equation for function
S of n generalized coordinates ¢;, g, .. ., ¢ along with the time ¢. >

2. The generalized momenta donot appear, except as derivatives of §.

} 3. The Hamilton-Jacobi eguation is an equivalent expression of an integral minimization prom-
lem as Hamilton’s principle. Because of this fact, Hamilton-Jacobi equation is useful in various
branches of mathematics and physics, viz., optimization problems in calculus of variations and
dynamical systems, quantum chaos, and determining geodesics on a Riemannian manifold,

‘ an important variational problem in Riemannian geometry.
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Self Study Questions:

1. Describe Hamilton’s characteristic function. Use this to obtain the dynamics of a projectile,

o - u .. . . .
with the initial velocity @ = uji + upy where 22 —tana and j is the vertical direction.
(a1

2. What is Hamilton’s principal function? Use this to describe the dynamics of a paticles freely
falling under the action of earth’s gravity.

3. For.a paticle moving in a potential field V = - '3?",
-
motion by use of the Hamilton-Jacobi method.

Bl

(k=constant), find all the constants of

4, Use Hamilton-Jacobi theory to extablish that the orbit of a planet in the solar system is
elliptic with the sun at of the foci.

Ai

e o Wiy (T N




