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UNIT 1

Newtonian Dynamics

Preparatory inputs to this unit

1. Concept of space and time.
2. Coordinate systems: Both 2-D and 3-D cartesian and polar oordinates.

3. Components of position, velocity and acceleration in cartesian and polar coordi-
nates.

4. Basics of vector algebra.




2 UNIT 1. NEWTONIAN DYNAMICS

1.1 Introduction

Newtonian dynamics provides us with a mathematical model to predict the motions of objects that
we encounter in the world around us. The general principles of this model were first given by Sir
Isaac Newton in the form of three laws to describe motion. The entire body of his work on dynamics
was written down in a book entitled Philosophiae Naturalis Principia Mathematica (Mathematical
Principles of Natural Philosophy), first published in 1687.

Until the beginning of the 20th century, Newton’s theory of motion was thought to constitute a
complete description of all types of motion occurring in the Universe. The modern view is that
Newton’s theory is only an approximation which is valid under certain circumstances.

Newtonian dynamics attempts to connect mass, position, time, and the force for describing the
motion and the causes of motion. All other propositions in regards of motion can be derived from
the existing basic motional quantities by logical and mathematical idnalysis. The axioms with which
the analysis of motion start are the Newton’s laws of motion, which can only be established via
experimental observations. Newton’s laws, basically apply to point objects. However, they can be
expanded to include extended objects by treating the later as collections of point particles. Newto-
nian dynamics has been found to predict results that are in excellent agreement with experimental
observations.

1.2 Newton’s Laws of Motion

Newton put forward three laws to provide a complete description of the motion of particles. They
are known as the Newton’s first, sccond and the third law of motion, which are stated below.

1. Newton’s first law: Euverybody continues ils state of rest or of motion unless an external force
is applied on it. This is also called the law of inertia.

2. Newton’s second law: The rate of change of linear momentum of a body is proportional to the
impressed force and toakes place along the direction of the force. This is the law of casuality.

3. Newton’s third law: T0 every action there is an egual and opposite reaction. In other words,
the mutual action of any two particles are always equal and oppositely directed, along the
same straight line. This law is known as the law of reciprocity.

Newton’s first law of molion states that a point object subject to zero net external force moves in a
straight line with a constant speed (i.e., it does not accelerate). However, this is only true in special
frames of reference called inertial frames. We can think of Newton’s first law as the definition of
an inertial frame. An inertial frame of reference is one in which a point object experiences zero net
external force and moves in a straight line with constant speed.

The Newtons first law is probably the first instance where geometry (straight line) connects with
physics (force, velocity). This connection of geometry with physics was later well established in the
general theory of relativity put forward by Albert Einstein in 1915.
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Newton’s second law of motion essentially states that if a point object is subjected to an external
force, f ; the resulting motion in the body can be expressed in terms of an equation, called the
cquation of motion, given by

dp -

= f‘.l

where the linear momentum p, is the simple product of the inertial mass of the body, m, and its
velocity 4, i.e., = mu. If m is not a function of time then the above expression reduces to

di =
m—vzf

Now consider a system of N mutually interacting point objects. Let the i-th object, with mass m;,
be located at a position described by the position vector 7;. Let this object exert a force f},- on the
J-th objeet. The j-th object also in its turn, exerts a force ﬁj on the i-th object. Newton’s third
law of motion essentially states that these two forces are equal and opposite; the action and the
reaction, which are essentially forces, are oppositely directed irrespective of their nature. In other
words,

o=

One corollary of Newton’s third law of motion is that an object cannot exert a force on itself.
Another corollary is, all forces in the Universe have corresponding reactions. The only exceptions
to this rule are the fictitious forces which arise in non-inertial reference frames and does not have
any physical origin.

1.3 Mechanics of a single particle

1.3.1 The equation of motion

Let us consider a single point particle of mass m to be at a location 7, the position vector of
the particle in, say, cartesian coordinates at a given moment of time ¢. Consider further that the
particie experiences a force f_" at the said moment, due to which the particle gets accelerated. The
acceleration can be expressed as the second order time derivative of the position vector of the
particle. The linear momentum of the particle is then given by the product of its mass m and the

d e
linear velocity ¥ = E:- Thus, the linear momontum of the particle in motion is given by
~ " dr
=

=mi=m_. (1.3.1)

The equation of motion, according to the Newton's second law, is

—_
-

_ap
f== (1.3.2)

The momentum p can be written as the rate of change of the position vector 7, {equation (1.3.1)).
So we can write (1.3.2) as

(1.3.3)
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Thus, the applied force on the moving particle can be found from the product of the mass and the
acceleration induced in the particle.
The following result in regards of the Newton’s second law is in order.

Statement: Newton’s first low is a special case of Newion’s second law.

Proof: In classical mechanics, the mass of a particle is considered a non-zero invariant
quantity, i.e., the mass m is non-zero and constant during the course of motion. Therefore,
dg  d (m) dv
— = — (m¥) = m—.
dt dt

i

If the particle experiences an external force f, we have,

- dv
f*ma

When the external impressed force f is absent, i.e., if f = 0, then we have

dv
m— =10
dat
dv
or, — =0
dt
= ¥ =constant.

This means that the velocity ¥ remains unchanged during motion. If ¥ = 0 initially, it
will continue to remain ¥ = 0 during the entire course of motion when there is no force
applied to the particle. Similarly if ¥ is some non-zero vector initially, the vector will not
change during the course of motion. In other words, a body at rest will continue to be
at rest and when in motion, the velocity remains unchanged, i.e., remain unaccelerated.
This is the Newton’s first law of motion.

Thus we can sce that Newton first law is a special case of Newton's second law, under
the case of no external force being applied to the particle.

1.3.2 Conservation of Linear momentum

The linear momentun of a moving paticle is the product of the mass and the velocity of the moving
particle. The mass of a particle is a scalar and the velocity is a vector quantity. Since the product
of a scalar and a vector quantity is always a vector, the linear momentum of a particle is a vector
quantity. '

If the particle does not experience any external force, we have f = 0. This reduces Newoton’s
second law of motion to -
dp

dt—o
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Integrating with respect to time, we get
7 = constant in time

The linear momentum vector remains unchanged during the motion. Thus we see that if a particle
is not acted on by any external force, particle conserves its linear momentum. This is the conser-
vation of linear momentum for a single particle.

1.3.3 Conservation of angular momentum
Angular momentum

When a particle moves about a point, it executes curvilinear motion. Under such circumstances,
the angular momentum is the relevant quantity to describe the curvilinear motion of the particle.
The instantaneous distance of the particle has also role to play in describing the curvilinear motion.
The angular momentum is the quantity defined for curvilinear motion to mimic the role of the linear
momentum in the case of lincar motion. The angular momentuin of a particle is defined as the
vector product of the distance vector (the vector defined from the point about which the particle
executes curvilinear motion, to the particle) and the linear momentum of the particle, i.e.,

E:Jxﬁ:c@'xmﬁ.

If the origin of the coordinates coincides with the point about which a particle executes curvilinear
motion, then d = . Under such circumstances, we have

- L L. dr
L=rxp=rfxm—

Torque

For the motion of a particle about a point, the quantity equivalent to the force in case of linear
motion is the torque. The torque on a particle is defined as the vector product of the distance
vector (from the point about which the particle moves, to the point of application of the for ce
vector) and the force vector itself, i.e., the torque 7 = d x f , where d is the distance vector and f
is the force vector. Since T is the I‘eSLl]t of a ¢ross product of two vectors, it is a vector quantity.

If the origin of the coordinates coincides with the point about which the particles executes curvi-
linear motion, we have ¥ = 7 x f.

Relation between angular momentum and torque

The angular momentum of a single particle about the origin of the coordinates, is given by

= dr
L=7 —
T'det

Differentiating this with respect to time, ¢ :

dt dt dt dt2
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The first term vanishes because of the vector product between two identical vectors. Therefore,

dﬁ*i‘xmﬁ—f-‘xfﬁ%'
dt de2 -
Thus, -
dL
Fo O 1.34
= (1.3.4)

Conservation of angular momentum
If the external torque on a particle is zero then 7 = 0. Therefore, (1.3.4) reduces to
dL -
— =0, = L = constant
dt
Thus, if a particle is not acted on by any external torque, the particle conserves its angular mo-

mentum during its curvilinear motion. This is the conservation of engular momentum for a single
particle.

1.3.4 Conservation of energy
‘Work done on a particle and kinetic energy

According to Newton, a force causes a particle to undergo acceleration. But it is pertinent to know
what happens between the application of the force and the resulting accelerating motion in the
particle. We can interprete that the application of a force on a particle causes the latter to move
instantaneously, or creates a situation to preserve something on the particle so that the latter is
capable of a response e.g., motion afterwards. In other words, the force can be considered to have
transferred some entity which is either released immediately to cause motion in the particle, or is
stored in the particle depending on the particle’s ambience or configuration. This stored entity in
the particle empowers it to be capable of action, to cause motion at later times when the entity gets
opportunity to be released from the particle. This entity is known as the energy of the particle.
The mechanism of transfer of energy from the force to the particle is known in simple terms as the
work done by the force on the particle.

Thus we can say that energy is transferred from the source of force to the particle through some
work done on the particle. When the energy is re-expressed as motion in the particle instanta-
neously on the application of the force, it is said to possess kinetic energy, the energy of the particle
by virtue of its motion, as the moving particle can impart some action on other bodies.

The work done by o given force on a particle is defined as the dot product of the force with the
infinitesimal vector distance during which an acceleration is induced on the particle.

Kinetic energy for a particle

The kinetic energy of a moving particle is the energy it possesses by virtue of its motion. To
deduce the form of the kinetic energy in a single particle, we consider that a force f is applied
for an infintesimal duration dt to the particle moving with a velocity #. This force displaces the
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particle by an infinitesimal amount dr, and hence an acceleration, i.e., change in the velocity over

time d¢ in the particle. Thus
di _ d (dr
dt  dt \ dt

This acceleration is related to the force by the Newton’s second law of motion, viz.,

- di
f—m:ﬁ

The infinitesimal amount of work done by the force to the said displacement is then,
dW = f.dF

Since the work done on the particle is re-expressed as the kinetic energy of motion of the particle,
the incremental change in the kinetic energy is given by

— 7 dr av
AT = dW = [ di = m%.%dt = mﬁ.d—?dt = mi.dif = mudy

where v is the magnitude of the velocity vector #. Here it is obvious the the vectors @ and d¥ have
the identical direction.

If the particle starts from rest and accelerate under the given force, the total work W done by
the force in raising the velocity of the particle from 0 to ¥ can be found by integrating the above
expression, for velocities from 0 to v, i.e.,

u 14
1
T=JV=].ﬂV=/.mwv=—mJ (1.3.5)
0 0 2
Thus the kinetic energy of a particle of mass m and moving with a velocity 7 is, T = %mv?

Conservative force

If the work done by a force on a particle for a displacement, does not depend on the actual path of
motion of the particle, the force is called a conservative force. In such a case the work done does
depend only on the initial and final location of the particle. Thus, for a conservative force F acting
on a particle in displacing it from location A to B, the amount of work done along the path ACB
is the same as that along ADB.

In the figure (1.1) we see that the work done by the conservative force along the paths ACB and
ADB are equal, so the work done on the particles is path independent, i.e.,

W= ﬁw=/ Fdr
AR ADB
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Figure 1.1: Path independence of the work done for a conservative force field.

But as the work done through the reverse path is negative, we have

ﬁﬁ:—/ F.dr
ADB BDA

= F‘.df’+/~ F.drf=0,
ACH BDA

— /‘ Fdr=0_
ACBDA

or, qu.dF——- 0

i.e., the work done by a conservative force round a closed curve ACBDA vanishes. In terms of
vector integration, we say that the contour integration of a conservative force vanishes.
Conservative force field and potential energy

We have already seen that for the conservative forces, the work done round a closed path is zero,
ie., _ch df = 0. Using Stokes’ theorem of Vector Calculus, this integral can be converted to the
surface integral over a surface whose boundary is defined by the contour as above. Thus we write,

%fﬂF:];(§xﬁ)d§=0

Since the elemental surface dS is arbitrary, the integrand must equal zero, i.e.,

VxF=0, (1.3.6)
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This is the necessary and sufficient condition for F' to be a conservative force.

Again, from the Vector Calculus we know that for a scalar function ¢ the following identity holds:

VxVé=0 (1.3.7)

Considering (1.3.6) and (1.3.7) we can see that a consvervation force vector F can be expressed as
a gradient of a scalar, to an arbitrary constant c as

ﬁ=c§¢

In order to match with the experimental results of newtonian dynamics, the value of c is set as
c=-1. So
F=-V¢

Thus, a conservative force function can always be expressed as a negative gradient of a scalar
function. This scalar function is known as the potential energy function associated with the particle
that is in motion under a conservative force field. Physically, the potential energy function of a
particle at a given point within a conservative force field is the total amount of work done on a
particle in bringing it from infinity, i.e., from outside the conservative force field, to the given point,
1.€.,

,
Br) = f F.dr
2]
The potential energy of a particle at a given point in a conservative force field is thus the potential
of the point. multiplied by the mass of the particle.

Conservation of total energy under conservative force field

Let a particle moving under a conservative force field F (r) with a velocity, say v, located at a given
point A be brought to point B, where the velocity of the particle becomes vg. Let the potential
energy function at point A be ¢4 and at B it is ¢p under the conservative force field. The work
done in bringing the particle from the point 4 to point B by the conservative force is then

B _ B _ B 0

W = / F.dr= / —Ve¢.di = —/ dp = ¢4 — dp (1.3.8)
A A A

This amount of work done W on the particle serves to change the velocity of the particle from v4

to vg which changes the kinetic energy of the particle from Ty to Tg. The change in the kinetic

energy is thus

1 1
T=Tg~Ts= —2-m023 - §mu,24 (1.3.9)

Since T' = W, (refer (1.3.5)) we combine (1.3.9) and (1.3.8} to write

1 1
dA — P = §mvzs - 5“’*”3;:
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or,

1 1
ba+ §mvi =¢g+ §mv23. (1.3.10)

The sum total of potential energy and the kinetic energy at position A is the same as that at
position B. This sum total is called the total energy of the particle. In other words, the total
energy of the particle remains constant, i.e., conserved within a couscrvative force field. This is the
conservation of total energy in the single particle dynamics.

Examples and numerical problems

Example 1.3.1 A particle of mass m is thrown vertically upwards under gravity with an initial
velocity vg = 20 m/sec. and descends back on the earth’s surface after attaining a height h. Calcu-
late '

{a) the mazimum height the particle aftgined

(b} the velocity at half the mazimum height, both during aescending and descending. of the maxt-
mum height.

Solution: The equation of motion of the given particle is

Pz
i

dx
E=—gt+A:

1
= 9:=—§gt2+At+B

where A and B are constants of integration.

In this case, the boundary conditions here are:
(i) at z =0, the time ¢ = 0 and the velocity vp = 20 m/sec
(ii) at the maximum height k, the velocity v = 0 m/sec
Now,
(a) Let the time taken to reach the height be T

Now, at z = 0 we have

w=04+A = A=1w=20m/sec

0=0+4+0+8B, = B=0

And at 2 = A,

A
0=—-gT+A4, = T=—
17
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Hence,
400

Bom e
Y= 5981

7z 20.39 metres

(b) At half the maximum height the time taken is, say, ¢ seconds and velocity be v'. Then
V= —gt' + A

and / 1
l f2 !
— = ——yt At
2= 39 T

Combining,

(v — A2 +24(v — A) +gh =0 = v =%/A2 - gh

Putting A = vg = 20 m/scc, g = 9.81 m/scc?® and h = 20.39 m, we get

v = 14.14 m/sec, —14.14 m/sec

So these are the two moments of time and hence two values of velocity corresponding to a
given height-one on ascending and the other during descending. Interestingly, the magnitudes
of the velocities are equal but the directions are opposite. The positive velocity corresponds
to velocity while ascending and the negaive is during the descending time, both at the same
height.

Example 1.3.2 A ball is folling freely from o height h under the action of gravity of the earth.
Assuming that the atmosphere offers a resistive force proportional to the velocity,

1. Find the expression of the velocity of the ball as a function of time.

2. The terminal velocity of o body is that uniform veloicty which the body assumes after the
moment when the downward acceleration is ezactly counteracted by the resistive force of the
atmosphere. Find the terminal velocity for the ball.

Solution: Consider the body to be falling vertically down along the positive z-direction. Further

let the mass of the ball be m, the acceleration due to gravity g and the instantaneous velocity be
d - . .

v = 2. The resistive force of the atmosphere is taken as f = —kmv. The negative sign here

indicates that the force acts along the direction opposite to that of velocity.

1. Newton’s second law of motion for this case yields,

d . :
mj? = mg—kmu, k is the constant of proportionality, characteristics of the atmosphere.

dv

dt

or, +kv=g,
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which is a first order ordinary differential equation in v and can be solved by standard method,
i.e.,

Ldkv—9) _ 4 ,
kE (kv—g¢g)
Integrating,
kv—g= Ce‘k‘:

C is the constant of integration. For the free fall from a height, the initial velocity is zero,
i.e., at t =0, we have v = 0. This gives C' = ~g. The solution is then given by

v = % (1 —e‘“)

which is the required expression of velocity as a function of time. .

. To find the velocity after long enough time we have t —3 oc. Putting this into the expression

for velocity above,

v— % = constant

i.e., the body on descending through the resistive atmosphere assumnes a constant velocity
after sufficiently long time. This is the terminal velocity. So, the terminal velocity for the
given situation is

Ed )

‘Ur]v:

We see that the terminal velocity is governed by the acceleration due to gravity ¢ and the
characteristics of the atmosphere, k.

Example 1.3.3 A bob of mass m is tied al one end of an inextendible and weightless string of
length [ which is suspended from the other end at a point so that the bob can swing in one plane.
When the amplitude of swing is kept small, the system is called ¢ simple pendulum. Write down
the differential equation for a simple pendulum.

Solution: When undisturbed, let the bob be at A, hung vertically along OA. This position is the
equilibrium position for the bob, because the weight {downward force due to earth’s gravity) of the
bob is counterbalanced by the upward tension force in the string. When the bob is displaced to B,
it makes at the point O an angle #, say, with the vertical line. Two forces acting on the bob are
the downward pull of gravity with magnitude mg and the Tension force T along BO in the string.
The force of gravity acting on the bob is resolved as follows:

. mgcos @ along OB, which counterbalances the tension force T in the string, and

. mgsinf which creates a restoring torque 7

= —mglsinf 0 trying to rotate the bob back
towards the equilibrium position, A. Here & is the unit vector, taken to be positive for
counterclockwise rotation.
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The angular momentum of the bob is

- de -~

Hence the equation of motion for the bob, in terms of magnitude, is

i _
dt
or, % (mi%g) = —mglsinf
d’0 ¢
21 Zginf =
== e -+ Esm 0]

For sufficienctly sinall 8, we can write sinf = f. So,

a0 ¢

— 4+ =0=0

di? + l

d20 g
or: @0

This is the standard ordinary differential equation of an osciliator

Py __ o
ez =YY

13

(1.3.11)

(1.3.12)

where the variable y, (here 8, i.e., the angle the string makes with the vertical line), oscillates with

respect to time ¢ and the angular frequency of oscillation is given as

(T being the

period of oscillation), is the coefficient of the variable —y on the right hand side. So, here we find

_?3_\/5
YET VD

from which we can calculate the time period of oscillation T for the pendulum as

T-——Z:'T\/E
g
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O mgsin
A

magcosd

Example 1.3.4 Ezplain the law of conservation of total energy in the case of an oscillating simple
pendulum.

Solution: In the case of a simple pendulum when the bob is at the extreme left, it has the maxi-
mum potential energy, as it is raised with respect to the mean positionf But its kinetic energy is
zero as the bob stops oscillating for a fraction of a second before moving towards the right. When
the bob reaches the mean position, it has a zero potential energy but maximum kinetic energy.

Similarly when the bob of the pendulum swings to extreme right, it has the maximum potential
energy but zero kinetic energy. Thus law of conservation of energy holds clearly in this case of an
oscillating pendulum.

1.4 A system of Multiple Particles in Newtonian Dynamics

In the earlier section we discussed the dynamics and conservation properties of a single particle.
But in real world, we need to deal with material objects consisting of large number of particles.
Thus the development of a formalism in the dynamics of a system consisting of many particles is
in order. Here we deduce the equations for n particles in Newtonian mechanics and find related
conserved quantities. )
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1.4.1 Mechanics of a system of particles

Let us consider a system consisting of n particles with masses my,ms,...,m, and the correspond-
ing position vectors 77,73,...,7n respectively. Since the system is composed of more than one
particle, the possibility of any interaction among the particles themselves cannot be denied. So,
the forces that act on particles include external forces acting on the particles from outside as well
as the internal forces arising from the interactions among the constituent particles.

Suppose the i-th particle of the system experiences external force F;e and internal force F 7 due to
the j-th particle of the system. Then the total force F; acting on the é-th particles is simply

ﬁ=i}e+2ﬁjg

J

If the linear momentum of the i-th particle is pi(= m;v; = m;7}), then according to Newton’s second
law, the rate of change of the linear momentum of the i-th particle equals the sum of the external
forces and all the internal forces acting on the i-th particle, i.e.,

dp; = =

- =+ Y Fii
i=1

The total force, external and internal, acting on the system is given by taking the sum of the

expression above, i.e.,

n d-.' n . Tl .
. oy e+ 32 F (1.4.1)

T
The term Z F"f represents the total external force F* applied on the system. Since I-?"ji represents
i=1
the internal force acting on i-th particle due to j-th particle and F,,J being the internal force on
the j-th particle due to i-th particle, their vector sum cancels because of the Newton’s third law of
motion, one representing the action and the other the reaction. So, Fy 3 F;J = {}. Hence,

2E - Xal)
&
d12

(S

Here the mass of each individual particle of te system is considered constant. We define a vector
R as

]

omits )Mt
T 1

fi= Sy TTM
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where M is the total mass of the system, is again a constant. The vector R defines a point known
as the Center of Mass of the system. The above equation then reduces to

“dp; P~ Y _ (s d*R
;—E = @(Zmirg)—m(ﬁfﬂ?) ﬁf—Et-z-—

i=1

. d*R
Therefore, F° = M-&t—?- (1.4.2)

Linear momentum for a system of particles

The total linear momentum of the system of n particles is given by the vector sum of the linear
momenta corresponding to the constituent particles of the system, i.e.,

Zm v,—-Zm ?t_dt (Zm‘r,) M@

i=1

or,

dP 2R

From equations ((1.4.2)) and ({1.4.3)) we have

~,  dP
Fé = — 4.
7 (1.4.4)

Conservation theorem for linear momentum of a system of particles

If the total external force acting on a system of particles is zero, i.e., if Fe = (0, we can write
equation (1.4.4) as

dP
o = 0
= P = constant

This means, the total linear momentum of the system will not change and remain constant through-
out the motion of the system so long as there is no external force acting on the system. In short,
we infer that

For an isolated system, i.e., if the system is not acted on by any external force, the total linear
momentum of the system is conserved.

