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1.0. LEARNING OBJECTIVES

After going through this unit, you should be able to:

» hinary operation

+ order of groups and clements

» noiation

» conjugate relation and conjugate class

¢ normalizer of an clement and self conjugate element
» class equation of a finite group.
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Algebra

NOTES

1.1. INTRODUCTION

This chapter begins with the assumption that the reader is well acquianted
with the concepts of group. subgroup, Lagrange’s theorem, cosets, normal subgroups
ete. In this chapter, we shall be discussing conjugacy relation, normalizer, centre,
class equation, in the context of a group.

1.2. BINARY OPERATION

Let S be a non-empty set. A function from S x S into § is called a binary
operation on 8. Thus. if '¥ is a binary operation on 5, then it means that '+ is a
function from 8 x 8 into 8.

If (@, b) € S x S, then the image *(a, ) of (a, b) under the binary operation ‘¥ is
written ¢ * b.

1.3. GROUP

A non-empty set G with a binary eperation, denoted by ', is called a group if :
(yx. y.0=(x. 5.2 Yxr.y 2eG
() There exists ee G:x.e=x=e.x Vxe G
e is called the identity of G.
GiyForxe G, thereexistisye G: x. y=e=y. X
y is called the inverse of x. The inverse of x is written as .
If in addition, we have
Gyx.ysy.x Yy ye G,
then C is called a commutative group. A commutative group is also called

an abelian group after the famous Norwegian mathematician N.H. Abel. A
group is called non-commutative or non-abelian if it is nol commutalive.

If the binary operation of a group is written as *+; then we write
Ox+y+=@+Pt+tz VYy,y2eG

¢(HJee G x+e=x=e+x Yxel

GiNForxe G.dye Gixtyze=y+x
And for commutativity, x +y=y+x Vx,ye (G

Remark L. The binary operntion '+ used nbove has got nothing o do with the ordinary
addition of numbers. In fact. *, +. . are just symbols representing binary operations.

Remark 2. In order Lo show a non-emply sel (G with a given binary operation Lo be 4
group, we should verify all the three conditions given above.

-
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1.4. ORDER OF A GROUP

Il the number of elemenis in a group is (inite, the group is said Lo be a finite
group, otherwise an infinite group. The number of clements in a finite group is
called the order of the group.

If a group G is finite and has n elements. then we write o(G) = .

1.5. ORDER OF AN ELEMENT

Let (G, .} be a group with identity element e. For a € (, if there exists a smallest
nalural number m such that ¢™ = ¢, then m is called the order of @ and write o{a) = m.

If no such natural number exists then we say that « ts of infinite order.

IMPORTANT RESULTS
In a group, identity element is unique.
In a group, every element has unigue inrerse.
If(G, ) is a group, then (u™'}'=a VYae G.
If(G, )isagroup, then (g . by =b"' . a! Vva beG.
@G, Yisagroupanda . b=a. ¢ then b =c
(G, JYisagroupand b .a=c.a, thenb=c

For a finite group, the order of every clement s finite and cannot exceed the
order of the group.

b

8. Ina group, the order of un element and iis inverse are same.

1.6. NOTATION

Let.( be a group with binary operation *. Let.x, y € G. For the sake of convenience,
the element x * y of G is written as xy. Under this notation the axioms of a group G
takes the following form :
Dxya)=@Nzvxyze G
(i1} There exists an element e in G such that xe=x = ex
(fii) For x € G, there exists an element. y in G such that xy = e = yx.

1.7. CONJUGACY RELATION

Let G be a group and a, b € G. ¢ is said to be a conjugate of b if there exists an
element x € (3 such that g = 2! by

If @ is conjugate to b then we write ¢ ~ b and this relation *~' is called the
conjugacy relation on G.

For example in the group S,, the element (1 2 3) is conjugate of (1 3 2), because J

we have :
A2H=23h71( 3 2)(23).
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Algebra Example 1. Shouw that tteo elements of a group are conjugate if and only if they
can be put in the form ab and ba respectively, where a and b are seme suituble elemenis

of G.
Sol. l.el ¥ and y he conjugate elements of G.
NOTES x=zlyzforsomecze G
Let a=zly and b=z
ab=(YWz=z'yz=x and ba=zz'y) =@z y=y
. x=ab and y=Da
Conversely, let x=aband y=bao

Now alve = aMaba = (@ ay(ba) = ey = y Le., ¥ is conjugate to x.
Also, b yb = b (ba)b = (7' b)(ab) = ex = x Le, x is conjugate to y.

x and y are conjugate. . The result holds.

Theorem 1. The conjugacy relation on a group is an equivalence relation.

Proof. Let G be a group and the conjugacy relation on G be denoted by ~. We
shall show thal ~ is an equivalence relation.

1. Reflexivity. Let ae G.

We have eloe=eae=a

a=elaeie, a~a

- a~a¥ae G . ~isrellexive.

2. Symmetry. Let a,be Ganda ~b.

Jdxe G:a=x1bx

xaxt = x(tby) ¥ = (i ) blex ) =ebe=b
b=xax! fe, b=(@NH1alx™)

b~ a, because -l e G

Y

U

a~bh = b~aq - ~issymmelric.
3. Transitivity. Let @, b, e, ¢ Ganda~band b~e
Jx,ye G:a=x"bxand b=y"ey,
o=y evx = () elve) = a7t e(n)
a~c, because yre G
a~bandb~¢ = a~c .~ ~isiransilive
The conjugacy relation on a group is an equivalence relation.