This is known as the conservation of linear momentum for a system of many particles.
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Angular Momentum for a System of Particles

Let L; be the angular momentum, 7; the position vector and p; be the linear momentum of i-th
particle of the system.

Angular momentum = L; = (7 X 7;)

Let total angular momentum be L, which is the sum of ail the individual angular momenta of the
constituent particles. Then

N n

E=ZEi=Z(ﬁXﬁ)

=1 i=1

n
. dp; ar; . - .
= 0+Z(’:"ix—f) [ Eixpf=vgxmiv;=mi(v,-xvi)=0

E = ] (7 x F‘:‘.QH'ZZ (7: x Fy) (1.4.5)

The second term can be considered as a sum of the pairs ..,

Fix Fu+7 x Fy = 7 x By — 75 x Fy;
= (7i~7j) x Fy
= fi; X }3}‘- [i — 73 = 7i5, the distance vector from j-th to i-th particl
= 0 [ 7 and F}J- are two collinear vectors.|

ZZ("E‘X i) = 0 )

e

(1.4.
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Using equation (1.4.6), the cquation (1.4.5) reduces to

dL" K[ - T
_d? = E (?-; Fd F:ie) = E ‘ﬁ:e = ‘FB (147)

where 7€ is the torque on i-th particle and 7 * is the total torque applied to the system of particles.

Conservation of Angular Momentum for a system of particles

If the total applied torgue on a system of multiple particles is zero, i. e. , if ¥¢ =0, then

-

dL

di

[~
I

i.e., constant in time

We see that the total angular momentum of a system remains constant with the passage of time
provided the system is not acted on by any external torque. That is, a system of particles conserves
its total angular momentum provided no external torque acts on the system. This is known as the
conservation of total anguler momentum for a system of particles.

1.4.2 Kinetic and Potential Energies for a System of Particles

Kinetic Energy for a system of particles

The amount of work dW; done by the force F; acting on the i-th particle for its infinitesimal vector
displacement by dr; is given by

dW; = F, . dr

The total amount of work done W; by the same force in bringing the particle from say, location P
to location % can then be found by integrating dW; from P to 1%, i.e.,

Py Py
W; = / dW; = ] F.dr;
Py P

As the force acting on the i-th particle is the sum of the external and internal forces, i.e.,
‘ﬁi = -I:-"ie + Z -ﬁji:
J
i%]

we can write the expression for the work done on i-th particle as the sum of the work done by the
external force and that by the internal forces:

Py
W; = /F}B.dﬁ+z /F}-s.dﬁ. (1.4.8)
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We have already seen in the case of a single particle dynamics that the work done is related to the
kinetic energy of motion. If 77; and Ty; are the kinetic energies of the i-th particle at P, and P,
then the difference of the kinetic energies at these two positions for the i-th particle is given by

Vai
d; dr; ., dij
/F A = /m1 d;.d—gdt=/mivi.d—£dt

Vs Vig
Vg Va;
= /ﬂziﬁg.dﬁg = /mgvid'ui
Vi Vi
1

1
= '2'm-iv22§ ~ §miV12i =Ty — T

where Vj; and Vo; are the magnitudes of the velocities of i-th particle at locations P, and P re-
spectively.

The kinetic energy difference of the entire N-particle system is simply the summation of the above
expressions for all the particles, i.e.,

N N P2 N
I%:ZM::Z/R@:Zmr%) ﬂ
i=1 , i=1p i=1 '
= Wis = Ta -1 {14.9)
: . N N
where W2 is the total work done by the external force and 77 = ZT” and Ty = ZTQ,- are

i=1 i=1
respectively the initial and final values of total kinetic energy of the system.

Thus we see that the Work W) 2 done on the system of N particles between two locations, viz., Py
and P, by external forces F' = Z F; is the difference of the total kinetic energies of the system at

=1
the two locations. This is known- as the Work-Energy Theorem for a system of particles.

Potential energy of a system of particles

For a conservative system, the external force ﬁf acting on i-th particle can be expressed as the
gradient of some scalar function, i.e.,

Ff = -V;®,,

where V; and &; are the gradient operator and the potential energy respectively, corresponding to
the i-th particle,
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N

As the total external force F¢ is the vector sum of the external forces Z F¥ acting on the system,
i=1
we can relate the total potential energy of the system and the total external force as

I‘:"“"':ZF}(’:—Z@,'@?

so that the work done by the external forces in bringing the system from configuration 1 to config-
uration 2 is given by

W§, = q>1 - qag (1.4.10)

If we consider the mutual internal forces between the i-th and j-th particles to be conservative,
then the internal forces F,J and P}l are expressible in term of gradient of a potential energy @‘“t
which is a function of the relative distance between the interacting particles, i.e.,

(I)mL — q)mt(lrj - ?zl q)mz(|r_,,l)
is given by

q)mr qu)mf(lrj Fll) = ZZ(I)mt(lrﬂl)

where 7j; = 7 — 7} such that ¥ = fﬁ;}“. The prime over the summation here sigifies exclusion of
self-interacting pairs from the discussion, i.e., the cases with indices ¢ = j are excluded.

The form of the potential energy term ®;; also ensures Newton’s third law of motion, that the force
FJ, on the i-th particle by the j-th paltlcle is equal and opposite to the force F,Jr on j-th particle
by the i-th particle, i.e., FJ.,; = -F,,J as can be seen below,

Define V; around the location i =iz + ﬁ'yg + k2 in Cartesian coordinates as
u ~ 0 -

. gz " om0y

so that
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and
i =7Ti—75  TG=Ti—%; Yi=yi—y and zj=2z—2
The gradient operator

=5 T ey o

182:,‘_1 0 A_ay,;j 3 A‘c')z,-j 0
33:, Oxi; J Oyi Ovij +k Oz; Oz

-39 +3 0 +k 0
- Jalt,'j J ay,J 8z,3
-

and 9,=12 ;2 410

Oz +J(’5‘y_, + 6_23

a,dscu & [ -Oyy O | -0z; O
k

Oz Omij + dy;j Oy N Ozj Oz

: a -0 —i a

83"1} 81)':3 azij

== _th - -—V',
Further,
- . - 0 ~ O 7 ~ - J
Vi=1t + +k —1 -7 -k
7 3:33';' J 3yﬁ azﬁ a:rij J ay,;j az,-j
- _ﬁijs
where
d ad -
V1 =3 + +k
/ 6.’1:1‘? J 3y,J azij
such that Vij = ~Vi.

With the help of the results above, we can write the internal forces as
- - B m.t
Fj ==V}t = _aj’

and

Ry =90
LT ittt .S . gint
= +Vj¢),;;-‘ = +VJ(I’;-? = _sz
Thus when the internal forces are conservative, the work done by the internal forces on the system

can be expressed as a sum over the pairs of particles. We first write the work done due to one pair
of say i-th and the j-th particles as )
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2
Wiz'(i,j) = / (Fji - dfy + Fij - dy)
/ (F: 00 - a7 + ;01 - dF). (1.4.11)
Since we have

v‘_q):;w — Vsﬂ’}}”’ v (Dm"‘

ij 1

the equation (1.4.11) above for the work done due to the pair of i-th and j-th particle will be of
the form '

Wi g) = - [ 9yl ar,

Since every such expression for the work done involves a pair of particles, the total work done Wig*
by the internal forces will be the sum of such pairs:

2
;}:3." ___ Z/ vtjq it _, T Z @:?lf — (I)Iim‘. _ (I)Em‘.
19'5.? t%} 1
where,
A Z ‘13"“ =potential energy at configuration 1 arising from all the pairs of the internal forces,
i 7
i#j 1
and

, 1 : :
P = -3 Z @;;-“ =potential energy at configuration 2 due to all the pairs of the internal forces.
i#j 2

1
The factor - appears here to avoid double counting during the summation to include all the pos-
sible pairs of interactions.

Conservation law for total energy

We have seen that the work done due to the external forces and internal forces both in carrying the
system from configuration 1 to configuration 2, can be expressed as the gradient of corresponding
scalar functions called the potential energies. The sum total of the work done W3 can be found by
adding the potential energies arising from the external forces and from all possible pairs of internal
forces, as
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A S

Wiy = W§, + WiHt
= of - 0 + 0" - o
1 . s .
+5 Zj DI = (B¢ + M) — (8 + DY
i3
ar, I‘Vm = q’] - ‘132 (1.4‘12)

where, @) = ®§+ ®¥™ is the sum of the potential cnergies due to the external and internal forces
at configuration 1, and ®y = ®§ + ®i* is the corresponding term at configuration 2.

Comparing the equation (1.4.12) with {1.4.9) for the kinetic energy and the potential energy con-
siderations, we have

Wi =Ty —=Ti = 93 — P

= T'+®, =T +%2=E (say,)

i.e., the sum of the total kinetic energy and the total potential energy of the system at the con-
figuration 1 equals that at the configuration 2; meaning that the total energy E of a system of
particles is conserved during its motion attaining different positions or the configurations. This is
the conservation law of Energy.

Example 1.4.1 A system consisting of four balls, with mass of 0.5 kg each, is moving on a plane
surface with the speed of the first ball 4 m/s along north, second ball with 10 m/s elong south, the
third ball having 3 m/s along west and the fourth ball is with 11 m/s speed along east direction.
Find out the linear momentum of this sysiem.

Solution: We take two-dimensional cartesian coordinates so that the positive of the z-axis lies along
the east and positive y-axis along north. Designating the four balls as A, B, C and D respectively,

(a) For the ball A, moving north, the mass, velocity and the lineare momentum respectively are,
ﬁffA =05 Kg, VA = 4j m/s PA = ‘PVIAVA =0.0x 4_} = 2_‘j Kg—m/s

(b) For the ball B, moving south, . . ‘
Mp=05Kg,  Vg=-10j-m/s Pg = MgV =05 x (=10)j = =5; Kg-m/s

(¢) For the ball C, moving along west, . .
Mec =05 Kg, Vo =31 m/s Po=McVe=05x%(—-3)=-15¢ Kgm/s

(d) For the ball D, moving along east, _ ) .
Mp =05 Kg, Vp =11 m/s Pp=MpVp=05x11j=55  Kgm/s
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The linear momentuin of the system is the sum of the linear momentum of the constituent parts:
P= 15,4 + 153 + ﬁc + P}_) Kg-m/s

=2j~5/-15i+55 Kgm/s

=4i-35 Kgm/s

The magnitude of the linear momentum of the system is

P=|P| =4t +(—3)2 =5 Kgm/s

Example 1.4.2 A disk is spinning at a rate of 10 rad/s about an axis passing perpendicularly
through its centre. A second identical disk (same mass and shape} with no spin, is placed on the
top of the first disk. Friction acts between the lwo disks until both are eventually traveling at the
sarne speed. Find the final angular velocity of the system of the two disks?

Solution: Considering the energy loss due to the friction between the plates to be much small
compared to the overall cnergy of the sysstem, we use the principle of conservation of total angular
momentuun for a system. The angular momentum of a rotating object is given by the product of
the moment of inertia about the axis of rotation and the angular velocity of the rotation. In this
case, let the moment of inertia of the 1st disk be I. Initially the angular momentum of the system
of one disk is entirely from this rotating disk. When the 2nd disk is added, as it has the same
moment of inertia as the lst disk about the same axis, the momoent of inertia of the final system
is given by the sum of the individual moments of inertia, t.e., 27

Thus the initial moment of inertia=1;
Initial angular velocity=w; = 10 rad/s
and hence the initial angular momentum Ly = Jw; = 10{,

where [ is the moment of inertia of the rotating disk about the axis passing through its centre.

The final moment of inertia of the system=27
Let the final angular velocity of the system be wy.

Hence the final angular mementum of the system=L; = 2fwy

By conservation of angular momentum,

Ly = Ly
=10 = 2wy
Swr = 3

Thus the two-disk system has a final angular velocity of 5 rad/s.

Example 1.4.3 A system is considered consisting of two objects with masses m; and mo connected
to the two ends of a light, inextensible string of length say l and the latier passing through ¢ small
pulley, so that the two masses are hanging under the action of the surface gravity of the earth. Such
a system is called the Atwood Machine. Describe the dynamics of an Atwood machine.
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A
o
T
M,
T Mog
M Q
Mlg

Solution: In the diagram, we see that the masses My and Ms are hanging through the location A
with the help of a light inextensible string of length I. The force of gravity acts on the mass M
with magnitude Mg and on My with magnitude Msg, where g is the acceleration due to gravity at
the given location. The string also generates within it a force, called the tension force in response,
as the reaction to the externally applied force, i.e., the downward pull of gravity. The tension
forces are as shown in the figure. Here we take upward direction as positive coordinate z-axis, and
consider that the mass Afy is accelerating upward due to the acceleration in Ms.

From the figure, the Newton’s second law applied to the mass M yields

And applied to mass My gives
~Mai =T — Mag (1.4.14)
Subtracting (1.4.14) and (1.4.13),
. My — My
= —— 1.4.1
v (Ml + MQ) g ( 2
and therefore, i
2M Mo
T[] ———— 4.
(M1+Mg)9 (1.4.16)

1.5 Motion in a Central Force Field

A large variety of problems in the mechanics involve force fields, directed towards. or away from a
point. Such a field is called the central force field. The motion of the planets around the sun, the
satellites around the planets, or two charged particles around each other are some examples where
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central force fields are associated. -

The study of particle motion under central force fields helps in the understanding of Lagrange’s
and Hamilton’s equations which will be discussed in the subsequent units, and particularly the
perturbation theory in the classical mechanics. Newton and Euler carried out extensive studies of
the problems involving motion in the central force fleld, and these studies laid the foundation for
further studies in this direction.

Definition 1 Force field:
The force field is a region in space at every point of which we can associate a unique force vecior.

We can take the gravitational force field, or the gravitational field as an example of a force field.
Here we can define a region around a given mass, say M and at every point outside the mass, we
can associate a force which is felt by a test mass, say m. Since gravitational force is attractive by
nature, the test mass will be attracted towards the mass M as a result of this force.

Definition 2 Cenirel Force:

A central force is a force whose line of action is always directed towards or away from a fized point,
called centre or origin of the force and whose magnitude depends on the radial distance from the
centre.

If the interaction between any two objects is represented by a central force, then the force is directed
along the linc joining the centres of two objects. Mathematically,

F(r) = 6. F(r) (1.5.1)

where &, is the unit vector along the direction of the position vector 7 and r is the magnitude of 7. .
If F(r) is positive, the force is repulsive and if negative, the force is attractive in nature.

As examples of central force, we can cite the attractive Gravitational force between two mass
points, the attractive electrostatic force between two unlike charges, and repulsive in nature is the
electrostatic force between the like charges as in the case of scattering of alpha particles by nuclei,
etc.

As we can see, the motion of a particle in a central force field involves potential energy which
depends only on the distance 7 of the moving particle from a fixed point in space. This fixed point
is the source of the force and is called the center or the origin of the force. Generally this fixed point
is chosen to be at the origin of the coordinate system so that it can be expressed as F(r) = &, F(r).

1.5.1 The equavalent one body problem

Let us consider a two-body system with two particles, particle 1 and particle 2, with masses m;
and my, and position vectors ¥ and 7 respectively with respect to a given coordinate system. We
will show here that the dynamics of this system of two bodies is equivalent to a system consisting of
only one body with its mass given by a specific combination of the given two masses, called the re-
duced mass of the system and located at a specific position from the origin of the coordinate system.
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Let the external forces £ and E§™ act on two particles of mass m; and my respectively.
The total external force Fe! on the system is the sum of the forces acting individually on the
particles, i.e.,

Pt = peet g pest (1.5.2)
Further, let the particle with mass m; be acted on by the internal force Fg;“ due to the mass mgp

and the particle with mass ma by F“{"z“ due to the mass m;. Then by Newton’s third law of motion,
we have

Fipt = — iyt (1.5.3)

These forces are the corresponding Action and the Reaction forces as laid down in Newton’s third
law of motion.

The equations of motion of the two particles of the system can be written as:
ml'.;_:'l = F'lea:t -+ F‘g?t (1.5.4a)

and  moiy = Fett 4 fint (1.5.4b)

Adding cquations {1.5.4a) and {1.5.4b) with the consideration of (1.5.3) we find

ml'.;':'l +m23;_:'2 = ﬁfﬂ + .ﬁfﬂ = [reat (1.5.5)
m ) (MR e 15

From the definition of the centre of mass of the system,

mir1 + rmgra
my + mo

R (1.5.7a)

M7 + mafy
my + Mo

and hence }_%'

(1.5.7b}
with the total mass of the system as A = m + mg, the equation of motion then reduces to

MR = Fest (1.5.8)

Thus equation (1.5.8} suggests that the dynamics of the given two-particle system can be described
as equivalent to a new system with mass equal to the total mass of the two-body system and kept
at its centre of mass; acted on by a force equal to the total forces acting on the two-particle system.
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Let us further consider the position vector of particle 1 relative to particle 2. The separation vector
is then

F=1T] — T2 (1.5.9)

Using the expression of the centre of mass (1.5.7a) we can write the position vectors 7 and 73 in
terms of 7, i.e.,

~ = ma -
=R+ —— 1.5.1
i + ity -+ m2r (15.10a)
= R —— (1.5.10b)
m] + e

Now multiply equation (1.5.4a) by ms and (1.5.4b) by m; and subtract the latter from the former.
This yields

" . . .. Fext  [ext
m1mMaFl — MM = (mQth'?t —my ngt) 4+ mims 12z {1.5.11}
iy o
. - F-'ea:t F-'e:.ct
mymer = (m1 + ma) FiM + myma L2 (1.5.12)
ma Trio

Dividing equation (1.5.12) throughout by (m; + mgy) and defining the reduced mass of the system
as

mim
=12 (1.5.13)
mi + o
Qr
i 1 1 .
—— (1.5.14)
goomy T

where, u is known as the reduced mass, the motion of the system of two bodies can always be
reduced to an equivalent one-body problem. The equation (1.5.12) then reduces to

. .. Fext  plext
pF = 5;“+;£( 1 —2—) (1.5.15)

™M1 ma

The following cases are in order.
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Case 1: If no external force acts on the systemn. Under such circumstances, we have

Fert — Fet = (1.5.16)

Case 2 : If external force F& and F§® are proportional to the masses of the particles on
which they act and produce equal accelerations in the two particles, i.e.,

rext pext
BHY _ B

e (1.5.17)

Under both the cases referred above, the governing equations for the equivalent one body system
reduce to

pr = Fint (1.5.18)

Thus we note that the equation of motion of the original system of two particles reduces to an
equivalent one body problem, with the mass equal to the reduced mass p of the two originial par-
ticles and moving under the action of force Fi*. In other words, we can assume that there is a
centre of force at the location of the first particle to govern the dynamics of a particle of mass p
locatéd at the second particle. Such a reduction of a two body problem to an equivalent one-body

problem proves very convenient in tackling complicated problem involving two masses.

In case my >> mg, we can ignore mg in the denominator of (1.5.13} and hence the reduced mass
is approximated as

—=(-——-+1)ml — 7= mg

In such a case the problem reduces to just one-particle problem and can be solved by the Newton's
laws for a single particle. “

1

Although any classical system of two particles is by definition, a two body problen, in majority of
the realistic cases, one may have to deal with a situation of two bodies with one body significantly
heavier than the other, e.g., the Earth and the Sun. In such cases, the heavier particle is approx-
imately the centre of mass and the reduced mass is approximately the lighter mass. Hence, the
heavier mass may be treated roughly as a fixed centre of force and the motion of the lighter mass
may be solved for directly by one-body methods.
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1.5.2 Particle Motion under Central Force Field

Let us consider a particle of mass m moving under the attractive gravitational field generated by
a point mass M. For convenience, let the mass M be located at the origin and the position vector
of the mass m be ¥ =72 + yJ + zk of cartesian coordinate system so that the distance r between
the masses is given by 2 = 5% + 3 + 22, The force experienced by the mass m is given by the
universal law of gravitation, i.c..

where (G is the universal gravitational constant. The negative sign here is to signify the attractive
nature of the force. As the force acts along the line joining the two particles, i.e., along the radial
direction from the origin, a corresponding unit vector &, is associated with the force vector.

The magnitude of the gravitational force is given by

We see that the force of gravitation depends only on the radial distance between the two masses
and is directed towards the origin signified by the negative sign. The gravitational force betwedn
the two masses is therefore a central force. We shall now show that this force is conservative. '

The given force field is, .
F(r) =¢&.F(r)

The unit vector &, can be written in terms of the cartesian coordinates as

:t7£+y3+zfc

V2 +y? + 22

7
eT = - =
T

Therefore,
= F(") - - ';
F = — (m+yj+z&)

Resolving the force in three cartesian components




1.5. MOTION IN A CENTRAL FORCE FIELD 31

F, = ;F(r), F, = vf-F(r), F,=2F(@)

The curl of the force is

1 F.‘.I: Fy Fz

The components of the curl of the force is then given as

~ = _(OF, OF, 8F, O8F, 0F, O0F
VXF_(By dz ' Oz g’ Oz Jdy

Now,
OF, 8 ¢z _ Or 8 (F(r)
By Ay (?_F(T)) a 255 or ( r )
Similarly,
OF, _ 00 (F()
Az Dz or r
and so on.

The terms like g—; or glz can be evaluated by writing » in terms of z, ¥ and z.

r= (22 +y? + 2?)

This gives,
or____ Wz
dr 2z +y2+2Y) o’
Similarly, 5 5
r_¥ oa _z
dy r’ and 8z r
Constider the z-component of the curl, i.e.,
= = OF, JF
(VxF = dy dz
_ 000 [P0 _ o 0 [F()
T Toyor | T Yozor |+
_ 2 [FO|_ 20 [F)
rdr | r ror| r

(VX F)y, =
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Similarly we can show that

(Vx F), =0
and

(VxF),=0
Combining these results, we get

(Vx F)y=0,

which is the condition for a conservative force field i.e., the force field F is conservative.

Potential energy and Central Force field

As we have seen, the gravitational force is a central force depends only -on the distance
between two particles and is a conservative force field. Consequently we can defire a
potential energy function @ such that

F=-9%
Since the force F depends only on 7, s0 also does @, i.e., ® is dependent on r and not upon

orientation. Hence the system governed by central force field has a spherical symmetry.

-

An interesting result can be proved in regards of the angular momentum of a moving particle in a
central force field. The angular momentum of a particle moving in the central force field about the
force centre remains constant for each orbit of the particle. This can be shown as the following:
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The angular momentum in a central force field

The torque (the agent which causes a particle to execute rotational motion) is given by,
F=Fx Fr)

where 7 is the position vector of the moving particle measured fromn the force centre.

The angular momentum L of the particle is given by,

L = Fx§
dL d, . L : :
Now, e a(r X p) [ 7 isthe linear momentum of the particle]
@ oo P
= — T i
a " P dt
SR L dr - -
= Txmv+rxF VU= and p=mv
= Fx F(ry=7

Here 7 is the torque vector acting on the system.

But since a cenral force acts along the direction of the separation vector, i.e., along 7,
the cross product, and hence the torque vector vanishes.

because of the cross product of two unidirectional vectors.

Integrating the expression we find

L = a constant vector = X = constant vector

In other words, the plane containing 7 and § remain perpendicular to L throughout the
motion. Hence, the component of L along any axis through the centre of the force is a
constant quantity.

This fact further implies that as there is no component of F(r) perpendicular to 7 and
P, the motion will always be confined in the plane containing the vectors 7 and p, i.e.,

the plane containing the initial position and momentum.

Thus, the motion of a particle under centrel force field always remains confined in a plane.

33
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The motion of a particle in a central force field can be classified as:

1. Bounded motion:
In this type of motion the distance between two bodies never exceeds a finite limit. For
example, the tnotion of planets around the sun.

2. Unbounded motion: -
In this type of motion the distance between two bodies is infinite initially and finally. For
example, scattering of alpha particles by the nuclei of a gold foil in Rutherford experiment.

There are two approaches to analyse the motion of a particle in central force field - the Integrals of
energy epproach and, the Differential equation of orbit approach.

In the first approach Newton's laws of motion is directly used and the related conserved guantities
in the system are found out. In particular, Newton’s second law is first written for particle of mass
m moving with velocity ¥

mo = F = Fé, (1.5.19)

The scalar product of (1.5.19) with ¥, we get
mv.d = Fi.é, (1.5.20)

The left hand side of (1.5.20) can be written as

g Gl N _d ],
YT\ T @ e

To evaluate the right hand side of (1.5.20), we observe that the velocity vector can be expressed
in terms of polar 2-components as ¥ = r'é, + rféy. where é, and &y are the unit vectors along the
radial and the tangential directions respectively. Hence we have

: d
5.6, = (ré, + rGf}g).ér =F= .&i"tl
Therefore, (1.5.20) simplifics to,
d {1 o dr
Rl e = p_ 5
dt (2"“’ ) d (1.5.21)

Let F depends only on the magnitude of the radial vector, i.e., F = F(r), then integration of
(1.5.21). with respect to time ¢ yields

1
thﬁ = / F(r)dr + E, (1.5.22)

where E is the constant of integration, depending on the initial conditions of the motion. The
integral (1.5.22) nothing but the work done by the force F in displacing the particle along the orbit.

Let us consider the conservative force field i.e., F = —V®, which implies that there exists a scalar
function ®(r), the potential energy of the particle, such that

~ %

Flr)= - — (1.5.23)

Ir
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Then (1.5.22) becomes
1
§mv2 +&(r)=E, (1.5.24)

which states that the sum of the kinetic energy and the potential energy, i.¢., the total energy E of
a moving particle under the central force field is constant. This is the law of conservalion of energy.
Now, solving (1.5.24) for v, we get,

v= f‘% =+ [*(E~¢>)]§ (1.5.25)

which on integration, yields

dr

£=t(r) = / e (1.5.26)

The motion of the particle, i.e., the location of the particle as a function of time, r(t}, can then be
found by inverting the equation (1.5.26).

In polar coordinates,(1.5.25) can also be rewritten as

ém(fg +r20 + o(r) = E (1.5.27)

In the second approach, i.e., the Differential equation of the orbit approach, one attempts to de-
velop differential equations of the orbit {dependance of one coordinate on the other, say y(x) in two
dimensional cartesian and r(@) in the 2-D polar coordinates) that a moving particle follows under
the governing central force field.

We write down Newton’s second law in two dimensional polar coordinates,

m(F — ré*)é, + —%(mr?ﬂ)ég = F(r)é, (1.5.28)
The radial and tangential components of the equation of mo(:ion are then
mi —mrf® = F(r) (1.5.29)
gz(@ﬂé) - 0 (1.5.30)
Now from (1.5.30) we see that
m1r?8 = L = constant. (1.5.31)

So we find that the quantity L = mr2g = muy,T is the angular momentum of the particle moving
under central force, and is a conserved guantity.
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For convenience in deriving the equation of the orbit, let us re-express the equations by substituting
T as

1
u=-
-
Then
. L L,
= == 1.5.32
6 'U’H'lz mu ( 53 )
Now,
dr d {1 1 du 1 du. L du
Taz(;)-‘aa‘nm =@ (1.5.33)
And
&___L d {du __LdQ‘u-
dt2  mdt\do/  mde?
So that
d?r Lu\? d%u
@ = (;;) T (1.5.34)

Using (1.5.32) through (1.5.34) in (1.5.29) we have
(B e _m (L 5N
"\ m /) @ m
Simplifying,

d%u m 1

which is the differential equation in % as a function of  and is known as the polar equation of the
orbit. This equation describes the motion of a particle under central force field.

I
B!
Eam
S
N

Numerical Problems

Example 1.5.1 Show that for a particle travelling in a cycloidal path r = a(1 — cos ) in a central

Jorce field, the force law goes as r—%,

Solution:  The orbit equation is r = a(l — cos f),

1
Putting u = -,
r

u=l=—1-——-=icoseczg
r a(l—cosl) 2a 2
du = L (—2 «:cnsecgE % cotg X 1)
dé 2a 2 2 2
= -—5-(; cosec §c0t§
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And,

2 T 5, cosecs cot” 5 + o cosecs

d>u 1 0 .8 1 o8 1 o8
@5 +u = -2_0 COSeC ~2— 'cot 3 - § COSEC 5] -+ 5; cosec §
= 5 cosec2-g— _c0t2 g + % coscczg + 1]

o [ o7 1 i
= E cosec 3 _ COSeC -2- + § cosec ~2-]
- 3 cosec“g

da

U m 1
@t T et (‘)
— 3 L m 1
g P 3 T2 \u
L2 2
= F (1) = == 3 COSBC4E
u m 4da
1242 3 9 3al? ,
= —— E(Qa )t = - o
3al? 1
= F(ry = - T %X

So, the force goes as r—*

Example 1.5.2 An object of unit mass orbits in a central potential V{r), whose orbit i3 described
by r=aexp(—af), 0 is azimuthal angle measured in the orbital plane. Find the form of V{r).

Sclution:
1
Let u=-—.
r
The given orbit can then be rewritten as
v = 1_ exp(af}
T [+
d .
d_: = 2 exp(af) = au
[
d?u 2 2
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d’u 2 1 1

— ’ - — ____F —

oz T (1+a%)u e (u)
— F(%) = —I%(1+a?)ud

1 dVv
- 2 2 .
—_ F(r) = =L (1+0’)?—:§——-E
1
Hence vV = /F(r)dr: L*(1.+ a2)/}§dr
2 2
or, V = —L(%G—) + V% is the constant of integration.
r

1.6 Motion in inverse square law force field

1.6.1 Introduction

The inverse square law, quite often the most interesting amongst the laws in physics, is charac-
terised by a force inversely proportional to the square of the distance from the centre of the force.
Newton’s law of universal gravitation and the clectrostatic coulombs law are two examples of the
taws of physics of this kind. The inverse-square law generally applies when some force, energy, or
other conserved quantity is radiated outward from a point source in three-dimensional space. In
electrostatics, the electrostatic coulomb force between two charged particles is inversely propor-
tional to the distance of separation between the charges. Increasing the separation between ob jects
decreases the force of attraction or repulsion between them, and on decreasing, it does increase.
Below is a discussion on the inverse square law with some necessary consequences in the motion
of particles. In particular, we make an attempt to deduce the equation of orbit under the inverse
square law of forces.

Newton’s universal law of Gravitation

Let m; and mgy be the masses of the two particles with a distance r between them. Then the
magnitude of the force of attraction F on mg due to m; is given by

M1y

F py;

or,
miyms

F=-C

P 2

Here G 1s universal constant of gravitation and the negative sign indicates that the force is attractive.




o

1.6. MOTION IN INVERSE SQUARE LAW FORCE FIELD 39

1.6.2 Equation of motion in inverse square law force field

Let us consider a two-particle system with masses m; and mg in which the force of interaction
between the particles varies inversely as the square of the distance between them. Then

k
F(r)= ot k = constant of proportionality.

We have already seen that two-particle system can be equivalently described as a one-body problem
mima

mi + ms
given by the inverse square law. As the inverse square law of force concerns only the radial distance,

it is a central force and is also conservative. So we can express it in terms of the gradient of a
scalar, say ®&(r), ti.e, :

under central force, where a reduced mass given by p = moves under a center of force

dd
F{r) = ——
(1 ) dr 1

or de Kk

’ dr ¥
Integrating we have
i = - .
" =3

The equation of wotion of the equivalent mass under inverse square force field in two dimensional
polar coordinates is then given by (1.5.27), i.e.,

SH(? 4 r2P) + 8(r) = B

where first term corresponds to the kinetic energy of the mass y along the radial direction, while
the second term in the bracket refers to an equivalent potential energy term corresponding to the
centripetal force on the mass. The term on the right hand side is the total energy of the system
which is the sum of the kinetic energy, the potential energy due to the centripetal force and the
potential energy corresponding to the inverse square force. The centripetal term arises when the
initial velocity of the mass contains a tangential component. It is interesting to note that the
centripetal force which arises due to the tangential motion of particles is actually radially directed.
The potential energy (®.) due to centripetal force term can be written in terms of the total angular
momentum on the equivalent mass p as,

L2

- o T — 2
= St o L= pur<d

) I

We consider the total energy (F) as the sum of the kinetic energy and a single effective potential
encrgy term (9.), where
k ko L?
b=+, =-+-— 16.1
c Ty +%e r + 2ur? ( )
Thus when a particle free particle {a particle having only kinetic energy) enters the region of
influence of an cffective potetial, its motion is governed by the effective potential leading to definite
path, or an orbit appropriate to the values of the associated potential and the kinetic energy. In
| general, the nature of the orbit will depend upon the signh of k. If we plot effective potential
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Figure 1.2: Types of orbits for unbounded motion, for different values of k.

energy O, against the distance » between the particles for various values of k& then we see that for
a repulsive force £ > 0 the potential energy curve does not have a minimum. Similar is the case
for a force of attraction (when k < 0).

Under this circumstance, the particle, initially having an arbitrary value of energy approaches the
center of force from infinity, reaches the closest distance of approach and turns around to move
back to infinity. The nature of motion in such cases is called unbounded motion.

We can further see from the plots that the orbit formed with k = 0 is just a straight line main-
taining the same initial direction, since this case implies that there is no force on the particle and
therefore according to the newton’s first law of motion, the particle continues to move along the
same direction without any change of velocity.

If the force is of attractive nature then the form of the potential energy is

2
(I)8 = —|—f-€—| L

ro 2ur?

which creates a hump in the potential energy curve and the particle approaching the centre of force
will be trapped inside the hump. This trapping renders a closed orbit of the particle around the
centre of force and the motion will be bounded.

For a repulsive force on the other hand. the particle will be deflected away from the centre of the
force and it eventually moves towards infinity.

Few special cases of motion of a particle under’inverse square law of force are in order:

1. For total energy Fj, the intersection of the straight line equation Fj=costant with the poten-
tial energy curve is at r = 71, at which the radial component of kinetic energy of the particle
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Figure 1.3: Variation of the effective potential ®. with distance r for the positive, zero and negative

k
values of k in the potential energy term —.
T

Figure 1.4: Variation of the offective potential ®, with radial distance r for inverse square law of
force. The dotted curves are with L = 0.

o
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Figure 1.5: Variation of . with the radial distance r at minimum (r3) and maximum (r3) radii of
orbit for the total energy E3 < 0 and intersecting ®, at two points. For the lowest value of energy
{E4), the orbit is a circle with radius ry.

is zero. In this case r; is a real root of equation

The particle moves in such away that it has one turning point at r = r;. The motion
corresponds to an unbounded motion.

2. If the energy of the particle is Ey = 0, the roots of the equation in this case are r = r1 and
- 0. The particle goes to infinity but its radial velocity falls off continuously and becomes zero
at infinity.

3. For energy E3 < 0, the roots of equation are 73 and 73, both real and distinct. The motion
of particle is bounded between these two distances, i.e., the orbits are closed and in general,
elliptic. .

4. For total energy E4, the two real roots of the equation coincide and the corresponding motion
will be circular around the centre of force of the first particle.
1.6.3 Deduction of equation of orbit

We now deduce the equation of motion of a particle subjected to a central force. Newton’s second
law adapted to central force gives (refer to (1.5.29) )

ui — urd? = F(r)
2
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. 1
Let us substitute u = —. Then
T
de _  ldr _ 1drdt Lodr dﬂ_é
A0 " TrdeT r2dide Cow T dt
du T, . 24
B - 2= [ since, L = pursd |
2 = 2,2
du _ dfdu zi(_&f)zi(qﬁf)ﬁi:_g Y o B
dg? dé \ df dé \ L dt\ L /df L\g L?
Substituting these in (1.6.2),
d*u, U 1
T T (a)
If the force field obeys the inverse square law then
= |k| .l 1 —_ 2
F(r)= o) and, F )= {k|u
d*u LT
Hence, d_92 +u= —LT
o dy _
Let y=u- g, so that = I
Hence, the equation is of the form, 2
Y
—z = 1.6.
T +y=0 (1.6.3)

The equation (1.6.3) is a second order ordinary differential equation in y as a function of # and has

a solution
y = Acos(6 — 6g)

where A and &y are constants.

| k
Hence we have, y = Acos(f@—8y)==- %,u
r L
1 k
or, o= Acos(d — 8p) + li-z-lp
|&| L2A
= —pu|l+— 8-
T2+ + TP cos( o)
L? L?4
or, —— = 14+ ——cos{f# — b 1.6.4
Flur e 0~ %) (164)
The equation {1.6.4) is similar to the equation
% =1+ecosf (1.6.5)
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which is an equation of a conic section with the origin at the focus. Now, comparing equation
(1.6.4) with this equation we have

L2
Semi latus rectum l=— (1.6.6a)
[
L2A
Eccentricity €= — (1.6.6b)
|l

There is also an alternative way by which the expression for latus rectum and the eccentricity can
be found. From the energy equation (1.5.27) for mass u and the inverse square attractive potential

V=- | | and further using the fact that the angular momentum is given by L = pur20 we see that,

é—m(r’"2 + ) +V=FE
2 L?
.2
dr d\? dr L\? 2 L2

— (@%) = (@) =212

dr re L?
1 —_ = -

a8 T \/2‘” (E v zmﬂ)

Integrating & with respect to r yields
( L }dr

8(r) — 90—/\/

Q,u E - V—Qur)

. 1
Now, putting V=-"o u=-, we have
T

(1.6.7)

_/ du
NeTrgrm—

To integrate the of equation (1.6.7) we can use the standard result

/ dx 1 cos—! [ — b+ 2cx
a+br+cz? —c Vb —dac/
This gives

2 _ 1
cos (6 — ) = ul” - pk

VI2k? + 2uEL?
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Comparison of (1.6.5) and (1.6.6) with (1.6.8) yields

_kp L 2EL?

A=
12 + ,qu

Turning points

When a particle moves under a central force, there might be a situation where the particle en-
counters a potential barrier and the total energy of the particle is not sufficient to overcome it. In
that case the particle will either be trapped or get bounced back, depending on the nature of the
central force, t.e., attractive or repulsive. The locations at which this occurs are called the Turning
points. At the turning points the radial velocity of the particle vanishes, i.e., 7 = 0. Essentially,
the turning points are dependent on the initial kinetic energy and the potential energy arising from
the central force. Mathematically the turning peints can be found by searching the locations at
which the energy of the particle just equals the potential energy. i.e., B~ Vgp =0

For a particle moving under inverse square potential we can calculate the turning points from the
equation of orbit (1.6.4). For this, we need first to find the values of f for which 4« =0 in
0<8 <27 . This gives 6 =0, = for the turning points. Hence the radial distance at the

turning points are given by
1 plkl

= A
1 plkl

—_— = ——— A
ro 12

k!

The value of constant A cannot exceed , otherwise -r9 will be negative, which is not real.

2

The the turning points are also the root of the equation

g W
E=2(r)=E+ T =

This equation is a quadratic in —.. Hence its root can be written as
T

1 ikl uikl 2FEL?
- 1
T1,2 L2 * I? + uk?

Comparing this with (1.6.5) and (1.6.6) we have,
4 K [ 2B
12 k2
Lo LA _ [ 2BL
C okl jk?
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Nature of orbit

The nature of the orbit is determined by the value of eccentricity e of the orbit. The value of orbit
depends upon total energy E. we have found the following cases:

1. For energy E > 0, the cccentricity ¢ > 1 and the orbit will be a hyperbola.
2. For energy E = 0, the eccentricity e = 1 and the orbit will be a parabola.
3. For energy E < 0, the eccentricity e < 1 and the orbit will be an ellipse.

4. Finally for energy, £ =V, .., the value of eccentricity ¢ = 0 and the orbit will be a circle.

1.7 Kepler’s laws of motion

We know that the kinetic energy of a particle of mass rn moving under central force is

T = —m(#+126%)

1
2™
1 (L% fau\? 1%,
= ™ [m(@) +m2“]
1L? du\? 2
= m[(%) +“]

L2 k 2
= 5= [A2 sin® (6 — 6p) + (% + Acos (6 — 99)) ] \ (refer to equation (1.6.4))

< I? m2k?  2mkA
%[AZ —LT..+ 72 cos(f — 6‘0]]
\

The potential energy of such a particle is of the form

k mk?®
Total energy £ = T + v
mk?
= L2A2 + 577+ kA cos(6 — ) ~ Ek— — Ak cos(8 — 6)

1 1 mk?
— 1242
2m 2 12

_ -E—L2 [AQ B m2kg]

L4

2m
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2mE 42 mnk?
2 T
2,9
o m<k* 2mE
o A= Tt
1
mk 2EL?)?
A= T [1 + TEET]
1
AR (L 2B\
mk °= mk?
So when
e>1; E>0 — hyperbola
\
e=1,; E=0 — parabola
O<ex<, E < — ellipse
k2
c=0 = —% - circle

Kepler’s laws of planetary motion

Acceleration to Newton’s law gravitation the force of attraction between sun of mass M and planet
m is given by

poGMm__k (1.7.2)

72 r

Here r is the distance between the Sun and the planet. This is clearly a central force of attraction
with the centre of force at the sun’s geometric centre. The equation of motion along r and # direc-
tion of polar coordinates for the planet under the centre of force of the sun is given as

mi — mré = -2 (1.7.3a)
mré + 2mrf =0 (1.7.3b)

. . 2 A L -
Again from equation (1.7.3b) we have, r“8 = — = h, where L is a constant and the angular

m
momentum of the planet. The constant A is therefore the angular momentum per unit mass of the
planet.

1
Substitution of r = -~ and following the steps to deduce the equation of orbits as discussed in the

u
beginning of this scction, finally yiclds

Fu k

267 T T (1.74)
Substitute y = u — ;—, to reduce the equation to
mh?
82
Y yy=0 (1.7.5)

a6?
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The standard solution of this equation is,
y = Acos(f — 8p)

or, in this case,

1 ke
U= ; = W + A COS(9 - 9{}) (176)
mh? 2
= he A
or, " =1+ 22 cos(8 — 0%)
l
or, o= L+ Geos(8 — 65)
h? h?
which is the equation of a conic with semi-centre { = hn—l% and eccentricity G = e ” A.

Now we use the equation (1.7.6) with the maximum and minimum values of the cosine term to find
the minimum and maximum distances.

1
ro= (1.7.7)
mi T Acos(f — by)
] _ !
Tmezr = = 4 (1.7.8)
mh?
Prmin = ! (1.7.9)
min ﬁf + A o
. " o k
As r is always a positive quantity, it is clear that A must be less than T
ie A< (1.7.10)
., 57 7.
Amh?
= ”]: <1 (1.7.11)
Gl (1.7.12)

So the orbit of the planet is elliptical. This means that the planet always moves round the sun in
elliptical orbit, which is the Kepler first law.
Y

Again the equation (1.7.3b) is cast to
<4
dt
mr?8 =L = constant, (1.7.14)

(m28) = 0 ’ (1.7.13)

The area swept out by the radius under the planet of in moving from say P to @,

dA = Arca of the AOPQ = %r.—rde = %ﬂde
dA 1 ,df 1 2 _ L

—_— —_—— =

h
= — = ¢constant

dt 2" d 2 T 2m 2
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i.e., the area swept by radius vect:or is constant, This is Kepler second law.

For deducing the Képlar’s third law, we calculate the time period of revolution of planet. This is
given by

T = Area of the ellipse

Areal velocity

= ?—T:—b ('.‘r29=h=£)

2
2nab

h
Here a is semni major axis and b is semi minor axis of the ellipse. The relation between g, b and the
semi latus recturn [ of the ellipse is given by

Therefore, T =

or, T =

Hence T2 xa®
i.€., the square of the period of revolution is proportional to the cube of the semi major axis of the
ellipse. This is the Keplar’s third law.