1.8. CONJUGATE CLASS

We know that an equivalence relation on a set partitions it into mutually disjoint
equivalence classes. _

Let C(a) denote the equivalence class of an element. a of G with respect to the
conjugacy relation ~ on the group G. The set C(a) is called the conjugate class of gin G.

Ca)=ih:be Gand b ~ a}
={b:be Gand b=x'ax for some x € G}
=irlax:xe G}
= set of all conjugates of «.

4 Self-Instructional Material



Since the relation '~ is reflexive, 0 e C(r) vae G.

Also, CeycG YaeG
G= U la) U Cla)c G
aelc ae
G= U C(a).
aelx

1]
In particular, let. G be a finite group and G = U C(a). where the equivalence
=1

classes C(a,). Clay), ....... C(a,) are mutually disjoint.
1
o(G) =Y. o(Cla)).
i=1

Remark. C{e) = {xlex:xe Gl ={x"tx: ve G} ={}
Example 2. If (i is an abelian group, then show that Cla) ={u} vV ae G.
Sol. Fora € G,
Cla) = 1riax: v e G}
={t{xa):xe G}
={(x"lxa:xe G={ea.xe Gi={a}
Clay={a}vae (.

Example 3. Let ¢ be a group containing an clement of finite order n (> 1) and
exactly fieo conjugate clusses. Show that G is a finite group of order 2.

Sol. Let a (# €) be an element of group G of order .
We know that C{@={e} and aze
o ua g Cle)
Also ae Cl@ .. Cle=C(m
Cle) and Clo) are disjoint conjugate clasces,
Since G has exactly two conjugate classes, we have
G =Ce)yw Cla)

= G ={e} v Ca)
Let. b(z ) be any element of .
b e C{n)
= b=xlaxforsomexe G
= o) = o(xlax) = o(a)
oby=n ¥ bzae G LAD

We now show that n is prime.
Let i = Im, where I, m are positive integer 5 n.
a'=¢ = am=e¢ = (WHm=e
adeG and of=e = oa)=n
= m=m .. m=n (v m=mw
= m<lm =m= I=1 . nisprime
Now we shall show that @? =e.

Groups and Normal
Subgroups
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If possible. let a e
a? e Cl) (v Cle)={eh
= at = yluy lor somey (ze) e G
Let a? = yhayt ..(®
o = a? =) = rhay ) (Using (2))
= a®" = ortay®y rfayy = ytaFyayt

= yhaeay® = y ity =yt (ylay) yh = y D gyt
By P.M.L, ar =y"aym ¥ meN
In particular, a® = yray
= a2 =etae=a (- yzeeG = om=n

= @ la=e.a = e l=¢ = w2 -1 . almy=m

This is impossible, because » is prime.

a?=e
olM=2 ie, n=2
N = oy=2 vbzee G

G is abelian.*
- Cim = {a} and thus G = {e} U {0}
= oC)=1+1=2.
Hence the result holds,

1.9. NORMALIZER OF AN ELEMENT

Let G be a group. For a € G, the set {x € G : ax= va} is called the normalizer of
the clement @ in G and it is denoted by N(a).

Thus, the normalizer of @ contains all those elements of (G which commute with a.

Remarks 1. We have ex=2x¢ VYaxe (L

- N =G

2. If 3 is an abelian group and 0 € G, then ax=xa Vxe G

- N@y=0G vVaeG.

Theorem 2. Letf (7 be a group. For any a in G, the normalizer N(w)of ain Gis a
subgroup of (3.

Proof. We have N(m) = {xe G : ax =xa}

e € N, because ae=en - Na) is non-empty.

Let x, vy & N(@). .. ax=xa. ay=ya

Now alxy) = (@x)y = (a)y = x(ay) = x(ya) = (xy) a
= alxy)={ya .~ xye N@

*leota, be (. .~ {abf=eanda®ti=ee=c

= (@)= = abab=onabdb = ba=ab.

Self-Mnstruciional Material




Let xe N{o SOOx = xa

= rHaoe? = vl = ey = () !)
= (x'ae=e(gxrl)y = a = qx~}

= axl=xla - r!e N@

N(r) is a subgroup of G5,
Remark. The normalizer N{a) may not be a normal subgroup of G.

Example 4. Give an example to show that in a group G, the normalizer of an

element is nol necessarily a wormal subgroup of G,

Sol. Let X ={a, b, c}. Let S, be the set of ail one-to-one mappings of X onto X.
S;] = {Il (a‘b)n (bc)- (Ca-), (ﬂchy (G’Cb)}
Here the mapping (@b} stands fora - b, b > o, c— ¢

The set S, is a group wich composition of mappings as the binary operation. We

(ind the normalizer of the element (ab) of §,.

and

We have Wab) = (@] .. 1e N{{ab)
Also (b)) € N((ab))
We find (ab)(be).
Under (ab¥be) :asa—-b bosc—oecoaboa

{ab)(be) = (abe)
Under (be)ab) :a = b—e,boa—a,c—c— b

(beXab) = (ach)

(b (be)} = (be)(ab)

(be) & N((ab))

Similarly (ca). (abe). (ach) are not in N((ob)).

N(ab)) = {1. (ab)}
Since in general, a normalizer is a subgroup, N((ab)) is also a subgroup of 5.
Now D) e 5, and  (ab) € N{(ub))

(beXab)ibey ! = (beab)(be) = (be)(abe) = (ac) € N{(ab)),

N{(h)) is not a normal subgroup of S,

Theorem 3. If (G is a finite group and a € G, then o(Cla)) = ;%V(-%))—).

Proof. We have C(o)={vlax: xe G

Let A be the set of all cosets of the subgroup N(a) in G,

Defined: A > Cl) by Ny vy =x'ax Yrxe G

¢ is well defined. Letx,ye G and N{a) x=N{a}y

= xyl e Ni@) {(~ la=1Ib @ ablell)
alxy™) = (e Va = sHaxy Yy =x Gy 'a) y

(e ly) = (Ciolay) = vlav=ylay
o(N(a)x) = ¢(N(m)y).

¢ is well defined.

Lo
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Algebra ¢ in one-one. Let. x,ye G and $(N(@)x) = ¢(N(w)y)
= xlax=ylay = (xlax(yiy) = (xloylay)
Hauy M y=xTxylay = s Haxy )y y!l=xxw ey y!
Gex ) (axy )y ™) = e Dy T vy = ayH=@"Na
xy'e N@@ = N(nx=N(@y

NOTES

byl

¢ is one-one,

¢ is onto. l.et y € Cla)
Are G:y=xlax

Now N@@xe A and oN(@a) =x"ax =y.
¢ is onio.

There is one-to-one correspondence between the right cosets of N{a) in G
and the conjugates of a.

Since the group G is finite, we have

o(Cla))

L}

number of elements of C{a)

number of conjugates of a

number of right cosets of N(@) in G (- Q is 1-1 and onto)

o{G)*
o(N(a))

o)
o(N(a))

In other words, the number of conjugates of ¢ in G is equal to the index of N{a)
in G f.e, ofCl@) =[G : N(@).

o(Cla))

C o(G)
Theorem 4. If G is a finite group, then ofG) = E ————, where the sum rins
~4 o(N(a))
over elements a, faken one from each conjugate class.
Proof, The relalion of conjugacy is an equivalence relation on G.
This relation partitions G inlo mutually disjoint conjugate classes.

Since G is finite, the number of distinet conjugate classes will be finite, say k.
l.et C{a) denote the conjugate elass of a. Let the k distincl conjugate classes of G be
Cla)). Clay, ..., Clay).

G=Ca)ullapwv.... v Cla,)
o(G) = o(Cla)) + ofCla) + ... + o(Clay))

olG) oAG) o) z": o(G)

T NGy oM T o) o(N(a,)

z O(G)
~ o(N(a))’

where (he sum runs over elements a, taken one from each conjugale class.

o((z)

* This is because the distinct right cosels of N{a) in G forms a partition of G and the
order of ench right coset of N(g) is same as the order of N{g).

8 Seif-Instructional Material



Example 5. If in g finile group (& an element ‘o’ has exaclly luo conjugates,
shote that G is not simple.

Sol. We have o(Cla)) = 2.

Sinee G is finite, we have

o 0lG)
oGl = N@)
1(8))] -
“o(N(a))

No. of righi. cosets of N{a}in G =2
Indexof Ni@)in G=2
N({a) is a normal subgroup of G. (Th-is is a standard result)
If possible, let.  N(u) = {e}.
aeN@ = a=e¢ = Ca)=C) ={e = ofC{) =1, which is
impossible.

2, N{a) = {e}
If possible, lel.  N{(a) = G.
ol G) o(G) L .
= —=1 N = ! s G 15
= o(N@) ~ oG = ofC{@) =1. which is impossible
Ni{ay= G

Neither N{u) = {e} nor N(a) = G.
The group G is not simple.

1.10. SELF CONJUGATE ELEMENT

Let. GG be a group. An element a of G is said 40 be self conjugate if no element. of
G, other than a, is conjugate to a.

. xlax=qa YxeG

Equivalently ax=xa.Vye (.

Thus, a self conjugate element of a group commutes with each element of the
group.

A sell conjugate element is also known as an invariant element,

Remark. If a is 1 self conjugate element of a group G. then N{a) =G,

1.11. CENTRE OF A GROUP

Lew GG be a group. The set {z e G zx =xz ¥ x € G} i called the centre of the
group G and it is denoted by Z,
ze Z = x=xz Yxeis
= i =x1x) = xlax=z Vxe(G
2 is a self conjugate element of (3.
The centre of a group consists of all its self conjugate elements.
Remark: Z ¢ N(0) vV a € G because
XEZ == xysyxVyeld = m=ax = xe N

Groups and Normal
Subgroups
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Theorem 5. Let G be a group. The centre Z of G is a normal subgroup of G.
Proof. We have Z={zeG:zx=xzV¥xe G}
e € Z because ex=xe Vxe G - 7Z7isnon-empty.

Let 2,7, Z . 2 X=Xz, Zx=xz, Yxe G
Now (2,2, = z,(z,8) = z,(x2zg} = (2, 0)2, = (x2,) 2, = 2(2)2y), Vxe (L

zz,€ Z
et zeZ . ma=xz Vel
= i A=)t = @'k = e
= wwl=1x = zlx=xxr! V2el
rle Z

Z is a subgroup of G.
Let ze Z,xe G
eyl = l=zaa Y =ze=z€e Z
xzx'eZ vzeZ and xe G
Z is a normal subgroup of G,
Theorem 6. Let G be a group. a € Zif and only if N(a) = G.

Proof. Lot ac Z

: ar=xa ¥YxeG
= xe N{g) vxe G
= Nia)=

Conversely, let N@ =G
- ax=xa vxxeG - xel
The result follows.

Corollary. If G is a finite group and a € Z, then o(N{a)) = o(G).

Proof.aeZ = Nw=0G '
o(N{m)} = o((3). (> (s Oinite)
\ .. v g ofG)

Theorem 7. If GG be a finite group, then o{(z) = ofZ) + azz N

sum runs over elements a, taken one from each conjugate class which eontain more
than one elemendt.