Summary

In this chapter we have discussed the Newton’s laws of motion for a single particle as well as for
a system of particles and deduced the conservation laws. We have further discussed the central
force field-the definition and properties, and a method to reduce a two body problems to equivalent
one body problem for describing the motion under central force field. Also discussed the equation
involving the energy of particles in motion and deduced orbit equations for analysing the motion
bounded as well as the unbounded motion. [t is apparent that the choice of the coordinate system
plays an important role in the convenience of finding the solution of a problem. We see that for
analysing the problems involving the central force and particularly the inverse square law of force,
polar coordinate system has an advantage over the conventionally taken cartesian coordinate sys-
tem.

Taking the inverse square potential as a specific case of the central force field, we derived the asso-
ciated orbit equation and analysed the nature of orbits for different energy values. Finally we have
used them to establish the Keplar’s laws of motion.
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Self study questions:

1.
2.

10.

Write a note illustrating the interrelations amongst the Newton’s three laws of motion.

Compare the dynamics and the methods of analysis for a single particle and a system of
particles.

. A particle of mass m freely falls vertically downwards from a height h above the surface of the

earth. Now assume that the earth’s gravity suddenly switches off when the particle reaches
its midpoint of the verical fall. Describe the dynamics of the particle for the entire course of
its motion. Will the particle touch the ground eventually? Explain.

. Check if the following force vector is conservative or not.

-

F=zi—y?+ 5k

. Show that the angular momentum and kinetic energy of a system of particles can be expressed

in terms of, and motion about the centre of mass of the system.

. What is a central force? Is this force a conservative one? Write down the characteristics of a

central force and give examples.

. Imagine a particle moves under a inverse cube of forces. Deduce the relevant equations to

check if the angular momentum of the particle is conserved or not.

. What are bounded and unbounded motion? Explain the term turning points in the case of a

particle motion under inverse square law of force.

. Starting with the inverse square force field of attractive nature, deduce the form of the

differential equation of the orbit of a particle moving under the influence of the field.

Deduce the Keplar’s laws of motion for the attractive gravitational force between the sun and
planets,
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Lagrangian Formulation of
Dynamics-1

Preparatory inputs to this unit

1. Problem solving skills in simple dynamical problems using Newton’s laws (Preceding
materials useful).

L}

2. Concepts in the Central force problem, Inverse square potentials and Keplar’s laws
on planetary motion.

3. Basics of vector algebra, trigonometry, coordinate geometry.
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2.1 Introduction

As is well known, the motion of material bodies involves two aspects viz., kinematics and dynamics.
Kinematics is the geometrical description of motion of material bodies, i.¢., the motion of the
material bodies are described in terms of quantities involivng geometric measurements such as
displacement, velocity etc. The dynamics on the other hand, investigates the source or the cause
of the motion along with the motional properties of a system through the equation of motion
involving the force. For centuries the problem of motion and its causes was a central theme of
natural philosophy. The issues related to the motion and its causes was greatly resolved, in a wide
spectrum of situations by Sir Isaac Newton (1642-1727) through the enunciation of the laws of
motion. He also formulated the law of universal gravitation. But today, it is obvious that Newton’s
theory is an approximation to be valid under certain given circumstances only. In this chapter, we
proceed to discuss the technical inconveniences of using the Newtonian laws of motion and discuss
alternative formalisms to overcome the difficulties faced, through the introduction of the concept
of constraint and the related principles.

2.1.1 Newtonian Dynamics

Newtonian dynamics is a mathematical model which aims to predict the motions of particles and
objects under a variety situations surrounding us. The general principles towards developing this
model were first put forward by Sir Isaac Newton in his seminal work entitled Philosophiace Nat-
uralis Principia Mathematica (Mathcematical Principles of Natural Philosophy), first published in
1687 and is more commonly referred to as the Principia. Until the beginning of the 20th century,
Newton’s theory of motion was thought to be capable of providing a complete description of all
types of motions taking place in the Universe.

Newtonian dynainics are based on three axioms which are known as Newton’s laws of motion.
They are

1. Every body continues to be in its state of rest or of uniform motion in a straight line unless
impressed by external forces to change the state.

2. The time rate of change of momentum of a system in motion, is proportional to the magnitude
of the external force and the change takes place in a direction same as that of the force.

3. To every action there is an equal and opposite reaction. Alternatively, the mutual actions
and reactions of any two particles are always equal and oppositely directed along the straight
line joining the particles.

Newton’s first law of motion

Newton’s first law of motion essentially states that a point object subject to zero net external force
moves in a straight line with a uniform speed (i.e., it does not accelerate). However, this is only
true in special frames of reference called inertial frames. We can consider the Newton’s first law
for the definition of an inertial frame. An inertial frame of reference is the ene in which a particle
subject to zero net external force moves in a straight line with constant speed.
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In particular, Newton's first Jaw of motion tells us about the motion of a body when no force acts
on it, but unable to provide the details of the motion arising from the force. Nor can it illustrate
how does the force cause the motion in a quantitative manner. It does simply tell us what happens
to the particle when the foree is absent.

Newton’s second law of motion

Newton’s second law of motion tells us that the motion in a point particle experiencing an external
force, F, is governed by an equation given by

b

= dp

F —_

S
. d5
or, F= d—‘?

where k is the constant of proportionality, the momentum, p, is the product of the object’s inertial
mass, m, and its velocity, #. Here the units of the force is so chosen that the constant of propor-
tionality takes in a value of unity, i.e., &k =1. Considering that the mass m is not a function of
time, the above expression reduces to the familiar equation

—~ dv
= —
dt
This equation is only valid in a inertial frame. Clearly, the inertial mass of an object measures its
reluctance to change from its existing state of motion. The above equation of motion can only be
solved if the form of the force F is known apriori via some prescription for the expression of the
force.

N.B. : Newton'’s second law is applicable only if the force is the net external force. Further, it does not apply
directly to situations where the mass is changing, cither through the loss or gain of materials, or because the
object is traveling close to the speed of light where relativistic cffects must be included. It dees not apply
directly on the very small scale of the atom where quantum mechanics must be used.

Newton's third law of motion

This law says that all forces in the universe occur in oppositely directed pairs of equal magnitude,
and the existence of isolated force is an impossibility. For every external force that acts on an
object there is a force equal in magnitude but with opposite direction acting back on the object
which exerts the external force. In the case of internal forces (forces acting from and to within a
system), the force on one part of a system will be countered by an equal reaction so that in an
isolated system there is no net internal force on the system as a whole. A system cannot bootstrap
itself into motion with the internal forces exclusively. To achieve a net force and an acceleration,
it must interact with an object external to itself.

Newton’s third law is one of the fundamental symmetry principles of the universe. Since we have
no examples of it being violated in nature, it is a useful tool for analyzing situations.
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2.1.2 Inconveniences with Newtfonian dynamics

Newton’s laws of motion directly serves as the governing laws for investigating dynamical systems.
But as will be clear soon, the applications of Newton’s laws for solving dynamical problems has
some practical limitations. This is not because of the laws are wrongly formulated or wrong
interpretations of its underlying meanings. The limitations are from the point of view of the
inconveniences and difficulties in using Newtonian dynamics. Some of such difficulties are mentioned
below.

1. Newton’s laws are valid only in inertial frames. Inertial frames are frames which are mutually

unaccelerated frames, i.e., if the motion of bodies are described through Newton’s laws in
a given frame, say frame A, the same law will be valid in some other frame, say B, which
is either at rest or of uniforin motion with respect to the frame A. The frame B must be
unaccelerated with respect to frame A.
For non-inertial frames, such as a rotating frame, which involves acceleration, a new, trans-
formed version of Newton’s equations of motions are required for correct description of dynam-
ics, but this exercise involves the appearance of pseudoforces like coriolis forces or centrifugal
forces. As for example we may consider a dynamical problem in a frame attached on the
surface of carth. In this case, the frame of referece attached to the earth rotates with it
around the earth’s axis of rotation. The motion of any object on the surface of the earth is
thus a motion in non-inertial frame of reference.

2. Newton's laws require an apriori. complete specification of all the external forces acting on
the body to correctly describe the dynamics of a moving body. So, one is not supposed to
miss out any force acting on the body, lest a correct description of the dynamics will allude.
This fact canses a real difficulty in achieving the desived solution to a dynamical problemn.
This mostly happens in the case of constrained motion, i.e., motion cannct take place in all
the available coordinate dimensions.

2.1.3 Constraints and Degrees of freedom
Constraints

Consider the motion of a free particle. To describe this motion, we need a coordinate system
with three independent co-ordinates, such as the cartesian co-ordinates (x,y, z) or the spherical
co-ordinates (r, 8, ¢) and so on. The particle is free for motion along any one of the coordinate axis
independent of the change in other co-ordinates. So, the motion of the free particle can be expressed
in terms of three independent coordinates. Now when the motion of the particle is restricted along
one coordinate direction, we say that one constraint is imposed on the motion of the particle and
under such circumstances we need only two independent coordinates to locate the position of the
moving particle at any instant of time. In general, when the motion of a system is restricted in
some way, constraints are said to have been introduced. Constraints are generally expressed in
the form of relationships between the co-ordinates of the constituent particles of a system, or their
derivatives and the time. Such a relationship is also known as constraint relations or constraint
equations. Thus, if r; are the co-ordinates of the particles of a system consisting of IV particles,
then

f(?"l:rQJ aa TG T1 T, TG t) =0 (211)
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is a constraint relation or constraint equation. Representing the coordinates as r = (r1,72, ..., 7N}
or their time derives as 7 = (¥, 79, ..., Fx), we rewrite the equation of constraints as

f(?.) ?“1 t) =0 (212)

Another example of constraint relation is
flrit) >0 (2.1.3)

The constraints represented by (2.1.2) are called bilateral constraints, while those represented by
(2.1.3) are known as unilateral constraints. If a constraint equation involves co-ordinates as well as
their derivatives, the corresponding constraint is termed as differential or kinematic. In contrast,
constraints whose equations contain only co-ordinates are called geemetric. Thus, while equations
(2.1.2) and (2.1.3) represent differential constraints, the following equations exemplify geometric
constraints:

flrt) =0 (2.1.4)

f(r)=0 (2.1.5)

The equation (2.1.4) is explicitly dependent on time; and equations of this type are called rheonomous
{(or moving) constraints. On the other hand, the equation (2.1.5) is independent of time, and con-
straints of this types are called scleronomous (or stationary) constraints.

A more useful classification of constraints is based on the fact whether some of the co-ordinates
can be expressed in terms of the remaining ones. If a constraint equation expresses a relationship
between the co-ordinates and time explicitly through the equality sign, the constarint is said to
be holonomic and all the cases otherwise, the constraints are nonholonomic. It is obvious that
unilateral geometric constraints are nonholonomic.

If a particle is confined to move inside a sphere, the constraint relation is given by
(2P +9y*+2%) -a® <0 (2.1.6)

where ¢ is the radius of the sphere. The constraint is unilateral and therefore nonholonomic.

Degrees of freedom

We have seen that if a system requires M coordinates to specify its unconstrained state, and if &
number of constraints are imposed on it, the constrained system requires only (M — k) independent
coordinates to represent it, as & number of coordinates will be related through the equations of
constraint. We then say that the system possesses n = (M — k) number of degrees of freedom. If
g of the k constraints are nonholonomic, then the degrees of freedom are still (M ~ k), but the
number of independent coordinates required to specify the position of the system is [M — (k — g)],
since only (k — g} coordinates, corresponding to holonomic constraints, can be eliminated.
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Examples

1. A marble rolling on the surface of a table has only two degrees of freedom. Had the table
been not there, the marble would have occupied any of the locations in the 3-dimensional
space above the surface of the earth, and we would require three independent coordinates say,
(z. y, z) to specify the location of the marble at any instant of time in cartesian coordinate
system. Hence the system has Af = 3. But as the marble is constrained to move on the
plane of the table, which is say z = constant plane for our convenience, we require only two
coordinates (x, y), as the z-coodinate is already fixed, or known for the marble. So, the
restriction imposed on the movement of the marble is through z = constant, and this is the
constraint equation for the motion of the marble, i.e., & = 1 in this case. The degrees of
freedom of the marble rolling on the plane of the table is then n = M ~k =3 -1 = 2,
corresponding to two free directions of movement.

2. A simple pendulum is a case of restricted motion of its bob, which is normally made to oscillate
on a vertical plane, maintaining a fixed distance from the point of suspension through the
constant length, say !, of the string of the pendulum. The otherwise unconstrained motion of
the bob requires three independent coordinates, say (z, y, z) in cartesian coordinates chosen
with origin at the point of suspension and the X Z-plane as the plane of oscillation. In this
case we have Af = 3. The restrictions imposed are

(a) the plane of oscillation (the X Z-plane) yielding v =0 , and

{(b) maintaining fixed distance (I) during the oscillation, i.e., 24 2% =12,

So we have k = 2. Therefore the degrees of freedom in the simple pendulum is n = M ~ &k =
3 -2 =1 and we need only one independent coordinate to completely describe the dynamics
of a simple pendulum.

3. We take example of double pendulum (a system of two pendulums, the point of suspension
of the second pendulum is at the bob of the first pendulum) moving in a vertical plane.
We would require four independent coordinates viz., (r1, 6;) for the first and (rp, #;) for
the second pendulum, to describe the system completely. But as we know, the length of a
pendulum is a constant. This means, we need to impose two restrictions (r; = constant = l;)
and (rz = constant = [} on the system to correctly represent its motion. These equations,
representing the restrictions are the equations of constraints. So, in this case we say that
two of the coordinates are eliminated by the equations of constraints and the system is
completely described by the remaining two independent coordinates; with M =4, k = 2 and
n=RM-k=4-2=2

4. We consider a rigid body. A rigid body is defined as a system of particles in which the relative
distances of the constituent particles are fixed and does not vary with time. In this case, the
constraints are expressed by the equations of the form

Tij = Gy,

in which ¢;; and rj; denote the distances between i-th and j-th particles. With the positions
of the particles in cartesian coordinates as r;(zi, 1, 2:) and r;{x;, 5, z;) respectively, the
conditions are expressed as:

(@i — %)% + (1 — yy)2 + (& — 2)? = & (2.1.7)
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5. Consider a circular disc rolling on a horizontal plane without sliding. The constraint of no

sliding implies N

dr = rd¢sin @
dy = rddcos

where 8 is the angle between the plane of the disc and the Y Z-plane, while ¢ is the angle
associated with the rolling of the disc. Both of the above constraints are nonholonomic. The
disc has only two degrees of freedom but requires four independent coordinates to specify its
position. Thus, the nonholonomic constraints do not lead to the reduction in the number of
independent coordinates required to specify the position of the system, though they restrict
the degrees of freedom of the system.

A dynamical system with N particles, when in unconstrained state, the maximum number of
allowed independent coordinates is given by M = 3N corresponding to 3 coordinates for each of
the particles. Such a system when is restricted by & number of constraints will have n = 3N — K
number of degrees of frecdom. :

2.1.4 Difficulties with constraints

Constraints introduce two kinds of difficulties in studying dynamics.

1. They bind the coordinates r; by the constraint eguations, so that all the coordinates are no
longer independent. They are related through the equations of constraint. Consequently, the
equations of motion are also not independent.

2. The forces of constraints are not known a priori. They are to be determined from the solution
of the problem. In the absence of the knowledge of all the forces, the Newtonian equations
of motion will not truely reflect the realistic dynamical situation.

If the constraints involved are holonomic, the first difficulty can be overcome by introducing what
is called the generalised coordinates. The second difficulty is overcome by formulating the problem
of motion of a system in such a way that an explicit knowledge of all the forces acting on the system
is not necessary.

2.1.5 Generalized coordinates and Generalised Velocity

Generalized coordinates are in general some parameters which are used to describe the configu-
ration of the system relative to some reference configuration. The basic requirement for a set of
numbers to act as generalised coordinates is its uniqueness, in the sense that these parameters
must uniquely define the configuration of the system in relation to a given reference configuration.
Further the parameters are also required to be indendent of each other so that any change in any of
these parameters must not affect other members of this parameter set. Another term, which also
finds its place during the description of a dynamical system is the generalized velocity. Generalised
velocities are defined as the time derivatives of the generalized coordinates of the system.
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An example of a generalized coordinate is the angle that locates a point moving on a circle. The
term generalised distinguishes parameters from the use of the term coordinate to refer to Carte-
sian coordinates. For example, we normally describe the location of the point on the circle by
(x,y) coordinates in the cartesian coordinate system. But this is to be remembered that these
coordinates are not independent of each other; they are connected by a relation >+ y? = ri
where r is the radius of the circle. We can specify the location of the point on the circle by a
single parameter, the angle § measured from a pre-defined straight line, called the prime line. The

parameter # here serves as the generalised coordinate of the point on the circumference of the circle.

There may be multiple choices for generalized coordinates that are used to describe a physical
system; the best choice of the set is motivated by the prospective convenience and ease with which
one obtains the solution of the equations describing the system. As these parameters need to be
independent of one another, the number of independent generalized coordinates is decided by the
number of degrees of freedom of the system.

Thus the term generalised coordinates refer to a set of parameter, independent of each other
and used to uniquely and completely specify a system. They are not necessarily the physical
coordinates describing some linear distance. For a system of N particles with position vectors
{F;} = (71, 72, ....7n) with k¥ number of say holonomic constraint relations will have n = 3N — &
degrees of freedom and we neced to choose n number of independent parameters as generalised
coordinates for specifying the system. Let the generalised coordinates be {¢:} = (q1,92,-..,an).
The components of the position vectors for each of the N particles will be functions of the generalised
coordinates expressible as

7-‘.1' = ﬁ(qlvq%"':QH)

The differential of 7; can be found by using the chain rule as,

o7 o7 o . 7
dr; = dy+ —dgp+ ...+ —idg, = —dg;
When 7; has dependence on time, i.e., when 7; = 7i{q1, g2, ..., gn; t) the differential change is given
by
n
or; - 0T
dr; = —tdg; == 2.1.
i ;(aq,-dq’)’L o (2.1.8)

2.2 Virtual Work and Virtual Displacement

2.2.1 Virtual displacement

A mechanical system is said to be in equilibrium if the the resultant i.e., the vector sum of all the
forces acting on it is zero. Under this condition, the position occupied by, or the configuration of
the system at any instant of time is called an equilibrium position or configuration.

We thus see that, consistent with the constraints imposed on it, the system can have several
positions of equilibrium at any given time.
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We can consider the differences of any two such closely separated equilibrium positions at the
same instant of time as the distance or displacement between them. Such displacement, which are
considered have occured without involving a progress in time, is terimed as the virtual displacement.

A virtual displacement may not coincide with any of the actual displacements that a system un-
dergoes during it’s motion. Virtual displacement is an important concept since it allows us to
investigate the conditions under which a mechanical system will be in equilibrium.

So the virtual displacement in a dynamical system is defined as a change in the configuration of
the system as the result of any arbitrary infinitesimal change in the coordinates ér;, consistent with
the forces and constraints imposed on the system at a given instant {. The displacement is called
virtual in order to distinguish it from an actual displacement of the system occurring in a time
interval dt, during which the forces and constraints may be operating.

Virtual displacement in generalised coordinates

Let us consider a system described by n generalised coordinates ¢; ( = 1,2, ........ ,n). Let
us suppose the system undergoes certain displacement in the configuration space in such
a way that it does not take any time and that it is consistent with the constraints on the
system. Then the virtual displacement is defined in terms of the generalised coordinates

as
dri\ . -
ry = (—aqj) 0g;

where dq; are the virtual displacements associated with the generalised coordinates.

2.2.2 Virtual Work

The Virtual work is the work associated with the virtual displacement and is defined as the work
done by a force F' during a virtual displacement dr in a particle. Thus

W = F.67

For a system consisiting of N particles, the virtual work on the i-th particle due to a force F} on it
is defined as

W, = F.6%

And the total virtual work done on all the particles is expressed as

W =) "6Wi=> F.b7
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A comparison of virtual displacement and real displacement

Virtual Displacement Real Displacement

1. Not a change in the coordinates in 1. A change in the coordinates in
the physical space, merely a shift the physical space.
in the allowable configurations.

2. Does not involve any time in the 2. Not instaneous, involves a

change of the configurations. progression in time.
3. Does not represent the true 3. Represents true motion in
motion in the particles. the particles.

4. Associated work done always zero 4. Associated work done may not be zero

It should be noted that as the virtual displacement does not represent any physical displacement and
does not involve any time, the virtual work done by the forces of constraints is always zero. Thus
if f; is the force of constraint on the i-th particle and 87; is the corresponding virtual displacement,
then

> fism =0 (2.2.1)

2.2.3 Principle of Virtual work

The principle of virtual work states that the necessary and sufficient condition for a system to be
in equilibrium is that the virtual work done by all the forces acting on the system is zero. Thus

W = Z Eéfi=0 for equilibrium.

But as the forces acting on any system can be the externally applied (ﬁ ¢} or the forces of constraints
(f) we can write the equation as

Y Fesm Ay fibfi=0 for equilibrium.
2 i

which, on consideration of equation (2.2.1), reduces to

> Frei=0 (2.2.2)
i

Thus the principle of virtual work can be rephrased as :

The necessary and sufficient condition for o system to be in equilibrium is that the wvirtual work
done by all the exterally applied forces acling on the system is zero.
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Generalized coordinates and virtual work

The principle of virtual work states that if a system is in static equilibrium, the virtual work of the
applied forces is zero for all virtual movements of the system from this state, that is, dW = 0 for
any variation 7. When formulated in terms of generalized coordinates, this is equivalent to the
requirement that the generalized forces for any virtual displacement are zero.