Proof. We know that
o(G) = E ol3)

where the

~ o(N(a))’
where the sum runs over elements @, taken one from each conjugate class.
Let e G~ amayor may not be in Z.
Casel,aeZ
= ax=xax Yxrel
= N =G
olG) _ o(G} _
oN@)  o(G)
For each a € Z, we have 28 __
o(N(a))
; O;’;]?;)) =1+ 1+ ... o) times = o(?)

Self-Instructional Material




Casell.ag?Z
axzxaforatleastonexe G . N@cG

_ oG) olG) _ o(G)
) = 6= % AN@) * 24 oy P 2, SN

ael

o(G)

o(G)=o(Z) + 3, Tt

aeZ

where the sum runs over elements ¢ taken one [rom cach conjugate class which eontain
more than one element.

1.12. CLASS EQUATION OF A FINITE GROUP

Let G be a finite group. For a € G, let N{a) denote the normalizer of «.
We have the equation :
o(G)

o(G) =o(Z) + —_—,
“Z; o(N(a))

where the sum runs over elements g, taken one from each conjugate class which contain
more than one element.

This equation is called the class equation of the finite group G.

Theorem 8. If of(7) = p", where p is a prime number and n is a natural number,
then cenire Z + le).

Proof. If .= 1, then o{(G) = p, a prime number.
(3 is a cyclic group and hence abelian.
Centre Zof G =G

ofZy>1 -~ Z=z{e
Now, let us suppose that > 1. Since (5 is a finite group, its ¢lass equation is
olG)
o(G)=o(@) + Y
) & olN(a)) )

agZ = Na=zG = N@cG
By Lagrange’s theorem, let

o{N(a)) = p"= for some 0 <n_<n.

The number 1, cannot be 0, because N(a2) con(ains at. least ¢ and a.

ol _ﬂf__ r-n, _ n-n, -
oN@y  p P TR

olG) .
p/ oiNay e’

o(G)
= p/ % o(N(@))

1

pr,<n = n-n,>0 = n-n,~120

Groups and Normal
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Alzo o((3) = p™ implies plo(G).
olG)
Q) - A7
"/ ("( ) % o(N(a))]
N = plo (ree? = o)z
= VAR

7. musi contain more than one element Le., z = {e}.

-Example 6. If ofG) = p where p is a prime number, then show that G is abelian.

Sol. Let Z be the centre of the group G,
Z is a subgroup of G.
Bv Lagrange’s Hr.eorem. o(Z)io(G) 1.e., o(Z)/p*
ay=1 or p or p?
Since o((3) = p~. where n.= 2, we have Z # {e}.
. o(Z)# L
If possible, let  o(Z) =p.
G-7=%¢. letae G-Z
o ge G and ove Z
For be 7, wehaveba=ab. . be N{a). Thus Z g N{a)
Also ae N anda e Z . 72 N(a)
o o(N(a)) > o(Z) fe,oN@)>p
By Lagrange’s theorem, aN{@))/p*.
Wehave oN@)=p% -~ N@=G.
= g€ % This is against the choice of o.
Char supposition is wrong.
o) #p. - Theonly choice is () = p.
Z=G.Thus.ab=baVa be G

G is abelian.
Remark : The above example gives an inleresting result. as :

‘Giroups of orders 4, 9, 25,49, 121, ... are all abolian.

SUMMARY

The conjugacy relation on a group is an equivalence relation on the group G
and the corresponding equivalence classes parlitions the group (3 inlo mutu-
ally disjoint equivalence classes, called conjugate classes.
The normalizer N{a@) of a in G is a subgroup of G.

olG)
~ ofN{a))
elements a, taken one from each conjugate class.

where the sum runs over

’

If G is a finite group, then o(G) = z




10.

11.

The centre of a group G is a normal subgroup of G.
The number of conjugate classes of a non-abelian group of order p®, where p
is prime, is p¥+p—1.

, where the sum runs over

. . G)
If GG is a finite group. then o(G) = o(Z) + of
gz (N(a))

elements a, taken one from each conjugate class which contain more than
one element.

This equation is called the class equation of the finite group G.

REVIEW QUESTIONS

Show that in a group G the cyelic subgroup generated by an clement a of G is
contained in the normalizer of a.

Let @ be any element of a group G. If x, y € G give rise to the same conjugatce of
a then they belong to the same right coset of N{n) in G,

Let a be any element of a group G. If x, ¥y € G belong to the same right coset of
N in G, then they give rise to the same conjugate of a. '

Show that the normalizer of a self conjugaie element. is the whole group.

Let Z be the centre of a group G. If @ € Z then show that the cyclic subgroup of
(= which 15 generated by @ is a normal subgroup of G,

If (G is a non-abelian group and o(G) = p?, where p is prime then show that the
centre of (3 has exactly p elementis.

Show that a group of order 9 is abelian.

Show that the centre of a non-abelian group of order 125 always have 5 ele-
ments in its centre.

Let. H be a subgroup of the centre Z of a group G. If G/H is cychic, show that G is
abelian,

If o(G) = p™, where p is a prime number and n is a natural number, then prove
that N % # {e}, where N (= {e}) is any normal subgroup of G.

Find the number of conjugate classes of a non-abelian growp G ift

@) o3y = 27 (8 oGy = 125.

Groups and Normal
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GROUP AUTOMORPHISMS

Learning Ohjectives
2.1 [Introduction
2.2 Aulomorphism

2.3 llomomaorphism

2.4 Kernel of a Homomorphism
2.5 Isomorphism

2.6 Tsomorphic Groups

2.7 TInner Automorphism
2.8  Group of Automorphisms
2.9 Charaeteristic Subgroup
o Summary
o Review Questions

2.0 LEARNING OBJECTIVES

After going through this unit, you should be able to:
s automorphism, homomorphism

e kernel of a homomorphism isomorphism

¢ isomorphic groups.