In order to establish this, let'us consider that the force F‘; acts on j-th particle (position vector r;)
of a system consisting of V particles. Suppose that the system has n number of degrees of freedom.
The virtual work generated by a virtual displacement from the equilibrium position is then given
given by

§W =) F; .07 (2.2.3)

N 87 v
575 = =28q, + =g + ... g
Zal U e LR el

and hence

N AY ,\7 -
W = Z Jgi) oq1 + ZF,—.% dgo 4 oo + ZFJ_J 5qn
8

Il
3
/"-_-"'b,\ /.._-‘\
3 M=
L?.‘T'
15
=2
8

=1 \j=1
nN - 33’-‘} nN
= bt ) 6a =) Qdq (2.2.4)
1,7 q“ i=j
where
Q;=F; or; (2.2.5)
F Jlath L

The left hand side of the equation has the dimension of work and so also has to be on the right
hand side, i.e., Q;0¢; has the dimension of work. Since the right hand side is a product of Q; and
the generalised virtual displacement d¢;, the quantity ; must be identified with generalised forces
acting on the system. It is to be noted that ¢J; need not have a dimension of a force just as the
generalised coordinates does not need to have a dimension of length. The only requirement on @;
and dq; is that their product must heve a dimension of work.

2.2.4 D’Alembert’s principle

The principle of virtual work can be extended to cover mechanical systems in motion. Named after
the discoverer Jean le Rond ID’Alembert, a French physicist and mathematician, the D’ Alembert’s
principle, is a statement of the fundamental classical laws of motion and is the dynamic analogue
to the principle of virtual work for applied forces in a system.
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Let us suppose an applied force E. acts on a particle { of a system prpducing in it a momentum
7:. We may then write the equation of motion for the particle as F; — 5; = 0, and assume that the
particle is in equilibrium under the joint influence of the applied force F; and a reverse effective
force 7; acting along the direction opposite to that of F:. The reverse effective force is also known
as the kinetic reaction. Thus, the consideration of the principle of virtual work under the action of
these joint forces can then be written as

D (B~ ). =0 (2.2.62)

Y Fbi=0 ' (2.2.6b)

Equation {2.2.6b) is the statement of the principle of virtual work for the case of the resultant force
F. We see that the principle can be applicable for the case of a moving system. This extcnsion of
the principle of virtual work to the case of a moving system is known as the D’Alembert’s Principle.

The principle states that the total virtual work done by sum of the forces acting on a system of
particles-and the kinetic reaction time derivatives of the momenta of the system itself along any
virtual displacement consistent with the constraints of the system, is zero.

We can ignore internal forces, as these occur in pairs, and decompose the force into an applied force
Fe and a (holonomic) constraint force f;. Considering the fact that constraint forces does not do
any work, the D’Alembert’s principle can be rewritten as

SO ~5) = S| - mii)| =0 2:21)

2.3 Lagrange’s equations for holonomic constraints

Consider a dynamical system with N particles, the mass and position vector of the i-th particle
being m; and 7}, respectively. Let the system moves under a set of applied forces, the force Fi,
being applied to the i-th particle and so on. Further the forces are assumed conservative such that
they can be expressed as the gradient of a scalar potential energy function V({7}) :

}*:';' = —6’£V

where V; = ;613', + }—6%; + I::% is the gradient in reference to the i-th particle.

To describe this system we would apply the priciple for dynamical equilibrium, ¢.e., the D’Alembert’s
principle, which avoids the forces of constraints and requires only the number of degrees of freedom.
We assume here that the N-system is under & number of holonomic constraints. The degree of
freedom is therefore n = 3N — k. This means we need n generalised coordinates. Let the generalised
coordinates be {¢;} = {¢1,4¢2,43,...,¢x). Thus the expression of virtual displacement in terms of
these generalised coordinates is written was

57 = g” 8q; (2.3.1)
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. O . ) . . .
_ where the term like ——6¢ will not appear in the expression because virtual displacement does not

involve any time. The actual displacement, of course, is dependent on time and gives rise to the
concept of velocitiy which we know is the rate of change of the position vector over a time, i.e.,

G =7 = Z a""* g ‘9"* (2.3.2)

We now transform the ID’Alembert’s principle in generalised coordinates. The first term is the
amount of virtual work in the system. (Recall the steps leading to equation {2.2.5)). We write the

first term as
STRaR = Q40q (2.3.3)
i j

Next we wish to rewrite the second term of the principle in terms of the virtual displacements of
the gneeralised coordinates. So, the term is

ShR=3 %_(mimﬁ
Gk
-5 Homiy 3 2
. 8
_ %: (mia.g;'—;) 8q; (2.3.4)

We rewrite the term within the bracket of equation (2.3.4) above, which is the coefficient of dq; as

the following: NN . o5 i /or
i T . i I T
= ol 7, - mF— | — 23.
Z. (m'r' af}j) Z‘: [di (mm 5‘!};‘) T (f%‘)] (235)

H

.a

Using Equation {2.3.2), we can interchange the order of differentiation in the last term of the
equation (2.3.5) as the following:

( oF; ) Z %7 i dzﬁ
dq; dy; aqk an- ot
_ 3?‘,‘

= —t 2.3.6
da; ( )

This expression shows that while differentiating the position coordinates, one can interchange the
order of differentiation with respect to the generalised coordinates and time.
Further, differentiation of the (2.3.2) with respect to 4; yields

or; o

o _ o (2.3.7)

dg;  dg;

We now substitute the resulis of equations (2.3.6) and {2.3.7) into equation {2.3.5) to get
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_a (?_32) _or (2.3.8)

1 : .. .
where T = Z §mi|ﬁ]2 is the total kinetic energy of the system of N particles.
:

We are now in a position to write down the D’Alembert’s principle after full conversion in terms
of generalised coordinates and generalised velocities. Combining equations (2.3.8), {2.3.4) and
recalling the expression for the generalised forces (2.2.3) and (2.2.4), we write the D’Alembert’s

principle as
d gr JaT
> |(@m - 3) -9 o (239)

Now since the generalised coordinates chosen for a system are always independent of each other,
the corresponding virtual displacements dg; in the generalised coordinates are also arbitrary. The
only way the right hand side becomes zero is to consider each of the bracketted quantity in the
sum will be separately zero, i.e., we must have, for any value of 7,

aiT Ay, (2.3.10)

This set of n equations is called Lagrange’s equations. Note that while deducing (2.3:10) we have
not used any specific property of the applied force, viz, whether the force is conservative or non-
conservative. So (2.3.10) will be equally valid for both conservative and non-conservative forces.
However for the case of the conservative forces, the force vectors can be derived from potential
energy function V. We can write the cartesian components of the force on the i-th particle as,

Further, we consider that the potential energy function V is a function of position, (7; or ¢;) and
is not dependent on velocity (7; or ¢;). Hence the expressions for the generalised forces will be as

‘—Z OV Bz OV By; 8V Bz
th 8qj Byi BQj 82,;_6(;3'

=2 (2.3.11)
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As the potetial energy function is considered not dependent on velocity, we have gﬁ =0
aj

Therefore the form of the Lagrange’s equation under conservative force field is given by

dAHT-V) T -V)

dt  9g; dy; =0
d oL 3L '

where L = L{g;,q4;,t} = T —V is called the Lagrangian function for the system. The equation
(2.3.12) is known as the Lagrange’s equations of motion for a conservative holonomic system.

Note:

1. Lagrange’s equation of motion is an equation on the scalar L whereas Newton’s equations of
motion is dependent on vector quantities in 3-dimensional space, which can be broken down
to three equivalent scalar equations-in its components.

2. Deducing Lagrange’s equations from D’Alembert’s principle actually uses the Newton'’s laws
of motion. Therefore, the resultant equation, i.e., the Lagrange's equations for a system will
be equivalent to Newton'’s laws of motion. Thus we see,

d 9L  dL

&35, = 9g,

which is same in the form with the Newton’s second law of motion in the say, j-th component,

d

- P =1F5
where p; and Fj are the j-th component of the momentum and force respectively. Comparison
of these two equations serves to generalise the the concept of momentum and the force. i.e.,
the term B_J is the equivalent momentum term known as the j-th component of generalised

45
momentum or canonically conjugate momentum or simply conjugate momentum. Similarly
the equivalent force term 5o is known as the conservative generalised force.
45

2.3.1 Cyclic coordinates and conservation laws

An important property of the Lagrangian is that it is easy to read off the conserved quantities
or the conservation laws present in the system. Suppose a particular generalised coordinate, say
¢; does not appear in the expression of a Lagrangian L, then the latter does not depend on the
particular coordinate ¢;. Then the corresponding generalised momentum is

c, 2 9L
P= B

Writing the i-th component of the Lagrange’s equations in terms of p; we find that
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gL

= _— =, = p; = constant in time.
d4g;

Di

This means, the i-th component of the generalised momentum is conserved. Thus, it is easy to
see which generalised coordinates do not appear in the Lagrangian and figure out the correspond-
ing generalised momenta to be conserved guantities. Such coordinates are called cyclic or ignorable.

For example, the conservation of the generalised momentum, say,

oL
b2 ale7)

can be directly seen if the Lagrangian of the system is of the form

L(QI:QS:Q‘M' . -;fflsfo:ffS:(H:---Et)

Numerical examples

Example 2.3.1 Find the Lagrangian the the Lagrange’s equation of motion for e simple pendulum,
for o small amplitude of oscillation.

Solution:

Let the pendulum oscillate in the surface gravity of the earth in the z = 0 vertical plane of the
cartesian coordinates, with the x-axis placed horizontal, y-axis vertically up and the origin being ot
the poinl of suspension. Let g be the acceleration due to gravity, m the mass of the bob and ! be the
length of the pendulum. The system can be described by a single variable 8, the angle made by the
thread in any given instant, with the vertical y-axis. Therefore, the degree of the system is 1 with
8 chosen as the generalised coordinate.

We write the coordinates of the mass at any given instant in lerms of the generalised coordinates
as 7= (lsind,—lcosf) and the components of the velocity as 7= (lcos08,1sin89).

The kinetic energy of the system is then given by
1 . 1 . . 1 .
T = §mlf‘]2 = §m(£26‘2 cos® 0 + I%6%sin? @) = -2—1113292

Considering the horizontal line passing through the point of suspension of the pendulum as the
reference of zero potential, the potential-energy of the system is

V = —mglcosf
Thus the Lagrangion of the system is
1 .
L=T-V= -2-ml292 + mglcos @

so that
JL aL

— = —mglsing, 29 = mi%g

a6
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The Lagrange’s equation of motion is then given through

4 (LY 0L,
dt \ 99 00

d .
or, % (m!QG) + mglsinf =0 K
or, 6+ % sinf =0

This is the equation’ of motion of the pendulum for an arbitrary amplitude of oscillation. If we
consider the pendulum for small amplitude, the angle 8 must be small enough so that sinf ~ 8. So
the corresponding egquation of motion will be

9’+%6=0

Example 2.3.2 Deduce the equation of motion for an Atwood maching by using Lagrage’s equa-
tions.

Solution:

An Atwood maching a system of two masses, say my and my connected ot the ends by a light inez-
tensible string of length | and the length passes over a frictionless pulley of negligible weight. The
masses hang-from the pulley under the surface gravity-of the earth.

It is observed that the motion of the masses are not independent, they are related through the string.
Hence the degree of freedom of the system must be 1. Consider I-dimensional coordinate frame with
its azis (say w-axzis) vertically downwards for positive coordinates and the origin be at the pulley.
So, this coordinate be taken as the generclised coordinates for the system.

Let the coordinate of the mass mny be x. Then the coordinate of the mass mo must be | — x.
The corresponding velocity of the masses will then be  and —& respectively.

The kinetic energy of the system is then the sum of the individual kinetic energies of the two masses,
t.e.,

1 1
T = §m1:i:2 + §m2:~;:2 = -2-(m1 + mg)&?

Considering the horizontal line through the pulley to be the reference for zero potential, with +ve
values upward and -ve values downward, the gravitational potential energy of the system is

V = —migz — mag(l — z) = —~(m; — mp)gz + magl

Hence the Lagrangian of the system is given by

L=T-V = =(m +my)i® + (m1 — ma)gz — magl

1
2
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so that
8L oL .
i (m1—ma)g ; —= = (M1 + me)gz

O
The Lagrange’s equation of motion is then given as,

4oLy _oL_,
dt \ 0t ox

or, (mi + mo)gE — (M1 —ma)g =0
or, : (my —mg)
(m1 + ma)

which is the equation of motion for the masses in the Atwood machine.

Example 2.3.3 Use Lagrange’s equation to find the cquations of motion of o compound pendulum
in o vertical plane about a fired horizontal azis.

Solution:

Let the compound pendulum be suspended from a point S with C as a center of mass and ezecute
oscillating motion in a vertical plane.

It’s moment of inertia about the azis of rotation through the point S is given by ¢

I=I+MP=M(K*+ 1)

Here the mass of the pendulum is taken as M. The term I, = MK? is the moment of intertia of
the pendulum about an axis passing through it’s centre of mass C, K is the radius of gyration about
a parallel azis through the cenire of mass and 1 is the distance between center of suspension and the
center of mass.

Here the degrees of freedom is 1 and so we take 0 the instantaneous angle, which the line joining S
and C makes with the vertical exis through S, as the generalised coordinate. The kinetic energy of
the compound pendulum oscillating in the given vertical plane is

T= %rf# = %M (K% +1%) 62

We take the horizontal plane through S as the reference for zero potential and find the potential
energy of the pendulum as V = —Mglcos@.

The Lagrangian is then

1 .
L=T-V=:M (K? +1%) 62 + Mgl cosd

Therefore,

AL . dL 2 12y 4
= -Mgl : — =M(K"+17)8
59 Mglsing Y (K% +17)
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Hence the Logrange’s equation in 0 coordinate is
da(oLy_oL _
dt \ 9 08
Therefore, %M (K2 + !2) 6+ Mglsinf = 0
; gt g =
6+(K2+£2)sm9 = 0

This is the equation of motion of the compound pendulum. If 8 is small, then sinf ~ 0, so the
equation of motion will reduce {o,

Example 2.3.4 Find the equation of motion of e spherical pendulum using Lagrange’s equations.
Solution:

Here,
z =1sinfcos¢
y=Isinfsin¢
z=1cosf
Then

& = lf cos B cos ¢ — M‘Jsinﬁsinqﬁ
i = l@sing + lésin @ cos ¢
z = —Isingf

Therefore, the kinetic energy is given by

1 . . . 1 . .

S 2 2 2N — 202 (g2 2 oind
T.—Qm(m +y +z) Qmi (9 + ¢ sin 9)
and the polential energy is given by
V = —mglcos{m — 8) = mglcost

Therefore the Lagrangian s formed as

L=T-V= %mi2 (92 +d;25in28) — mglcos 8

Now, the equation of motion for 0-co-ordinate is

d(oLy_oL_,
dt \ 96 8g - .

= mi%8 — mi?$?sin 6 cos § — mglsing = 0 {A)
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and the equation of motion for ¢-coordinate is

i(ﬁ&)_aL_o
dt\ag) 8¢

= mi2¢sin? 8 + 2mi%0¢sin fcos § = 0 (B}
Equations (A) end (B) are the equations of motien for a spherical pendulum.

Example 2.3.5 A bead slides on a wire in the shape of an upright cycloid described by the equations
z = a{f — sinf)
y=ua(l+cosf),

where 0 < ¢ < 2n. Find the Lagrangian function and the equation of motion for the bead.

Solution:
Given that the path of the bead is represented by the equations

z=a(f —sinb)
y=a(l+cosf) '

The kinetic energy T of the bead is given by

. N2 N2 . .
T= %m (#2+4°) = %ma2 [(9 — €08 99) +a? (— sin 99) ] = %mazfﬂ (2 - 2cos8) = ma®62(1-cos )

The potential energy of the bead is given by
V = mgy = mga(l + cos6)
The Lagrangian is therefore,
L=T-V = ma%? (i - cos9) — mga (1l + cosd)

from which we have

i{'- = 2ma®f (1 — cos )
o8

oL
a6
The Lagrangian equation or equation of motion for the bead is

4 (oL oL
dt \ o6 80

= ma®62sin 6 + mgasin 8

d 24 249 : —
= = {Qma 8(1 — cos 9)} (ma 6% sin ff + mgasin 9) =0
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= 2ma”f (1 — cos8) + 2ma’f sin 6 — ma®62 sin 6 — mgasind =0

or, 9(1—cosﬁ)+lésin9—isin9=0
2 2a

which is the required equation of motion.

Example 2.3.6 Derive the equation of motion for a particle moving under central force. Find the
form of the equation when the particle moves under an attractive inverse square law of force whose

magnitude is given by
k
F=-—
( ?‘2 )
Solution:

Whenever the particle moves under a central force, the force has to be conservative and the motion
must be confined to a single plane.

Let (r, 0) be the plane polar coordinates of the particle of mass m.

The kinetic energy for the particle is,

T = %m (.,.'2 + rzﬂé)
~
Hence the Lagrangion is,

L=T-V= %m(?‘z + 7201 ~ V(r)

where V{r) is the potential energy in the central force field.
We find

T, .
3— = mrf? — @, oL = nr,

ar or E e

aL dL
= = 0,

Hence Lagrange’s equation of motion for the r-coordinate is

afoLy _oL_,
dt \ 9% ar

. OV

s 92 A

= mi = mré* + B 0 (A4)
and for #-coordinates, it is

d(oLy_or_,

dt \ 59 o

d 9/

== T (mr 8) =

or, 4270 =0 (B)
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av k
Now, from the given form of the attractive inverse square law force, we hove F = 5 =@
therefore (A) reduces to,
. L
mit — mré? + ol 0 (C)

Equations (B) and (C) are the required equations of motion.

2.3.2 Summary

This unit of study has been associated with the discussions on the technical limitations in the use
of the Newton’s laws of motion. The presence of the forces of constraints in the dynamical systems
constitute the prime cause of the said incoveniences. We have studied the characteristics of these
constraints, its types and tried to see how constraints cause the difficulties in the use of Newto-
nian dynamics. For holonomic systems the limitations can be addressed through the use of the
generalised coordinates and the introduction of virtual displacement and virtual work, along with_
the principle of virtual work to finally write down the equations of motion which are free from the
forces of constraints. We donot need to know the forces of constraints apriori. This results in the
development of an alternative formalism to tackle the dynamical problems, called the Lagrangian
formalism, where the key parameter of motion is a scalar quantity called the Lagrangian. The equa-
tion of motion is a set of differential cquations in the Lagrangian unlike the Newtonian formalism
which requires the involved forces to be known, including the forces of constraints. Moreover in the
Lagrangian formalism, the coordinates do not limit themselves only to the dimension of physicai
length - any free parameters of the system can serve as the coordinates, thus befitting the name of
the generalised coordinates. The cyclic coordinates in the Lagrangian is directly helpful to count
the number of conserved quantities associated with the motion.

Self study questions:

1. What are constraints? How do they affect the motion of a system? Explain the nature of the
constraint forces with examples.

2. Distinguish between the holonomic and nonholonomic constraints, scleronomous and rheonomous
constraints. Cite examples for each category of the constraints.

3. What are the degrees of freedom and the generalised coordinates? Explain the advantage of
their use. Can the charge flowing through an electrical circuit be considered as generalised
coordinates? Explain.

4. What are virtual displacement and virtual work? State and explain the principle of virtual
work. Extend this to deduce the D'Alemberts principle.

5. Use D’Alemberts principle to deduce the Lagrange’s equations of motion in the case of a
conservative force and analyse the motion when the Lagrangian is an explicit function of
time.

6. What is a cyclic coordinate? Explain the use of cyclic coordinates. Write down the conse-
quences when all the generalised coordinates of a given Lagrangian are cyclic.
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7. Write down the Lagrangian for a mass m in projectile motion with the initial velocity ug

projected with an angle & made with the horizontal and use the Lagrange’s equations to
write down the equations of motion for the projectile.

8. Deduce the equation of motion for a simple pendulum of length ! and the bob mass m whose
point of suspension is moving horizontally with an uniform velocity of magnitude u.
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UNIT 3

Lagrangian Formulation of
Dynamics-11

Preparatory inputs to this unit

1. Ptoblem solving skills in dynamical problems using Lagrange’s equations (Preceding
materials useful).

2. Maxwell's equations: The basic equations of electromagnetic theory.

5
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3.1 Lagrange’s équations for Velocity Dependent Potential

We have already seen in the preceeding chapters that while deriving the Lagrange’s equation of
motion, the associated potential energy is a function of the distance between two locations, and
not on the actual path traversed by the particle. Nor the corresponding forces and the potential
energy is a function of time or velocity. Such a force is called a conservative force. For a non-
conservative system the equation of motion in general cannot be written in Jterms of Lagrange’s
equation of motion. But in some special cases, it is still possible to write down the equations in
terms of Lagrange’s equations of motion and hence obtain an analytical solution.

Let us assume that the generalised forces Q; can be written in terms of a scalar function U{g;, ¢;),
a function dependent on velocity term ¢ apart from the distance ¢, as the following:

Q.—_Q{i_{_i(a_br
37 T 8q; T dt \ 84

Then the Lagrange’s equation of motion for the total kinetic energy T can be written as

2 () o w4 )
dq; de;  di 3%‘

_ ad_(a(T_—U))_a(T~U)=O

t aq; Bq;
_,dfoy_ar_,
dt aqj 0(}j -

where L =T — U is the corresponding Lagrangian for such a system. The scalar function U(g;, ¢;)
is called a velocity dependent potential

One example of such a potential is found in electrodynamics, where Maxwell equations are the
governing equations of motion for electric charges and related electromagnetic fields:

- - 8B -

VXE-f-E—»U, VD—-,O R
. . 8B - - *
VXH—E—, V.B=0

Here £ and B are the electric and magnetic fields generated through a free charge density p in
motion, .J being the corresponding cwrrent density, and D and H are the electric displacement
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vector and the Magentic induction respectively. A free charge ¢ moving in such electromagnetic
fields with a velocity, say ¥ will experience a Lorentz force F' given by

F=qgE+q(@x B).

This system is a non-conservative onc and the charge ¢ experiences a force which is dependent on
velocity.

— —

As V.B = 0, we can write the magnetic field as a curl of a vector function A, e, B=VxA4,
where A is called the magnetic vector potential. We can then write

ot at
=  E+3=-9

. - 84
or, E——qu—a

where ¢ is the electrostatic scalar potential function. The expression for the Lorentz force then
reduces to

The z-component of the Lorentz force F is calculated as

8¢ 0A, . o =
szq[—ﬁ—- 5 +(-ux(VxA))x]

Now, we know that
dA

d
L= 4 =
dt - thJ:(:B:y:Z:t)

0A; | BAgdz  BAsdy  0A;dz
at dr dt dy dt = Oz dt
_0A; | 0A; OAx DA,
" + oz * oy T h;

Uy
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and therefore,

(T % (V x A))z = 1,(V x A); — v,(V x A),

_ o, (04 _0A:\ _ (0Ar 0A.
W\ oy ) "\ 8z T oz

0A,  0A,  OA, 0A,  0A,  JA,

Vg Ty tUgy TVa W dy ~ %8
d,.~ dAy 0JA;
—E(U.A)—-E'i‘ at

The expression for the z-component of the Lorentz force then reduces to

_ [ 9 0A. 9, . dA, 0
F’"q[az 7 ta" A dt+8t]
) d{8 _
=‘f[*(¢"“‘)-a($(“ ))]
__ W _dau
T Br diOvu,

where U = g¢ — qf;'.ff . The electrostatic potential ¢ is in general independent of velocities.

From the above discussions we see that U is a form of generalised potential independent of velocities
and hence we can write the corresponding Lagrangian for the charged particle as

L=T—q¢+qv.A

3.1.1 Conservation theorems and symmetry properties

We have so far seen that in case of a dynamical system one can frame the equations of motions
in different formalisms- Newtonian formalism, Lagrangian formalism etc. Newtonian formalism
requires the external applied forces to be completely specified, whereas the Lagrangian formulation
requires the information about the kinetic energies and the potential energies for development of
the equations of motion. These equations of motion are in general 2nd order differential equations
with n number of degrees of freedom. So integration of such equations will involve 2n number
of constants of integration, which are determined from the initial conditions. Many a times, the
equations are not integrable and hence are not amenable to analytic solutions in the closed form
or in termns of known functions. In case of the equations being nonlinear differential equations, no
general methods are available to solve them. Under such circumstances, studying some properties
of the differential equation itself and extraction of some information about the dynamical system
will help in the understanding of the system to a considerable extent. Therefore, it becomes imper-
ative to look Into the properties of the differential equations and relate them with some information
of the system such that maximum can be stated about the system without actually requiring a
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complete integration of the problem.

In many problems it is possible to reduce the dynamical equations into the so called first integrals,
i.e., of the form '

f(‘h:@'?: “'}andl)(}Z: "':qlﬂ:t) = constant, (311)

which are nothing but first-order diffential equations. The advantage of this type of reduction is
that many conservation laws in connection of the system are actually in this form, as we have
already seen in the case of Newtonian and Lagrangian formalisms.

To elaborate the point, we consider a system of mass points under the influence of forces which are
derived from some scalars called potentials, depending only on position. We can then write

OL _ T oV 9T _ 3 ~1,2. 2 .o
o1, ~ 0%y 8ig_8ii_8i522(z‘:+y"+zi)

13

Here pj. is the z component of the linear momentum associated with the i-th particle of the system.
This expression actually serves to define the concept of momentum in morc general sense. Thus
the generalised momentum, also know as cenonicel momenium or conjugate momentum associated
with the generalised coordinate ¢; is the defined as

AL
Pi= B

It is relevant to note here that just as the generalised coordinates need not have the dimension of
length, the canonical momentum also does not necessarily have the dimension of momentum.

Now, if the Lagrangian of a system does not contain a particular generalised coordinate, say g;, then
the coordinate is said to be cyclic or ignorable. The Lagrange’s equation of motion corresponding
generalised coordinate is then

doL_ oL _
dtdq; g
reduces to
dor
dt dg;
or,
dp;

e _ (3.1.2)
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which implies p;=constant.

Hence we can state as a general conservation theorem that the conjugate momentum corresponding
to a given cyclic coordinate is conserved, or a constant of motion.

Equation (3.1.2) is in fact a first integral of the equations of motion of the form as given by (3.1.1).
The first integrals can be utilized for elimination of the cyclic coordinate from the problem, which
can then be solved entirely in terms of the remaining generalised coordinates.

If a coordinate corresponding to a displacemnet is cyclic, it means that a transiation of the system
along the cyclic corrdinate does not have any cffect. on the dynamics of the system. That is, if the
system is invariant under translation along a given directin, the corresponding linear momentum
is conserved. Similary, if a coordinate corresponding to the rotation of the system is cyclic implies
that the system must be invariant under rotation about the given axis. Thus we can see that the
momentum conservation theorems are intimately connected with the symmentry properties of the
system. If the system is spherically symmetric we can say without much reflection that all the
components of the angular momentum are conserve. Or if the system is symmetric only about the
x axis, then only the = component of the angular momentum L, will be conserved and so on for
the other axes. These symmetry considerations can be extended beyond to include complicated
problems to determine by inspection whether certain constants of the motion exist.

As an example we consider a general Lagrangian corresponding to a system, L(gj,¢;,t) which is a
function of the coordinates ¢; and the velocities ¢; and may also depend explicity on the time. The
total time derivative of such a Lagrangian is then

dL _~(dLdg; BLdj;\  OL
dt 2 (6‘%‘ a " d4; dit T 5 (3.1.3)

J

We can use the Lagrange’s equations

or,
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We can write this as

d . OL aL
- qu_a—(};_‘b +§t- =1{ (3.1.4)
M

We denote the quantity inside the parenthesis as H, called the Hamiitonian function,
. OL
H= ZQja—. ~- L.
~ " Di;
J
With this, (3.1.4) can be written as

dH 8L .
Tl vy (3.1.5)
This expression suggests that if the Lagrangian is not an explict function of time, t does not
appear in the expression for L explicitly but only through the time variation of ¢ and ¢, then
equation (3.1.5) is a conserved quantity of the motion. In fact, in the dynamical problems, where
the generalised coordinates does not involve the time explicitly and the potential energy does not
depend on generalised velocity and time, the function H can be identified as the sum of the total
kinetic energy T and total potential energy V, or the total energy E,

H=T+V=E,

i.e., the total energy is a conserved quatity.

3.2 Lagrange’s multiplier for holonomic and nonholonomic sys-
tems

3.2.1 Lagrange’s Undetermined Multipliers

If a physical system is constrained in its motion then its degrees of freedom are reduced. We use the
equations of constraint to eliminate dependent variables and we work with a new set of independent
variables. Sometimes it is difficult or inconvenient to remove these dependent variables. Under these
circumstances use of Lagrange’s multipliers gives an alternative technique to solve the problems.
Consider a simple case of a function f = f(z,y, z) of three independent variables. The function f
has an extremum value when

df =0 (3.2.1)

Since

_of, . of, . 9Of
a_&w+%@+&m (3.2.2)

so for df = (} the necessary and sufficient conditions are

af _af _of _
3% 3y =0 (3.2.3)
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Let the equation of constraint be
9(3:, Y, z) =0 (324)

D a ad
dg = édm + %dy + ﬁdz (3.2.5)

Because of equation (3.2.4) of constraint, condition {3.2.3) is no longer valid since there are now
only two independent variables. If there are z and y, then dz is no longer arbitrary but will be
related to changes in o and y. Multiplying (3.2.5) by A and then adding with (3.2.2) we get

df + Adg = (?+Aa$)dm+ (%Jr,\a )dy+ (ng“’\az)d
=0 (3.2.6)

The multiplier A can be chosen by setting

af
5+ N 8z =0 (3.2.7)

where we assume that gg is non-zero. Now using equation (3.2.7) in equation (3.2.6) we get

af af _
(6 F A= )d:c+(a—;+,\6v})dy—»0 (3.2.8)
Since x and y are independent, their coefficients must vanish. Hence
of
™ + /\655 0 (3.2.9)
f
=0 2.
Oy By (3.2.10)

Thus when equations (3.2.7) and ((3.2.9),(3.2.10)) are satisfied we get df = 0 or f has an extremum
value. Now we have four variables x, y, z and A and three equations (3.2.7), (3.2.9), (3.2.10). The
fourth equation is actually the equation of constraints. Since in the solution we want to know
only z, y, and z, the multiplier need not be determined. For this reason, it is called Lagrange’s
undetermined multiplier.

3.2.2 Application of Lagrange’s Undetermined Multipliers
Particle on Sphere

Let us consider a particle of mass m moving under the action of gravity on the sueface of a smooth
sphere of radius [.

We shall find its equation of motion and the angle f, at which the particle flies off from the surface.
Let the origin of the co-ordinates be at the center of the sphere and let the z axis be vertically
upwards.

In this case, the equation of the constraint is given by

r—1=0

where r is the radial distance of the particle. From this we obtain, dr = 0. Hence, the co-efficients
in the equation of the constraints are ar = 1, ag = 0 = a¢. Let us suppose that the particle is
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initially at rest and let it slide down along the surface. The particle will obviously move in a vertical
plane which we shall take for convenience ® = 0. The kinetic and potential energies and hence. the
Lagrangian for the particle are respectively ’

AS

T = %m (1“2 - 7'292)

V = mgrcosd

L=T-V= —l-m (7"2 - T26"2) — mygr cos #
2

The Lagrangian equations in z and 8 are

4oL _ oL _
dt or  Or
= — mif? + mgcosf = A (3.2.11)
) d 8L OL
a.nd Ez'gé - % = 0
=mi?f — mglsing =0 (3.2.12)

where we used r =1 and ¥ = # = 0. The undetermined multiplier A is dependent on # in general.
Differentiating equation (3.2.11) containing A with respect to time, we get

dx(B) _ d);

—2miff — mgsinff = 7 20

Using the value of # from equation (3.2.12) we get

—3mgsinf = %
Integrating we get
A(@) = 3mgcosf + ¢
At 8 =0, X =mg, this being the force of constraint at the top of the sphere. This gives
¢ = —2my
Hence,
A(6} = 3mgcosf — 2mg

The particle will move on the surface as long as the force of constraint is positive, i.e., as long as
the surface pushes it outward. Corresponding condition is

A(f) = Imgeosf —2mg > 0
This equality holds for

cosl, = —

3

i.e., at the angle 0. cos™! % the particle flics off the surface. Here we have neglected the force of
friction.
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3.2.3 Dynamical problems with Nonhclonomic constraints

We know that if a system is under nonholonomic constraints, i.e., the dynamic variables are either
not related through equality sign or depends explicitly on the velocity terms, then the problem
needs to be takled differently and we cannot straightway use the Lagrange’s equations. Lagrange’s
equations were derive under the condition that the constraint relations are holonomic.

When nonholonomic constraints are related by inequality sign, the corresponding co-ordinates are
only restricted, but does not eliminate. In case of nonholonomic constraints depending on velocities,
the constraint relations reduce to differential form. In either case, the introduction of non-holonomic
constraints does not reduce the number of independent coordinates required for description of the
system, whereas the degrees of freedom is reduced. This is unlike the case for a holonomic system
where degrees of freedom decides the required number of independent coordinates for description
of the system. Thus for a system of N-particles under & number of holonomic and k&' number of
non-holonomic constraints, the number of degrees of freedom is n = 3N — k — &’ and the number
of independent coordinates required is n + k.

If all the nonholonomic constraints are connected by

&= 9;‘(‘1’11 g2, -y Qb fjl:é2: "'én+k"s t) =0

where i = 1,2,....k". Given the form of nonholonomic constraint, it is possible to write down the
generalised forces of costraints by the use of what is called Lagrange’s undetermined multiplier as

(QJ Z A 091

where A; are the Lagrange’s undetermined multlpllers. Thus if the lagrangian for such a system
involves the velocity independent potential, i.e., L = T'— V, then the Lagrange’s equations for both
holonomic and nonholonomic constraints can be written as

d 9L 0L

@35 Bg (Qj)e

or,
d oL 691
dt 8¢; ?——; E?qJ

On the other hand, sometimes constraints are expressible as a linear relations connecting differ-
entials of generalised coordinates or time. Suppose there are ! such relations expressible in the
following form

> audgy + aqdt = 0. (3.2.13)

Under such circumstances, the use of the method of Lagrange’s undetermined multipliers yields the
complete set of Lagrange’s equations for the given nonholonomic constraints as

__ — _ —_— ZAE(HJ" j = 1,2: ,.."”, (3-2-14)

Here n is the degree of freedom of the system.
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Numerical Examples

Example 3.2.1 Consider a hoop of mass m and radius v, rolling without slipping, down an inclined
plane. Find the equation of motion.

Solution:
For. describing the motion of the hoop down the inclined plane without slipping, we need two gen-
eralised coordinates, =, 8 (see figure bleow)

The no slip condition on the hoop tmplies

rdf = dx (3.2.15)

As the hoop advances down the inclined plane, the total kinetic energy of the hoop involves two
terms: one due to kinetic energy of motion of its centre of mass down the inclined plane and the
other, the rotational kinetic energy due to its rolling:

R IR Sy
T—2mx -!-21’?11’9

The potential energy is
V =mg({l — z)sina,

where ! is the length of the inclined plane with a as the angle of inclination. The Lagrangian of the
system is then given by

L=T-V

= %m (5:2 + r2€'2) —mg{l — z)sina

As there is only one constraint relation {3.2.13), we need only one undetermined multiplier, say X,
The coefficients of the differentials of the generalised coordinates are then

ag=r

ay = —1.

Thus the Lagrange’s equations corresponding to the two generelised coordinates x, 0 are
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mi —mgsina+ A =0, (3.2.16)

mr?f —Ar =0 (3.2.17)

The constraint relotion (3.2.15) can be written as
=i

Differentiating this with respect to time,
rEL = .

Hence the Lagrange’s equation (3.2.17) reduces to
mE = A

and (3.2.16) becomes

¥ = —gsin
T 29 @

Sfrom which
A= lm sin o
= 2 _g
and
j=9 sin o
2r

" Thus we see that the acceleration with which the hoop rolls down the inclined plane is only one half
of that we would expect if the hoop had slipped down a frictionless plane, and the friction force of

constraints would be A = Emg sin .

Example 3.2.2 Deduce the equation of motion for a particle under the action of gravity, moving
on a frictionless surface on a sphere.

Solution

Let us consider a particle of mass m, which is kept on a frictionless spherical surface of radius r,
and allowed to move under the action of gravity. We choose spherical polar coordinates (r, 9. $) to
describe the dynamics, where, @ is the angle in the vertical plane and ¢ is the azimuthal angle, the
angle in the horizontal plane. We consider that the particle moves on the surface in the vertical
plane under gravity so that the motion along ¢-direction need not be considered,

The Lagrangian L of the system is then given given by

1 X
L = —m(r? + r26?

5 ) — mgrcos @

As the particle moves on the surface, we have dr = 0. So, we have the coefficients of the constraint
equation as ar =1, «g = 0. Moreover, we have 7 = 0. Therefore, the Lagrangian can be rewritten
as,

L= %mrg.é?) — mgr cos f
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The redial port of the Lagrange’s equation will be

d oL 8L A
dor o
= —mré® +mgcosd = X

Here X is the Lagrange’s undetermined multiplier, supposed to be dependent on the coordinates,
which is 8 here. Now, differentiating w. r. L. t, we have

didf

dé di

aA .

or, — 2mrf — mgsinf = %3 (3.2.18)

—2mz66 — mg sin 06 =

The 8-part of the Lagrenge’s equation will be
d oL 0dL
—— — = =X
dt 99 08

Using the value of ag we rewrite the equation as

% (m129) —mgrsing =0

or, mr?f — mgrsing =0 (3.2.19)-
Eliminating 8 from {3.2.18) and (3.2.19) we have,
—omer (98:"“'9) — mgsind = %%

X
-~

or, —3mgsinf
Integrating this w. 7. t. 8, we get
A= A(#) =3mgcosf+ A (3.2.20)

where A is the constant of integration. At the mazimum height of the particle on the surface of the
sphere, we have 8 = 0 and the force of constraint at this point, A = my. Therefore,

mg = 3mgcos0 + A, = A= —-2mg.
Putting this into (3.2.20), we get
A(#) = 3mgcosf — 2mg

For the particle to continue its motion on the surfoce, the force of consiraint should maintain a
positive value so that the surface always pushes the particle outward, i.c.,

AlB) <0

= 3mgcost — 2mg < 0
. .

== COSGSE

That is, the critical angle 0o, beyond which the particle will fly off, is given by

cosfp = 3
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3.3 Rayleigh Dissipation Function

3.3.1 Introduction

One of the classics of physics literature, this treatise contains a wealth of theorems and physical
illustrations on all of the aspects of vibration theory. Rayleigh himself was responsible for devel-
oping much of the theory, especially the introduction of the dissipation function. His treatment is
smooth-flowing and clear and contains ravely discussed topics, as on the coffects of constraints and
the stationary properties of the eigen frequencies. Rayleigh leans heavily on the work of Routh,
who in his Adams Prize Essay of 1877 and in his text Rigid Dynamics was one of the first to give
a systemic discussion of small vibration.

It can be shown that if a system involves frictional forces or in general dissipative forces,then
in suitable circumstances, such a system can also be described in terms of extended Lagrangian
formulation. We shall now see that how the Lagrange’s equations get modified if the forces are
non-conscrvative and dissipative.

Frictional forces are found to be proportional to the velocity of the particle so that in cartesian
co-ordinates,components are

d s
FJ = _;"J:I‘:J!

where k; are constents. Such frictional forces are defined in terms of @ new quantity called Rayleigh
dissipation function given as

A= % Z kj:rjlz,

e
Fdj = =,
dzj

which yields

Writing the equation g

d(ory_or _
dt an Oqj_ I

in cartesian co-ordinates, assuming that this holds for such a system, we have

d {OL oL
a\a7 ) " 3a =9
dt \ dq; 0q;
where L contains the potential of conservative forces as described in previous cases; Q; represents
the forces which do not arise from potential i.e.,
Q;? = Fjgf
IF
dz;

Thus equation can be written as
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d (aL) oL , 3% _,

Gi\az,) "3z, T og, T

Expressing J; in terms of generalised coordinates, we find

Ox; dz;
d _ d L f
QJ ; Ft 893' ZJ: L:iz qu

= —Z k,'x',-a—zfi— ( because % = Qﬂ:_,)

- dg; dg;  0Od;
8 { 1. .,
8_% {—EEktzt }
__
6(}j

Lagrange’s equations now become

4 (oLy oL o3
di \ 8q; dq;  dg;

Thus for such a non-conservative system,to obtain equations of motion, two scalars L and & are to
be specified.

3.3.2 Summary

We have already seen that the Lagrange’s equations of motion were derived under the assumption
that the constraints present in the system are holonomic and the associated forces are conservative
so that a suitable potential energy function is associated with the force. But the events in the real
life is not confined to above assumptions and nonholonomic constraints and and noncounservative
forces do associate with majority of the phenomena that we encounter. This unit of study discusses
this point in some detail. Starting with some specific examples of the cases where the dissipative
forces under some conditions can also be expressed in terms of potentials, the discussion progresses
to include what is called the Rayleigh dissipative function. The method of Lagrange’s undetermined
multiplier is then discussed along with examples demonstrating how they can be used in real life
problems. Finally using the method of undetermined muitiplier the Lagrange’s equation of motion
has been extended to include the nonholonomic constraints along with the necessary mathematical
deductions.

Self study questions:

1. What are velocity dependent potentials? Explain how the Lagrange’s equations of motion is
modified when dissipative forces are present.

2. Express all the components of the Lorentz force in terms of velocity dependent potentials.

3. Explain the term symmetry in the laws of motion. Establish the relation between the con-
servation laws with the existing symmetry of a given system.
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. Explain the role of Rayleigh Dissipation function.

. What are Lagrange’s undetermined multipliers? Under what circumstances one needs to use

them? Illustrate the points with examples.

. Deduce the form of the Lagrange’s equations of motion when nonholonomic constraints are
agrang

present in the given dynamical system.




UNIT 4

Hamiltonian Formulation of Dynamics

Preparatory inputs to this unit

1. Lagrange’s equations: a critical look on the properties.

2. Basics of Ordinary differential equations.

9
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4.1 Hamiltonian Formalism

4.1.1 Int;roduction

The Hamiltonian formulation which is alternative to the Lagrangian formulation, proves to be
convenient and usefull particularly in dealing with problems of modern physics. No new physi-
cal concept is introduced in this formulation but we get another tool to work on the problems in
physics. We can also obtain Hamilton’s equation of motion for a system with n degree of freedom.
Here is a brief description about the Hamiltonian formulation.

For a system with n degrees of freedom, there are n Lagrange’s equations of motion. Each equation
is a second order differential equation and the solutions of the n equations need 2n constants usually
given by initial positions and initial velocities. The Lagrangian is a function of ¢; and ¢; and the
motion of the system can be visualised in an n-dimensional configuration space.

4.1.2 Hamilton’s Equation of Motion

We know that the Hamiltonian function is related to the Lagrangian function by the equation

H= Zpa‘h - Q: q:: t)

Let the Hamiltonian be expressed as a function of generalised co-ordinates and generalised mo-

menta p; = g;“ i.e., ¢; is replaced by p; in the above expression and

H= H(Qi?pil t)

We want to describe the motion of the system in terms of an equation of motion involving the
Hamiltonian. This clearly becomes a problem of transformation from the set of variables (g, g;) to
a new set (gi, pi). In order to achicve this transformation we write the differential form

dH = —d —dgy + ——~dt 4.1.1
D pk+?8qk ok + Bi ( )
But from the definition of H stated above, we have
dH = gedpi + > prdgs — dL (4.1.2)
k k

Since L = L{qg;, ;. 1), we get

dL = Z qu-i-z dqmilidt

8L
=N "L, 4 Yy
?aqk 9&+§Pkd¢ﬂ+ 5 t

!
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where we have used the definition of generalised momenta py. = %. Substituting this value of dL
in equation (4.1.2) we get

di = Z rdpr + Zmdqf. - Z —ko - Zpdek - —dt
= Z Grdpx — ZpdeL - —*dt (4.1.3)

Comparing the co-cflicients of dpy and dgg in equations (4.1.1) and (4.1.3), we get

i = oH
e dpr
and
. OH
PE = an

These two equations are called Hamilton’s equations or Hamilton’s canonical equations of motion.
They form a set of 2n first order differential equations of motion and replace the n-Lagrange equa-
tions of second order.