2.1. INTRODUCTION

We know that a one-one homomorphism from one group into another group is
called an isomorphism. In case both groups are same and the homomorphism is
one-one and onto then we can derive some very interesting results. An isomorphism in
such a particular case is called an aurtomorphism. In this chapter, we shall also discuss

inner automorphisms and group of automorphisms,
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2.2. AUTOMORPHISM

A mapping ¢ from a group G to itsell is called an automorphism of group G if
O dab) =i oM Va. be G (if) 0 is one-one
(fify ¢ is onto.
Hlustration. Let G be a group. The identity mapping i : G = G defined by
ix) = x, x € (7 is an aulomorphism. This automorphism is called (he trivial
automorphism of G.

2.3. HOMOMORPHISM

A mapping ¢ from a group G into a group G’ is called a2 homomorphism of G
into G if plab) =¢lay o)y va be G

If binary operation in (3 i5 * then ab stands for @ * b and if the binary operation
in G"is ¥, then ¢(a) ¥ ¢(b) is written briefly o(a) §(b).

2.4. KERNEL OF A HOMOMORPHISM

If ¢ is a homomorphism of group G into group &, then the set
fa € G : ¢(a) = identity element of G}
is called the kernel of the homomorphism ¢ and write ker ¢.
Sinee ¢(e) = €', s0 e € ker ¢.

ker ¢ is always a4 non-empty set.

2.5. ISOMORPHISM

A mapping ¢ from a group G into a group G’ is called an isomorphism of G into
G if
(1) ¢ i= a homomorphism i.e, 0(@h) =0@ o(h) Ya be G
(i) ¢ is one-one.
Rewark. If ¢ : G — (&' is a mapping and we write ¢(ah) = d(a) 6(b), then it should
be clearly understood that
() ab is that element of the group G which is obtained by_ applying the binary operation
of G on the ordered pair (@, ) € G x G. .
GI) ¢(a} p(b) is that element of the group G’ which is obtained by applying she binary
operatien of G’ on the ordered pair (p(@), o(b) € G’ x (3,

2.6. ISOMORPHIC GROUPS

Two groups (G and G’ are called isomorphic groups if there exists an isomorphism
of G onto G*. If groups (G and G’ are isomorphic groups then we write G = G

Group Automorphisms

NOTES
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Remark. If groups (3 and (3 are isomorphic then there may exist. one or more than one
isomorphism from G onto (3°,

IMPORTANT RESULTS

If & is @ homomorphism of greup G into group (', then dle) =¢’.
If ¢ is a homomorphism of group G into group (7, then
o) = jofw)})’ Yae G
3. If ¢ is an isomorphism of a group G into group G'. then
ofa) = oip(a)) Yae G

4. Let o: G > G bea homomorphism. The homomorphism ¢ is an isomorphism

pt—‘

of G into 7 if and only if ker ¢ = {e}.

Example L. Let G be a non-ubelian group and f: G — G be defined by f(x) = xh
Show that fis not an antomorphism,
Sol. Letx, y e G.
foy) = (et and f() ) =57ty
Since y-'x™! and x"1y1 may not be equal, we have
Fixy) # fi) f(y). in general.
fis not an automorphism. .
Example 2. lef G = (a) be a eyclic group of order 12, Lel f: G — (i be defined by
ftx) =x% & € G. Show that fis not an automorphism,

Sol.a,a®e G and = ad.

Also, fiay = & and
)r("f)) = (05)3 = ib= am a3 = et = ﬂa
fla) = fld® . fisnot one-one.

fis not an automorphism,

Example 3. Let G be the group of positive real numbers wnder multiplication. Lel
¢: G — G be defined by o(x) =x% x € G. Show that ¢ is an untomorphism,

Sol, We have o) =12, xe G.
¢ is a homomorphism. Letx, ye (v
$(xy) = ()% = x5 = 0() 90
¢ is a homomorphism from (x 10 G.
§ is one-one. Lety, y € G and ¢(x) = 60,
= xi=y? = xy=+y = x=y (. x yarehoth+ve)
PI=0(y) = x=y . 0isonc-one '
disonto. leltxe G

A is a +ve real number.
Jx is also a +ve real number.

We have o) = (ot =x -~ ¢isonto.
¢ is an automorphism of G.

Example 4. Let G be a group. Show that the mapping x = x from G o G is an
atlomarphism if and only if GG is abelian.
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Sol. Let. f: G — G be the mapping defined by f{x) =x1. x € G. Let the group G be
abelian.
fis well defined. Since inverse of an element. is unequally defined, the mapping
fis well defined.
fis a homomorphism, Leix, ¥, € G.
fixy) = (o) =y 't = a7yt = ff ) G ylxt=xlyh
[is a homomorphism.
fis oneone. Let x,ye G and f(x)=f(m.
= l=y! = @hHi=ghH! = x=y
fis one-one.
fis onto. Letxe G.
e and fxh=@yl=x
fis onto.
[ is an automorphism of the group G.
Conversely, lot fbe an automorphism of group G. Let x, y € G,
: fly) = f)f(y) = "ty = () = f(ya)
Since fis one-one. we have xy = yx.
The group G is abelian,

Example 5. Let G be any abelian group in which a? 2 e for some «u € e for some a
€ §. Show that G has non-trivial automorphisms.