4.2 Legendre Dual Transformation: Alternative Deduction of Hamil-
ton’s Canonical Equations

4.2.1 Legendre Dual Transformation

" The important object for determining the motion of a system using the Lagrangian approach is
not the Lagrangian itself but its variation, under arbitrary changes in the variables q and ¢ treated
as independent variables. It is the vanishing of the variation of the action under such variations
which determines the dynamical equations. In the phase space approach, we want to change vari-
ables treated as independent variables. It is the vanishing of the variation of the action under
such variations which determines the dynamical equations. In the phase space approach, we want
to change variables ¢ — p where the p; are part of the gradient of the Lagrangian with respect
to the velocities. This is an example of a general procedure called the Legendre transformation.
We will discuss it in terms of the mathematical concept of a differential form. Because it is the
variation of L which is important, we need to focus our attention on the differential dL rather
than on L itself. want to give a formal dentition of the differential. which we will do first for a
function f(z1, ..., z,) of n variables, although for the Lagrangian we will later subdivide these into
coordinates and velocities. We will take the space in which x takes values to be some general space
we call M, which might be ordinary Euclidean space but might be something else, like the surface
of a sphere. Here M is a manifold Given a function f of n independent variables x;, the differential is

— af
df = Bm; dz;.
=1
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The term dx; which appear in the above form can be thought of as operators acting on this vector
space argument to extract the i0th component, and the action of df on the argument {x, ¥) is

df (x,7) = Z %vi.

This differential is a special case of a !-form. as in each of the operators dz;. All n of these dz;
form a basis of 1-forms, which are given more generally as

i
W= E wizdz!

and considering L{g:, v, 1) (here v; = g;) and the differential

aL
dL = Ei :éadqi+ Ei pidv;,
and

0
dg = Zdvip,- + Zv,:p‘- —dL = Zpgdu,', v = 5%
i i i

This particular form of changing variables is called a Legendre transformation and the duality of
the variables in this transformation is given by the theorem

Theorem 4.2.1 Let o function Fluy, ug,- -, uy} have an explicit dependence on the n independent
variables w1, ug, -+ un. Let the function F' be transformed to another function G=G{uy, v, ....., v
expressed explicitly in terms of @ new set n independent variables vy, v, ....., v, where this new vari-
ables are connected to the old variables by the relations

gF .
vi:é?{ !=1,2,3,"',ﬂ (421)
and the form of G is given by
Glur, v, vn) = wivy — Flu, ug, - up). ‘
Then the variables uy,up, - - - , un solisfy the dual transformation namely the relations
aG ,
‘lL,':gu—i, £=1,'“,ﬂ. (422)
and
F(U1,u2,“' sun) = Uit — G(”l}”?:' T :vn)-

This is the duality of the two functions F and G along with the variables u;, v;. This above relations
(4.2.1) and (4.2.2) is called the Legendre dual transformation.

Examples of Legendre dual transformation

In Thermodynamics the four thermodynamic potentials the internal energy U’ = U/(S’, V') the
free energy F' = F(V',T7), the enthalpy of H' = H'(5’, P') and Gibb’s potential G' = G'(P', T")
are all connected by Legendre’s dual transformation. Here the independent variables are any two
of entropy, volume, temperature and pressure. A change in the pair of independent variables
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defines a new potential function which is connected to the old one by a suitable Legendre’s dual
transformation. For example a dual transformation U'(S’, V') can be the free energy F'(V',T’)
where V' remains as the passive variable and the variable $ is transforméd into T’ which is
possible if the relation T' = %%: exists over the change of variables S”in U’ to T in F'. Then by

Legendre’s dual transformation we have

.f:r_;rf.fr'r__abn
Fv . T=U'(sVvV)-T5, S__ﬁ
and
oF _ ou
CY
Similarly one can find that
! ’
H =U +PV' with P = —gg, and V' = %%—
and OF' aG’
ot 1y : i __ L
G'=F+PV with P = EYE and V £Y

as dual transformations of U’ and V' respectively.

4.2.2 Deduction of Hamilton’s Canonical Transformation from Legendre’s Dual
Transformation

We can apply the Legendre’s dual transform to the lagrangian of a system

L(ql:Q‘Z: - ’:f}n:‘!’l:@:---,ffmt)

with ¢; and £ as a passive variable. The dual variables of g; , with i=1,2,...,n are given by
the generalised momenta 5
[
Pi= = (i=1,2,...,n). (4.2.3)
D4

Hence the dual function of the lagrangian L is H = pigi — L(g, §,1) where

H=H(q,q . P1sP2s P ) = H{g, 0, t)

and is called the Hamiltonian of the system. The dual transformation of (4.2:3) is

H
cj,-:-a——, (i=1,2,...,n). (4.2.4)
Opi
and the equations for the passive variables take the form
aL  oH
ot~ ot
and 9L _ oH
= —— i=1,2,...,n).
Jyi B4 ( ")

We know that provided there are no potential forces, the system is holonomic and bilateral, and
Euler-Lagrange’s equations of motion are valid, one can write

oL _d (OLY _ .
og  dt\9g) "
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Substituting in previous equation, we get
I’iiz"‘_“—_— (1.-_—1,2,...171)- (425)

The two equations {4.2.4) and (4.2.5) together are called Hamilton’s canonical equations of motion.

4.3 Hamilton’s Variational Principle

Consider the integral

1=/ Mz (4.3.1)

where the function L is the Lagrangian of the mechanical system defined as the difference between
the kinetic 7" and potential V' energies of the system,

L=T-V. (4.3.2)

Hamilton’s variational principle states that the integral 7 taken along a possible path of motion of
a physical system is an extremum when evaluated along an actual path of motion. In other words,
out of the number of possible ways in which a system could change its configuration during a time
interval between say ¢; and 13, nature chooses the way to either maximize or minimize the integral
I which is called the action for the system. Mathematically, this statement can be expressed as
follows

t2

=14 Ldt (4.3.3)
3}
where § means a variation in the entire integral about its extremum value. We assume that such
a variation is obtained by varying the coordinates and velocities of a system at their values away
from the actuals during the time the system evolves from ¢; to #z, under the constraint that the
variations of all the parameters at the end points of the motion at ¢;, ¢ will be zero, i.e., all
parameters are unchanged at the extreme points of time in consideration.

4.3.1 Hamilton’s equations from variational principle

Hamilton’s canonical equations can be obtained from a variational principle, similar to the way the
Lagrange equations are derived. However, the variations will be over paths in the (g, p) phase-space,
which has 2n dimensions, twice the n dimensions of the coordinates, called the configuration-space.
Note that the function inside the integral, upon which the variational principle will be applied, is
the Lagrangian L, but now considered as a function of g, ¢, p, p and £, so that

L(qq p)p} t) = ZCB‘P:' - H(Q:P: t) (434)

T

We write the Action Integral I(g, p) of the system in concern as follows

qa'.rp?:!Q . .
fap= [ L bt (43.5)
< g1,p1,01
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Inside the integral, (g, ¢, p,p) are actually implicit functions of time, i.e., (q{t), ¢{t), p(¢), B(t))

The variational principle states that the motion of a system from time #; to iy is such that the
system extremizes the Action Integral in the phase space. This ensures the variation in the action
integral in the phase space is zero, i.e.,

*?“2:?72"-2
M=6[ L{a, 6 p, b, t)dt = 0
q

1,710
[

The variational principle is actually a special case of a result from the Calculus of variation. The
study of the calculus of variation establishes the result that there exists a condition for the integral

J=/mﬂﬂﬂ$ﬂmt

3 |

d
involving a given functional f (y(z),y(x),z), with y = d—y to have an extremum value. The neces-
W
sary and sufficient condition for the above integral J to be extremum is

£6)- ()

Here the reference of the extremum value of the functional J is with respect to the §-variation,
which is the variation in the paths described by the integral between two fixed points in the given
(x, y space. More about the calculus of variation will follow in forthcoming chapters.

It is now obvious that Hamilton’s variational principle is a version of the integral .J for a dynamical
problem defined for a given Lagrangian L as the required functional. The corresponding necessary
and sufficienl condition to be satisfied by the Lagrangian is then

d oL JL

dt (6_¢) - ('SE) =" (439
d {OL aL )

#(5) - (&) =0 Pl a0

We now rewrite (4.3.6) and (4.3.7) by using the Lagrangian given in (4.3.4). It is easy to find from

L(Q: (j:p: ié: t) = Z (jipi - H(Q:p: t)
1
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that

— =g

Using these, {4.3.6) and (4.3.7} can be written as

d {oL aL . oH
a(a@)‘(a‘ﬁ‘” = = o (438)

d (8L dL . IH
2(5) - ()= = =3, s

(4.3.8) and (4.3.9) are the Hamilton’s canonical equations.

4.3.2 Properties of the Hamilton’s equations of motion

From the Hamiltonian h{gy, pr, t) the Hamilton’s equation of motions are obtained by

. _dg. _OH
R (4.3.10)
) dApie oH

=k _ =7 4.3.11
Pe=— o (4.3.11)

The Poisson Bracket of any two dynamical variables f(qx, pr,t) and g{gx, Pk, t) is defined by

_ of og  Bf 89\
[f.9] = ; (52;7.5; —~ a_ma_q;..) (4.3.12)

One see that

[f,/i=0
[g:f] == [f: Q]
The total time derivative of f,
df _~[00.  8f.1.9]
i ; [0_%% + a—mpk] + o (4.3.13)
= [f,9)+ of (from (4.3.3), (4.3.4), (4.3.5))

ER
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In particular, if f = H we have

dH OH

il 4.3.14

dt ot ( )
If H does not depend explicitly on time it is a constant of motion. Any invariant of the motion not
containing ¢ explicitly, has a vanishing Poisson bracket with H.

4.3.3 Cyclic Coordinate:

If the Lagrangian of a system does not contain a given coordinate g; {although it may contain the
corresponding velocity ¢;), then the coordinate is said to be cyclic or ignorable. The Lagrange
equation of motion,

d aL oL
@90 Ba =0 (4.3.15)
reduces, for a cyclic coordinate, to
ditg:f_; (4.3.16)
or
which means that
P = consatnt (4.3.17}

Hence, we can state as a general conservation theorem that the generalised momentum conjugate
to a cyclic coordinate is conserved.

According to the definition of Cyclic Coordinate g is one that does not appear explicitly in the
Lagrangian; by virtue of Lagrange’s equations its conjugate momentum py. is then a constant. We
know

. AL _ OH
Pi = B Oy

A coordinate that is cyclic will thus also be absent from the Hamiltonian. Conversely, if a gen-
cralised coordinate does not occur in H, the conjugate momentum is conserved. The momentum
conservation theorem can thus be fransferred to the Hamiltonian formulation with no more than a
substitution of H for L.
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[

Note !

When some coordinates, say ¢1,42,-..,qm; {(m < n), are cyclic, the Lagrangian of the
system is of the form

L = L(Qm+11- . -:Qrupm—i-]:---apn:bl: v ‘:bﬂ;t)

Thus (n — m) coordinate and momenta remain,and the problem is essentially reduced to
(n — m)} degree of freedom. Hamilton’s equation corresponding to each of the (n — m)
degree of freedom can be obtained while completely ignoring the cyclic coordinates. The
cyclic coordinate themselves can be found by integrating the equation of motion

. _OH

- k=12,...
gk Bp! 12:

,m.

Routh has devised procedure that combine the advantage of the Hamilton formalism in
handling cyclic coordinates with the Lagrangian formulation.

4.4 The Routhian

The advantage of the hamiltonian formulation in handling eyclic coordinates may be combined with
Lagrangian procedure by a method devised by Routh. Essentially one carries out mathematical
transformation from the (g,q) basis to the {g,p) basis only for the cyclic coordinates, obtaining
their equations of motion in the Hamiltonian form, while the remaining coordinates are governed
by Lagrange equations. If the cyclic coordinate are labeled qsi1....,qn, then a function R, known
as the Routhian, may be introduced, which is defined as,

1
R(Ql: i ':qnvé‘].: . "1@?:9’84-1:"":}3?‘1;” - Z pkék — L
k=s+1
A differential of R is therefore given by
b
i =, 8L =, 8L JL
dR= ) GdPi—) +—dgy— Y  —dg — 7-dt
k=s5+1 k=1 8 =1 aq'k at
from which it follows that
R oL JdR JdL
_— = - T = k‘:l:....S.
gy dqr. gy, Oy
?ﬁ = —p % =g k=s+1 n
aqk - pk! apk - ka - h 3 Pl

(4.4.1)

(4.4.2)

(4.4.3)
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Equation (4.4.3) for the n — s ignorable coordinates geg1,.... -, gn is in the form of Hamilton’s

equation of motion with R as the Hamiltonian; while equation (4.4.2) obey the Lagrange equations

d 3R dR
—|=)]===0 k=1,...,s 4.4.
dt (aq};) Ogx. ' peen® (4.44)

with R as the Lagrangian.

If we restrict ourselves with situations where the Lagrangian is not an explicit function of time,
then it follows that in steady motion, the cyclic coordinates are linear functions of time. This can
be seen from (4.4.3) with a Routhian of the form (4.4.4); these equations imply that a generalised
velocity of a cyclic coordinate g is given in terms of noncyclic variables by some relations of the

type

(}k=§-'k(q1:--'sq.‘i1q1:"-5‘}731051}"':&!‘): k=5+1:"'1n' (445)

For a steady motion, (¢i,...,q9s) are constant; (41,...,ds) are zero; and therefore g for a
cyclic variable is constant and g varies linearly with time. '

The advantage of the Hamiltonian approach, rather than, though it does, simplifying the sclutions
of mechanical problem actually provides the base from which one makes extensions to other fields.
This point can be understood from the fact that the products of generalised momentum and gen-
eralised coordinates i.e., prgr has always the dimension of action, ¢.e., of energy multiplied by
timne. Thus the Hamiltonian formulation is particularly useful in making a transition from classical
mechanics to quantum mechanics in which the action is quantized.

4.5 Hamilton’s canonical equations: numerical examples

We have seen that dynamical problems can be solved easily using generalised co-ordinates and La-
grange's equations. In fact there is hardly a mechanical problem where generalised co-ordinates are
not applicable. Even though from the operational point of view, the use of Hamilton’s equations
are generally not as convenient as the Lagrangian equations but .proves very useful to delve into
critical properties like symmetry and conserved quantities in advanced mechanics particularly to
three fields: celestial mechanics, statistical mechanics and transition from classical mechanics to
quantum mechanics.

Steps to write Hamilton’s equations for dynamical systems
1. Find the Lagrangian L.

2. Calculate the generalised momenta

oL

= _é?}— =1L, Gi=1L"
3
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3. Express L through L'

4. Express Hamiltonian in terms of (g;, L', t) as
H =Y pjdg;— L'(g;,d;,t) = > opl -
5. Use Hamiltonian canonical equation of the motion.

Example 4.5.1 Find the equations of motion for a simple pendulum using Hamilton’s canonical
equations.

Solution:  The pendulum is assumed to oscillate in the z = 0 vertical plane of the cartesian coor-
dinates, with the x-azis placed horizontal, y-axis vertically up and the origin being at the point of
suspension. Let g be the acceleration due to gravity, m the mass of the bob and I be the length of
the pendulum. The degree of the system is 1 and the angle of oscillation 6 is chosen as the single
generalised coordinate.

We write the coordinates of the mass at any given instant in terms of the generalised coordinates
as 7= (lsinf,—lcosd) and the components of the velocity as 7= (I cos 88, 1sin 86).

The kinetic energy of the system is then given by
1 4 : . 1 .
T= §-nrr,|ﬂ2 = §m(£262 cos? 0+ 126%sin 0) = ~2-m£292

Considering the horizontal line passing through the point of suspension of the pendulum as the
reference of zero potential, the potential energy of the system is

V = —mglcos8
Thus the Lagrangian of the system is
1 .
L=T-V = §mf292 + mgl cos §

and the generalised momentum py is given as

' oL ; s _ P8
== = ml%f e =—
Pg EY: m 2

Using this, the expression of the Hamiltonian H needs to be expressed in terms of the generalised
coordinates and generalised momenta.

. A .
H = pgf — L = pofl — §m£292 — mgl cos 8

2 2
P 1p
= m_?2 — 5# — mgl cosd
1 2
=-Fo _ mgl cos @

2 mi?
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from which we find

OH .
90 = mgl sin ¢
oH _ o

dpg ~ mi?

The equation of motion of the system is given by the Hamilton’s canonical equations
. OH
5 9H _ pe

AL 4.5.1
Ipg  mi? ( )
aH

Y = —~— = —mglsin 4.5.2
e 58 mglsin (4.5.2)
From (4.5.1) we find on differentiation, pg = mi?8. Substituting this to (4.5.2), we get
mi%f = —mglsin @
~ = q .
Or, @+ =s5inf=0

[

which is the equation of motion for a simple pendulum.

Example 4.5.2 Deduce the equations of metion for g particle under a central force by using Hamil-
ton’s canonical equations.

Solution:  Central force is defined as the force which is directed outward from a fived point or di-
rected inward towards g fized point. Such a force is always o funclion of the distance from the fized
point.

We consider a particle of mass m moving in a central force field in o given plane (r, 8} in two
dimensional polar coordinates. The particle is assumed to be attracted towards the origin of the
coordinates. If we further assume that the ceniral force field follows the inverse square low, i.e., the
force is inversely proportional to the square of the radial distance of the particie from the origin.
Therefore the force field is described by I = -3 Here k is the constant of proportionality and the
negative sign in the ezpression of the force is to signify that the nature of the force is attractive.

If the instantaneous position of the particle is (r, §), then the radial and tangential velocity compo-
nents will be (7, 0), so that the square of the magnitude of the velocity vector will be (¥ + r262).
Therefore, the kinetic energy of the particle will be given by

1 .
T = -2-m(1:2 + r267).

The potential energy of the particle can be found by finding the work done by the force field in
bringing the particle from oo to the instantaneous radial distance r, t.¢.,

V=h/ Fdr:—/ (_%) gr=_%
00 oa T T
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The Lagrangian for such a system can then be written as
L o2, 242, K
L=T~—V=§m(r +r°8 )+;

so that the generalised momenta, i.e., the radial momentum p, and the fangential momentum pg

are
dL , gL 26
= —— =mr, =— =mr
pr ar p (] 6 8
Using these, we now construct Homiltonian H as o function of the generalised coordinates, gener-
alised velocities and posibly time from the Lagrangian, i.e.,

. . 1, : k
H= Zpiq,' — L=1p 7+ pef — §m(r2 +r%0%) — -
i

2
:p—r..i-i Pr pﬁ'

m  mr: 2m  2mr? r
b1 2
2m - 2mr? oy

From the expression for H above, We see that

OH _ 7%,k OH _ pr

o w3 2 pr  m
o _ 0 OH _ po
o8 Opg 2

So, we can write Hamilton's canonical equations as

._OH _pr
"= ap —m
 OH g (4.5.3)
= =
Opy mr?
and
by = aH pg k
P T T wd T
g;; mrd T (4.5.4)
Po=—"g ="
From (4.5.3) and (4.5.4) we see that
a_Br_1 (P _k
T m om\mrd 2
_ Pk
m2rd  mr2
or,
2k
mi = 0 2 (4.5.5)
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But

om0 mird)?  mef

mrd mrd r r

(4.5.6)

2
Wrth the tangential component of the velocity vg = rf the term —14 contained in (4.5.6) is identified
-

with the centrifugal force and F = F(r) = — = as the central force field in which the particle executes
T

motion. Therefore from the equation (4.5.5) we can write the radial part of the equation of motion

of the particle can be written as

2
muy

Example 4.5.3 Write down the Hamiltonian function and Hamilton’s equation of motion for a
compound pendulum.

Solution: A compound pendulum consists of a comparatively large sized body which hangs from a
point from within the body towards it’s upper part so that its centre of gravity lies below the point
of suspension. The effective length of the pendulum is the length belween the point of suspension
and the centre of gravity.

A compound pendulum therefore executes a to-and-fro rotetory motion about the point of suspension,
the kinetic energy of the motion being the corresponding kinetic energy of rotation, i.e.,

1 .
L=-If
2 ¥

and the potential energy
V =mghcos@

Thus we have the Lagrangian L for compound pendulum is

L= %192 + mghcosd (4.5.7)

We have oL
Pp=—=18 4.5.8
‘T 06 (4.58)

The Hamiltonian function H is given by

H=3 pjg;— Ligs, ¢> )
= P — L

Using equations (4.5.7) and (4.5.8), H can be erpressed} as

H=160-~ %192 — mghcos 8 (4.5.9)
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Now, from eguation (4.5.8),
Py

=

I
With this substitution, the equation (4.5.9) reduces to

1. P\?
H=:=I (—8) — mghcosf

2 I
P
== — h ¢
57 ~ Mghcos
which gives
AH _po o _ mahsin 6
ap, I gg — gnsmu
The Hamilton’s canonical equations are then
oH
="
OFy
: oH
Py=—
¢~ o6
or,
S
6= T" (4.5.10a)
(4.5.10b)

Py = —mghsing

Now, from equation (4.5.10a), we hove
FPy= 10

With this substitution, the equation (4.5.10b) becomes
16+ mghsin@ =0
mgh

or, 9-!——1—-51119:0

But I = mK?, K is the radius of gyration. Thus the equation of the motion for the compound

pendulum turns out to be
. gh

4.6 Comparison of the Lagrangian and Hamiltonian equation

1. Both in the Lagrangian and Hamiltonian formulations, both L or H can be considered as
the key functions for the system from which a complete set of equations of motion can be

obtained.
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2. The Lagrange’s equation of motion can be derived from the D’Alembert’s principle which is
essentially a differential principle based on Newton's laws of motion. But a more general and
deeper insight to the foundation of mechanies is actually provided through the Hamilton’s
principle, which is an integral principle.

3. In the Lagrangian formulation, L is a function of the mutually independent variables are the
generalised co-ordinates g;’s, the generalised velocities ¢;'s and the time. For a system of n
degrees of freedom, the Lagrangian, and hence the motion is conveniently described by an
n-dimensional co-ordinate space called the configuration space. Thus, the Lagrange's equa-
tions are second order differential equations in the configuration space and hence 2n initial
conditions are required to obtain the solutions completely.

In the Hamiltonian formulation, H is a function of independent variables of the generalised
coordinates g;, the generalised momenta p; and time. The space in which the motion of the
system is described is the phase space. The phase space is described by the 2n independent
variables- the n generalised coordinates and n generalised momenta, apart from the time. The
Hamiltonian formulation consists of two scts of first order differential equations combining to
2n degree of freedom while in Lagrangian formulation there are n second order differential
equations corresponding to n degree of freedom.