Sol. Define f: G Gby f=x"xe G
Sinee G is abelian, fis an automorphism.
If possible, let be the trivial automorphism.
=i vxe G
In particular, f(n) = i)
= al=a = axrl=an = a°=e, which isimpossible.
[ is a non-trivial automarphism of (3.
G has nontrivial avlomorphisms.

Theorem &, Let { be an antomorphism of a group G. If H is a subgroup of group
G, then f(H) is also a subgroup of G.

Proof, We have fH)={f(h): h e H}.

ecH = fle fH) . fH=¢
Le f(h,), fth,} € f(H)
Now DU ™ = f) fh,™ = fib B, ™) € fH)

(- hphyeH = hh,'eH)
f(H) is a subgroup of G.
Theorem 2. Let f be an auistomorphism of a group G. If N is a normal subgroup
of group G, then f{iN} is also a normal subgroup of G.

Proof. We have f(N)={f(n) . ne N}

ee N = flye AiN) . fNy=z¢
Let flny), fin) e N

Group Automorphisms

NOTES
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Now for) (o)t = f Mo,y = flnny,™) € f(N)

(- n,meN = nmnleN)

J(N) is a subgroup of G.
Let firi) € fAN) and g € G. Since [ is onto, there exists x € G such that g = f(x).
Now gl gt = f&) £ ()™ = fx) fom) fix™") = fenx™) € f(N)
) (- neNxelG = xux'leN)
f(N} i5 a normal subgroup of G.

Example 6. Let G be a group and Z, the cenfre of G. If fis any automorphism of
G, show that fi7)c 7.

Sol. We have Z={ze G zx=xzVxe G}h

Let fiz) € f(Z). let x be any element of G. Since fis onto, there exists y € G
guch that f(y) = x

Now fizye f(7) = ze?
= zy = yz = flz2y) = flyz)
= fA =1 @)= [&x=xf)
. @ el DR (VA Y=t A

Example 7. Let G be a group and f, an autonmorphism of G. If fora e G,
N(a) = {x € G : ax =xa)}, show that N(f(a)) = f(N(a)).

Sol. We have N(@) ={xe G : ax=xa}.

. N{fia)) ={ve G: flx) x = xfun)}

Let x € N{f(n).

= fx=xfl®) = fl@)fy)=fOfa) (Takingx=f),ye Q)
= RKoy)y=fyay = ay=yu (- fis one-ong)
= ye N@ = fine fiN@) ie, xe (N}

- N{f(m) < AN(m).

Now, let be fiN(@)) .. Fce N :fiey=b

ceNag) = ac=ra
flae) = feay = fla) fle) = flo) fle)
fimb=bfley = be NFa)
AN@) c N(fa).
Combining, we get N(fia)) = f(N(a)).

U

U

2.7. INNER AUTOMORPHISM

Let G be a group and let @ be any arbitrary buc [ixed element of G.
Let £, be a mapping from G inte G defined by f () =o'xa, xeG.
f, is well defined. Let x. y € G.
x=y = agla=alye = [W=[O
f, is well defined.
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' f is a homomorphism. Let x, y € G.
L0 = aHxpa = a7 (c(aa yda = (e ya) = [, ,0)
f, is @ homomorphism.
f, is one-one. Letx,ye G and f () =f,0)
= a'xa=aya = alr'xa) a”' = ala ' ya) a!
= (o) xlaa D) = (e ylwa™) > exw=eye = x=y
[ is one-one,
f is onto. Letxe G,
axa' € G and
f(axa™) =« Waxa o = (@'a)x(a\a) =exe =x
Givenxe(y, Jaxal e G: f(axa)=x
f, is onto.
{, is an automorphism of G.
For a € G, the automorphism f (x) = a”'xa, x € G is called an inner
automorphism of the group G corresponding to the element a.

An automorphism which is net an inner aulomorphism is called an outer
automorphism.

Example 8, Let G be the addilive group of the integers. Find the inner
automorphism of G corresponding to the element 5 of G.

Sol. The inner automorphism £, of group  corresponding to the element @ of G
is defined as f(®) =a"'va ¥V x € G.

In this particular case, the binary operation is ‘+.
=0 +x+5 VxeG
ie., f;(x)=x vieG.

Example 9. Given an example of a group in which the inner automorphism
corresponding to tuwe distinet elements of the group may be same.

Sol. Let G={1,- 1,#, -} G is a group with usual multiplication as the binary

operation,
le G and fil=()'x(l) YxeG
R =M x()=x YxeG
Also, -1eG and [ W=C-D'W®E1) VYreG
’ f=CNx-D=x YyxeG
fi=fo

2.8. GROUP OF AUTOMORPHISMS

Let. (3 be a group and let A(G) be the set of all automorphisms of G. We shall
show that the set A{G) is a group with respect to composition of functions as the binary

operation.
Let f.8e AG).
For xe G (@)= figly e G
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fgis a mapping from G to G. Let v, y e (5.

(@) xy) = flgley) = f8() g0} = fz(®) fEB)) = U UR0).

fg is a homomorphism.

Let rye G oand (B)x) = ).
= fg()=fgy) = glx) =gk (- [is one-one)
= =y (- & s one-one)

fg is one-one.
Let x € GG, Since £ 1s onto, Iye G fm=ux
Also, y € G and g is onto, so0 3ze G:gl@m) =y
Y x =) = fg2)) = ()2
Jiven xeRIzeG: (AR =x
[ 15 onfo.
fg is an automorphism of the group G ie, fg € A(G).
- Composition of functions is a binary operation on A(G).
Associativity. Let £, g. h e AG).
For xe G, (fighix) = flghix)) = flgthx))
Also (2 (x) = ((mh(x) = fig(h(x))
fgh)(x) = (@), Yxe G
flehy=(fmh v f g he A
Existence of identity. Let the identity function on G be denoted by L.
i is one-one onto,
Also, for x. y € G. we have i(xy) = xy = i(x) iy).
i is un automorphism of G Le, i € A{().
Also, Tor fe A(G),
(DR = fia) = fly) and N = ilf()) = /().
WM =f=>Hx) Yxe s
fi=r=if VfeA@.
‘T is the identity of A(G).
Existence of inverse. Let fe A(R)
f is one-one mapping of (i onto G.
F exists and is also one-one onto.
Let x,ye (5
let Fly=x and i =y.
- fy=x and f0)=y
fley = £ ) = FHEYN = N =iy) = 2y = 1) 00
f!is a homomorphism.
[l is an automorphism of G i.e, f1 € AQ).
Also fi=i=fY

Flis the mverse of f.
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A(() is a group with composition of mappings as the binary operation. The
group A(G) is called the group of antomorphisms of the group G.

Example 10. Let G be a cyclic group of order 4. Show that the group of
aufomorphisms of U is of order 2.
Sol. Let G=le a, af a® whereat = e
o) =1, 0@ =4, 0(@d® =2, alad® =4
¢ @?=ca'=¢.a’ze (@2=ab=a?#ec, @ P=a"=aze @) =a?=¢)
Let. f be an automorphism of G.
olfy =0y Y be G

= fley=e
fim=aord (: ol =olad®) = 1)
fa® = a? (v There is only one elementi of order 2)

fila)=aora®
Since an automorphism is also 1 — 1 and onto, we have only two possible
automorphisms, say ¢ and y defined as :
o(e) = e, p(a) = a., Pla*) = a, o(¢%) = &°
and yie) = e, wa) = ¢, wod = o yw(@®) = a.
o(AG) =2.

2.9 CHARACTERISTIC SUBGROUP

A subgroup H of a group G is called a characteristic subgroup of the group G
iffHcH ¥ fe A{G).

Example 11. Let G = {e, a, o, a5} be a cyclic group of order -1. Shouw that H =
{e, a?} is a characlerisiic subgroup of G.

Sol. Sinee G is a cyclic group of order 4. we have A(G) = {¢, y}, where
tle) =e, d(m=a, o@)=d’ ¢ =a®

and we) =e ywi) =, wod) =a®, y@d =a
o(H) = {0(e), $(@D)} = {e, v} =H
and w(H) = {y(e), wia® = {e, a¥ = H.

H is a characteristic subgroup of G.
Example 12, Show that every subgroup of a finite eyelic group is a characterisiic
subgroup.
Sol. Let G = (a) be a finite evelic group of order #.
o G=la(=e) a o .....a"1}
Let 1 be any subgroup of G,

. H = (@) for some integer m, where 0 £ m < n. Let { be any automorphism

of G.
fla) € G. Let fla) = ¢* for some % such that 0< b < n.
Let heH .. &= for some integer !
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Now ) = fl@™H = flarm
= (flap™ = (™ = ot
=@M+ e H
e HY fe A(D), he H
 is a characteristic subgroup of G.
Example 13. Show that « characteristic subgroup of a group G is a normal
suhgroup of (i,
Sol, Let H be a charaeteristic subgroup of group G.
His a subgroup of G and f{H) c H V fe A(G).
= fiell ¥ fe A(Gyandhe H ..(1}
Let hellandge G
ghe! =@ hg? =1 (),
where fg_l is the inner automorphism of G corresponding to g 1.
Using (1), fg_l (heH
= ghg'e HY he Handge G
H is a normal subgroup of G.
Example 14. Let S be the conjugate class of a non-identity element of a group G.
Let ¢ € A(G). Show that §(S) is a sheo the conjugate elass of some non-identity element

of G.
' Sol. et S be the conjugate class of a(z e} € G.
S={xlax:xe G}

#E) = {p(tax) v e G}
Now o@D ¢(a) 9(x) = ($()" (a) 9(x)

ofr-lax) is a conjugate of o(¢), because $(x) € G

3(8) ¢ Clo@)] Similarly, Clo(@)] < 06s).

(S = Clp(m] i.e., 9(S) is the conjugate class of r{un-(ri\-'ial element o) of G.

B =e = o) =0¢() = a=e whichisnot true)
Example 15. Let G be a finite cyclic group of order n. Show thal o(zl(G)) =),
where s the Euler’s function.
Sol. Let G =(a).
o o@=n G=l=a,a, a% ... a1}
Tet fe AR
flaYy= (fla) for ke Z

[ is completely known, il we know f(a).
Let  f() = @™ € 5, where m is some integer such that 0 e m <n.
Sinee [is an automorphism,

)y = fla = fi) =e.
" ol <n
If possihle, let o{fta) =A, 0<h<n
fan*=e or fah=fle or ao*=e
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o{a) < n, which is impossible. Group Automorphisms

off(a) =n
Let (m,n)=d, whered21 Let d> 1.
[y = (™)™ = (ammid = (@)™ = ¢ NOTES
o{fie)) < n, which is impossible. (v nid<m

d cannot be greater than 1 and we haved=1 ie, (m n)=1
If fe A3, then fin) = o™, where (m, n) = 1.
o(A(G)) = o(m).

Theorem 3. The set 1(G) of all inner aqtomorphisms of a group G is « normal
stubgroup of the group A(G) of wutomorphisms of G.