4. From definition of hamiltonian it follows that if L is explicitly independent of time, then H
is also explicitly independent of time.

5. If H is explicitly independent of time t, then

H = H(gj,pj,t) = H{g;, p5)

Therefore,

dH oH . 0H |
T 25,0 Ly,

oH 0H oH OH
= _— —_— = [}

i.e., H does not change with time. Thus if the Hamiltonian (or the Lagrangian) does not
depend on time explicitly, it is a constant of motion.
In this case,

H=> pigj— L, 4)=E

turns out to be the energy integral for conservative system for which H=T+V = E.
Generally, H and L are not functions of ¢. If they are, then in such cases, there exists a
constant of motion called Jacobi integral given by

v

H = constant = J.

which may not be identical with the actual energy F.
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4.7 Summary

Lagrangian and Hamiltonian formulations provide the compiete solutions of varieties of dynamical
problems. It is seen that for systems where one can define a Lagrangian for holonomic systems
with applied forces derivable from an ordinary or generalised potential and workless constraints, we
have the Lagrangian formulation which eliminates the forces of constraints from the equations of
motion. The usefulness of the Hamiltonian viewpoint lies in providing a framework for theoretical
extensions in many areas outside classical mechanics. The Hamiltonian formulation provides with
broad framework for transitions to Statistical Mechanics and Quantwm Mechanics.

Self study questions:

1. Find the Hamiltonian of the following form of the Lagrangian:
(a) L(x,%,t) = exp(—2z?) [exp (&) + 24 /uexp (—a?) da] .
0

(b) L{z,,£) = %exp (at)ld? — w2a?].

2. What is Legendre dual transformation? How does this transformation help in deducing the
Hamilton’s canonical equations?

3. Compare the role of the cyclic coordinates in Lagrangian formulation with the Hamiltonian
formalism,

4. Can Hamilton's canonical set of equation provide us with more information compared to that
of either the Lagrangian or the Newtontan? Justify your answer.

9. Write down the Hamiltonian and the Hamilton’s equation of motion for a simple pendulum
whose string is a spring of unstretched length I, the mass of the bob being m and the spring
constant of the spring is k.

6. Analyse the dynamics of the Atwood machine by using the Hamilton’s canonical equations.




UNIT 5

Calculus of variation

Preparatory inputs to this unit

1. Hamilton’s canonical equations: a critical look on the properties.

2. Basics of Integral Caleulus and Ordinary differential equations.

!
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5.1 Calculus of Variation

5.1.1 ) QOverview of this unit

In this unit, a detail discussion of the Calculus of Variation will be presented, along with the deduc-
tions of relevant cquations and some interesting applications. To begin with, a formal definition of
functionals and their first variations will be presented. Getting along with the subject, the Euler-
Lagrange Equation will be deduced through the use of some basic lemmas and proofs, which have
already been established otherwise, but not incorporated in this discussion.

5.1.2 Introduction

Calcuius of Variation is that branch of Mathematics which deals with extremum of functionals. A
functional is a mapping which assigns a real number to each function or curve associated with some
class of functions. The origin and the development of the Calculus of Variation is traced back to
a challenge posed by Johann Bernoulli (1667 — 1748) to several of his contemporaries, including
Newton. The challenge was to find the trajectory of an object moving in a uniform gravitational
field so that, in the absence of friction, the time it takes for the object to travel from a point to
another point, is the minimum.

As a generalisation to the problem as forwarded by Bernoulli, one would like to find the trajectory
under certain given constraints or restrictions, which maximizes or minimizes a given mathemat-
ical quantity. Most of the problems it is found that the quantity to be minimised or maximised
appears as an integral of certain functionals, i.e., functions of several functions, over a given interval.

To go into the detall of the caleulus of variations, we define an integral J such that
]
J= / F(z.y,v )z, such that  gy(a) = A4, y(b) =B
a

where y = y(z) ranges over the set of all continuously differentiable functions defined on the interval
fa, B].

e
A

— iy X

5.1.3 The technique of the Calculus of Variation

The basic problem of calculus of variation is to find a path, y = y(x), in one dimension between
73 and x2, such that the line integral of some function f(y, ¥, =), where y = %, is an extremum,
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i.e., maximwmn or minimum. The quantity f depends upon the functional form of the dependent
variable y{(z) and is called a functional. Symbolically, the problem can be stated as: for a function
fy, v, =), the integral

T2 !
J=/ Sy, v, ) dx (5.1.1)
xr
along the path y = y(x) between z; and a2 is to be extremum.

Let (x1,y1) and (x9,1y2) be two points in the space and consider two varied paths between two
extreme points y(z;) = y1 and y(z2) = yo-

In order to find a path or paths which would give an extremum value of the integral, we state
the problem in the language of differential calculus. For this, we associate a parameter o with all
possible curves, i.e., paths. The parameter « should be such that for some value of a, say a = 0, the
curve under examination would coincide with the path or paths that would give an extremum value
for the integral. Then, y will be a function of both the independent variable  and the parameter
a. We can always write y(a, z) as

y(e, z) = y(0,z) + anl) (5.1.2)

where 7j(z) is some function of z which has continuous first derivative and the function itself van-
ishes at both « = %1 and © = x9. The last condition, wviz.,, n(x1) = n{x2) = 0 ensures that the
varied function y{a,z) will be identical to y(z) at the extremities of the path.

With the dependence of y on a in addition to z, the integral is thus a function of the parameter a.
So we have

+2
Ja) = [ flyleso),v'(a) ] do (51.3)
T}
Then, the condition that J{a) has an extremum value is
oJ .
[3—0] o 0 (5.1.4)

This is only a necessary condition, but it is not sufficient. We shall use this condition to obtain an
equation or equation that should be satisfied by f in order to have an extremum value.

Differentiating equation (5.1.3) under the integral sign, we get

oJ o[, 2 [0f 0y | 9f oy
Ja ~ da U,l f(y’y’“‘“)dx}_fr [8y0{r+3y’ o

1

dx
as we have — = (. Hence
oy

9. To [ s - . 12
-= [ﬂi@ o7, ‘”’] dz (5.1.5)
Iy

da dy da | By dudx
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Integrating the second term in the integrand by parts,

= Bfi(@) L Of &y

le (2;) N e (5.1.6)

2y By dz \ fa oy du|,
But
81;
and hence
By |
Fal,, n{z2) — n(z1) =0 (5.1.7)

Thus, the first term on the right hand side of equation (5.1.6) vanishes and equation (5.1.5) becomnes
5_"’_/"’ df@__ 9t dz
da P TR ay Oa
“10f d (Of .
= = - — | == )dx A,
./:;1 [33; T (ay")] n(z)dx (5.1.8)

It appears that equation (5.1.8) is independent of . But, the functions ¥ and 3’ with respect to
which the derivatives of the functional f are taken, are functions of «. When o = 0, we have
y(o, z} = y(z), and the dependence on a disappears.

L3

aJ
We want that [_aj' =0, and since n{x) is an arbitrary function [such that n(z1) = 5(z2) = 0},
the integrand of equa?ion {(5.1.8) must vanish for o« = 0. Thus, we have
af d (df
- - =L 1]1=0 1.
dy dr (3y’) (519

Functions y and ' appearing in equation {5.1.9) are the original functions; independent of a.
Equation (5.1.9) is called Euler equation and it represents the necessary condition that the integral
J has the extremum value.

Alternate form of Euler equation
Euler equation {5.1.9) can also be put into another equivalent form. For this, consider

oty of oy O L 010y OF Oy
a2l OB = 5t 5% T By os

of Ly w91 (5.1.10)

= oz Ay oy’

d {,8f wOf _ ,d (3f
( 3?}) Yoy T Ay

Now
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Substituting the value of y”% from equation {5.1.10), we get

(aq i_ﬂ_fﬁ+£(ﬂ)

dy iz oz 7 Oy Yix oy’
_& o o8 _d(OF
T4 "6z Y [By dx (83;’)] (5.1.11)

But, the last term of the right hand side vanishes in view of equation (5.1.9) and equation (5.1.11)
reduces to

af d ,Of
3 da (f—yd—y) =0 (5.1.12)

This is sometimes called the ’second form’ of Euler equation. It is useful, particularly when %rf =(,
i.e., when f does not depend explicitly upon z. Then, we have

f- y'g—'; = a constant (5.1.13)

Generalisation of Euler equation to several variables

Euler equation can be generalised for the case when f is a function of several dependent variables.
Then, we can write

f=f[w@),yilx), =], i=1,2,...,n (5.1.14)
In this case, we select the parametric equations similar to equation (5.1.2) as
yile, ) = yi(0, z) + arp(x) (5.1.15)

The same procedure as described above can then be followed and we can get Euler-Lagrange
equation in the form

8f d [of ‘
Fyoimredl Gl R =1,2,...,n 1
Fys dm(aﬁ) 0, i=12,...,n (5.1.16)

More generally
f = F [yilz), vilz;), 23]

where i = 1,2,...,n and j = 1,2,...,k. Here, we have taken z1,z9,...,z; as independent
variables on which y depends. In this case, Euler-Lagrange equations take the form

=0 (5.1.17)

The Euler-Lagrange equation in é-notation

The results of the calculus of variation are very often expressed in terms of a compact d-notation
as follows:
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We have, by equation (5.1.8)

g._/zz 2-{_,_ d df d
da o LOU dzx Yy aa"‘

Multiplying both sides of this equation by the differential da, we have

aJ 21af d [Of\] Oy
do = - — = || == 1.
Ja [rl [Eiy e (By’)] Oada dz (5.1.18)
Let
aj Jy
gda =6J; and % da = §y {5.1.19)
Hence, we get
“=1of af
8J = e 1.
[ 15 ()] eres o120

In this notation, the condition of extremum becomes

I
6J = 5/ fly v\ x)dz =0 (5.1.21)
T

Taking the symbol § inside the integral sign, we get

T2

§J=| &fdx
xr
_ ™ lar af ., )
_/,1 [d 5y+a,ay] do (5.1.22)
Now
dy\ _ d{dy)
b =3¢ (dn:) T
Hence 8] = / [ -l-—c-i-?i, y] dx (5.1.23)

Integrating the second term on the right hand side by parts, we get

21af 4 9f] .
dJ = = - ——= T 1.
/Il [ay T 3y’] oy dx (5.1.24)

Here we used the condition that the variation in y at the end points is zero.
Since dy is arbitrary, we can get J = 0 only if the integrand vanishes. This gives Euler-Lagrange
equation as before.
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5.1.4 Applications of Euler equation

1. Geodesics in Euclidean plane: The shortest distance between any two points in a space is
called geodesics. An Euclidean or a flat surface is a surface, where the Pythagorus theorem,
ds? = dx? 4 dy? is valid and constitutes a plane surface or a plane. Now, curves, joining any
given two points, will have a distance. The question is, what is the shortest distance between
the two points? Using the technique of the calculus of variations, the result can be obtained
as follows:

A small, elemental length, say ds in a plane can be expressed with the two components
(dz, dy) of the differentials in cartesian coordinates as

ds = \/dx? + dy? =dm\}1+y’2, where y’: @

dx

The total length of the curve between any two given points, say A =(x;, y1) and B =(z2, y2)
in the plane will be given by the integration of ds from A to B, i.e.,

1_/ ds-/ ( 1+J'2)da:—/ Hz,yy) d

Now in order for the distance between A and B to be the shortest, the variation of the above
integral, the 4-variation of the integral f should be zero i.e.,

B
&1 =.5] (\/1—1—3;’2) dr =10
A

The neceésary condition for the vanishing of the delta-variation is the Euler equation in
floy,y)=v1+ 2, i.e., Euler equation must be satisfied by f{z,y,y"):

of\ _ af
(ay) 3, =" (5.1.25)

af _, and of ¥
dy Oy 1+y?

With this, the Euler equation, {5.1.25) reduces to

Now

(o) -
1+

or, = p, where p is a constant
/ y,(2
p?
= m is a constant
1-p?

Integratinig with respect to z, Y = mz + ¢, ¢ is a constant.
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which is an equation of a straight line. Therefore, we conclude that the shortest distance
between two points in an euclidean plane is a straight line.

Minimum surface of revolution: The surface of revolution is formed by revolving a curve about
a given axis. Set the curve passing through two end points (z1 31} and {z2, y2) is rotated
about the y-axis, as shown in the figure. We now seck to find a curve which on revolving about
the axis gives the geometry of minimum surface area. We consider an elemental ribbon-shaped

Figure 5.1: Minimum surface of revolution.

ring or strip at point A formed by the revolution of arc-length ds about y-axis. If z is the
distance of thie arc from the ya-axis, the surface area of the strip is then

da = 27zdr = 27z (\/ 1+ y'g) dz

The total surface area described by the curve about the axis of rotation is then given by

2
I= ff(m,y: y’)drn=/ 2w/ (1 +y?)dr
where f = f(z,4,9) = 2rz/(1 + v'?).

This total surface area will be minimum when 67 = 0, for which the equation to be satisfied
is the Euler equation, i.e.,

We find
of  2mzy ' of




CALCULUS OF VARIATION 117

Substituting these values in the Euler equation, we get

d f 2mzy’ } 0
dax /1 + yp‘Z !

zy’

or, — =g, where a is a constant.
V14 y"E
Simplifying,
Y=o o
dr :1;2 — a2
Integrating with respect to x,
/ o is the constant of integrati
=a | ——=+c¢ c 1¢ constant of integration.
v gl g
1%
or, T =acosh™ = +¢,
a
—-c
N % = acosh 2

which is the equation for a catenary.

. Propagation of light in an inhomogeneous medium: Let us consider a 3-dimensional space
filled with an optically inhomogeneous medium such that the velocity of propagation of light
at a point is some function of its coordinates (z,y, z). The fundamental principle of light,
the Fermat’s principle suggests that light propagates from one point in the space to another
along that curve for which the travel time is the minimum.

Let A and B be two points in an inhomogeneous medium. Let us assume that the light moves
from A to B along a curve given by

y=1{z), z=2x)

As light moves in inhomogeneous memdium, the velocity of propagation v will be a function
of the coordinates, e.g., v = v(z,y, 2) in cartesian coordinates. So the time taken by the light
to move from A to B is

g B b T+ y2+2°

f dt:/ §=/ yity ¥,

ia JA kH a 1l
=T(y:z)

y 4z

d
where i = ETE’ =—
T T

Here we assume the coordinates of the end points are A = A(e,ay,a;) and B = B(b, by, b,);
v is the velocity of light at (=, y, ).
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For minimum time, we must have

7
§ / di =0,
ta

— 5 /b Vie 4,
a v
from which follows the Euler equations
%i;_ _ E%%E — (5.1.26a)
%_f _ 2}%‘3‘5 —0 (5.1.26b)

with the function F given by

V1 +y"2 + 21

u

F(I) y! z: y}) Z’) =

Irom this we can calculate

8_F__ \/1+y"§+z"§3v

oy v? a—y
OF v

@_v\/l-i-y’ﬁ-}—z’?
oF __THiT+7 oy

Oz 12 dz

oF 4
2 w1 +y%+ 27

Substituting these into Euler equations (5.1.26a) and (5.1.26b), we have

14¢2+228v d | ! ]
—vy2§6_+_ y o
v y  dx L\/1+y’2+z’2v_
V1+y%+ 2% o d [ z ]
e tE | ="
V1t Y+ 2]

These are the governing differential equations for propagation of light in an inhomogeneous
medium. Knowing the form of v(x, y, z) one can solve these differential equations to yield the
form of the trajectories of light propagation.
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. The Physics of Soap films: An interesting application of the calculus of variation, is the

determination of the shape of a thin soap bubble suspended in space within a_wire frame.
Here, we will consider the case of a thin soap film suspended between two wire rings of radius
pa and pg whose centres lie along a straight line, the axis. We set up a cylindrical coordinate
system with the Z-axis oriented along the axis of symmetry. The origin is chosen on the axis
such that the centres of the two rings lie equidistant and mutually opposite to the origin. In
order to describe the surface of the soap film formed between the rings, it is sufficient to specify
a function p(z) that measures the distance of the surface fl;om the z-axis. The surface tension

Figure 5.2: Soap film between two circular wire frames of different radii.

is the dominant force allows the soap film to retain its shape. The energy associated with the
surface tension is contained in the surface area of the film. In general, given the situation,
a system always {ries to minimize its energy content and the corresponding configuration is
such adjusted to minimize the energy content. In case of soap filin too, same is the case; the
fihn attempts to ininimize its cncergy through minimization of its surface arca. Tt thercfore,
adjusts its shape so that the surface area is minimal, subject to the requirement that it will
be attached to the two wire rings. The surface area of the film is

S§= /D% dtb/'p(z)dl:?ﬂ'/p(z)dl

1
— (.2 NT _ dpt?
dl = (4% + dp?) [1+dz} i

where

is the differential length along the curve p(z). Our objective is to find the curve that minimizes
the integral

L/2 dp] M2
S = 27r/ P [1 + ﬂ—e] dz
-Lj2 dz

where L is the distance between the two rings.
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Setting

we can write the Euler-Lagrange Equation as conditions to the required minimization, as

or _dof _,
dp  dz 0 -
= ()" ()
1 ,.
A" +P;'2)m -’
= & e =

; p?

= p=dy 51
1

= p(z) = Cycosh (z + Cz)
1

which is a catenary. Here C; and Cy constants of integration to be determined by the require-
ment that the soap film is attached to the two wire rings, i.e., 2{~L/2) = ps and 2(L/2) = pg.

5.2 The Brachistochrone or shortest time problem

5.2.1 Historical perspective

The brachistochrone problem was one of the earliest problems raised during the development of
the calculus of variations. It was said that Newton was challenged to solve the problem in 1696,
which he could solve the very next day. In fact, the solution, which is a segment of a cycloid, was
known to be found by Leibniz, L'Hospital, Newton and the two Bernoullis. Johann Bernoulli had
solved the problem using the analogous technique used for finding the path of light refracted by
transparent layers of varying density.

It was known that actually, Johann Bernoulli had initially found an incorrect proof; the the curve
he found was a cycloid. His brother Jakob was then challenged to find the required proof for the
curve. After Jakob correctly proved the solution, Johann substituted this proof for his own.

5.2.2 Brachistochrone: the details

The Brachistochrone, or the shortest time problem is the problem that involves finding the form of
the curve joining the points A and B traversed by a particle falling under the influence of gravity
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from the point A of higher altitude to B, the lower altitude in the least possible time.

Let us choose A as the origin and y-axis vertically downwards, z-axis horizontally through A and
y-axis vertically downwards.

Let a particle of mass m takes any position P on this curve at any given instant of time. If the
particle moves an elemental distance ds at P in an infinitesimal interval of time d?, then the speed
of the particle at P is given by,

_-ds

vV

d

or, dt=—s
v

Further the quantity ds can be expressed in terms of infinitesimals of the horizontal and vertical
distances as

ds? = dz? + dy?,

or, ds = 1+ (d? ) dz
dzx

(Vi)

The total timne taken by the particle in falling from A to B can be found by integrating di from ¢4,
the time when the particle is at A, to tg when the particle is at B:

B
tag = / @ (521]
A

I

U

From the energetics of the Newtonian dynamics we know that if a particle at rest freely falls under
gravity through a vertical distance y, picking up its velocity from 0 to v, the kinetic energy gain
by the particle equals the loss of potential energy, i.e.,

2
—my" =m
5 Y,

from which we get
= +/29y.

Further,

) ds® = dz? + dy®
or, ds = (\,’ 1+ y’g) dz

where ¢ is the acceleration due to gravity. Using these expressions, the integration (5.2.1) can be
written as

: f’AB=[‘( 1+QJ) ff(ﬂ",m )
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with the integrand f{z,y,v') as,
V14 y"E
flo,yy) = —=—.
@0Y) =
from which
of _ y
. .
W \Jem+y?)

CALCULUS OF VARIATION

For the time to be taken by the particle to be minimum, {4 must have an extremal value. So
f(z,y.y") must satisfy the Euler Equation. We write down the second form of the Euler equation

given by (5.1.13), ¢e.,

f—v @ = A,
l+y v
—_ — = B‘1
)

Simplifying,

=B

V(1 +y?)

where A is a constant

B = A+/2¢ is another constant

= ¥ = ,/2“';3’, with 2a = 23,
Integration of this differential equation yields,
€= / ( Qay— v dy + K, K is the constant of integrati
To find the integration on the right hand side, we substitue
y = a(l — cosf), (5.2.2)
0
so that dy = ¢ sinf d@, and Y —tans
2a—y

Then the integration reduces to

é
:::=/tan§a sinf df + K

[

s g

sin 7]

=f 2.2asin—cos€d9+K
COs 5 2 2

= /2& sin? gdﬂ + K

=a/(1—c056‘)d9+K

or, z=q(ff —sind) + K

(5.2.3)
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Figure 5.3: Cycloidal path for the Brachostochrone problem.

If the initial position of the particle is so chosen that when x =0, 1y =0 then # = 0. This reduces
the constant K in (5.2.3) to zero. Therefore we have the solution to the Brachistochrone problem
as

z = a{f — sin6)
and y = afl — cosf),

These are the equations of a cycloid which passes through the origin of the coordinate system
chosen. Thus the path of the particle is a cycloid. The value of a in these equations can be so
chosen to make the path passing through the second chosen point, say {x1, y1). Along the path,
as depicted in the figure, the time of transit of the particle from the origin to (1, 31} turns out to
be the minimun.

5.3 Hamilton’s variational principle

In order to solve a dynamical problem involving non-holonomic constraints, we use the Lagrangian
and the Hamiltonian formulation which are obtained from the variational principle, called Hamil-
ton’s variational principle. This principle is thercfore a general foundation to the Lagrangian
formulation of mechanics. The variational principle is looked upon as an integral principle. Here,
we consider the entire motion of the system between two instants ¢ and £ and consider small
virtual variations of the entire motion of the system from the actual motion.

The principle is stated in a general form independent of any co-ordinate system and hence is useful
in non-mechanical systems and fields.

Hamilton’s principle may be stated as follows:

Of all the possible paths along which a dynamical system may move from one point to another
within a given interval of time [consistent with constraints, if any) the actual path followed is that
which minimizes the time integral of the Lagrangion.