Proof. The elements of [{G) are also automorphisms of the group G.
() € AG)
The identity mapping (@} of G is an inner automorphism of (G because for x € G
) =x=elxe=f(x). . TG)=¢.
Let f, f,e IG).
For xe€ G, (f,f-)) = f (£ (&) = [0 eb™) = £, (bxb™)
=plbxb b= ) x (b'B) =exe=x = i(x)
Also (fb-lfb)(.t‘) = [y (fb(x)) = fy Ly = Y UO b))
=(hb D axdb D =ae=x=ix
(pf-)@) =i =(faf)x) V xe G
= Wi =i= iy = (7= Fa
Now for x € G,
() ™H0) = f-0W= £ (f (X)) = £ () 2 b7 =1 (bab)
=a ' D a=(@' ) x Ol ay=G ) x (0t @)= i, (x)
LY =fa, (D Vxe G
fa(fb)nl = fb”:‘&
f{) e (G (v a,beG=blae G = fn, € G

I{G) is a subgroup of A(G).
Let. fe ) and fe A,
Forxe G, (f,F)M =) @) = AL
= fla” (¥ @) = fie) S flay = flat) (FHE) flo)
= fla)x fla) = )™ x fle) = [ 4(%). ¢ =9
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1,0 =
i, e IG) (v flae G = [, € lG)
I{(3) is a normal subgroup of A(G).
Example 16. /f G = S, show that I{G) = G,

Sol. We have G = 5, and §, is the set of all one-to-one mappings of the set
{a, b. ¢} onto itself.

o S,={L{uh), bo) (re), (abe), (e b))
We have already seen that the centre 7 of 8, is {T}.
Also, [{(G) = GFZ
I{G) = GAI}
I((3} = G because G4} = (5.
Remark: For the above group, we have

I(G) = {fl’ f(u & f(bc)’ )Quc)’ f(a bc}}'

SUMMARY

» Let f be an automorphism of a group G, If H is a subgroup of group G, then
f(H) is also a subgroup of G.

e Let fhe an automorphism of a group G. If N is a normal subgroup of group G,
then fIN} is also a normal subgroup of G.

s Far an abelian group, the only inner automorphism is the identity mapping
whereas for non-abelian groups there exists non-trivial inner automorphisms.

¢ The set I(G) of all inmer automorphism of a group G is 4 normal subgroup of
the group A(G) of automorphisms of G.

s If (G is the sel of all inner automorphisms of a group G and 7 its centre,
then (G = G/,

REVIEW QUESTIONS

1. Show that the identity mapping on a group G is an automorphism.

2. Let G be the group of integers under addition. Show that the mapping : G = G
defined hy ¢(x} =~ x, x € G is an automorphism.

8. et G boethe group of complex numbers under addition. Show thar the mapping ¢: G > G
defined by ¢(z)= z, z € G is an sautomorphism.

4. If Gis a cyclic group of order 12. find the set of all automorphisms of the group G.
Let G be a (inite group. Let fbe an automorphism of G with the property : f(x) = xfor x €
G if und only if x = e. Show that every g e ( can be expressed as {f(x))x7 for some x € G.

6. Let G be a finite group. Let fbe an automorphism of G with the property : fix) =xlorx e
Gif and only if x=e. If 2 =, then show that (3 is abelian.

7. In the group {1, = 1, {, — i} with respeet Lo usual multiplication, show ihat inner
attomorphisms of Lhe group corresponding Lo § sand — I ure identical.
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10.
11

12,

Let (3 be a group and ¢ an automorphism of G. If @ € ( is of finite order, then Group Automarphisms

o(p(a)} = ol0)..

Let G be a fnite eyclic group of order n. I the mapping f: ¥~ ™. x€ G is an automorphism,

show that (m, n) = L.

Show that the group of sutomorphism of a cyclic group is abelian.

Let G be an sbelian group. Show that H = {x & G : " = ¢, n being a fixed integer} is a

characteristic group of G.

If (3 is u group, N a normal subgroup of (3, H a characteristic subgroup of N, show that H

is & normal subgroup of G.

NOTES
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STRUCTURE THEOREM FOR FINITE
ABELIAN GROUPS

STRUCTURE

Learning Objectives

Introduction

External Direct. Product

Internal Direct Product

Exponent of a Group

Structure Theorem for Finite Abelian Groups

s Summary

e  Review Questions

3.0 LEARNING OBJECTIVES

After going through this unit, you should be able to:
« direct product

« exponent of a group

s struciure theorem for finite Abelian group.

3.1. INTRODUCTION

In this chapter, we shall prove a very important famous classical theorem called
‘structure theorem for finite abelian groups’. This theorem is also known as the
‘Fundamental theorem on finite abelian groups’. For this purpose, we require
the concepts of external direct product and internal direct produet.

Self~Instructional Material




3.2. EXTERNAL DIRECT PRODUCT

Let G,, G, ......, G, be any n groups. Let G be the cartesian product G, x G, %

...... x G, of the groups G, G, ......, G,
G=G xGyx...... xG =gy 0y va) a;eG, isisn}
For (@, g, ... @), by, by o b,) € G, we define the product
(@) O o) (b by B ) as (@b aghy, b))

where the product ab, in the ith component is the product. of the elements ¢; and b; as
calculated in the group G..

This product is well defined binary operation on G, X G, % ..., x G fe,

on G,
Now we shall show that G is a group relative to this product.
Let. a={a, 0 .. 0,), b=(by, by, ... b)),

Associativity.
atbe)=(a,. ay o, @) (B by b)) e 0 )
= (o, g ey 0y e, byey, o b))
= (a,(b,ep), aylbyey), ... a (b e )
= ((a,b)e,, (@bye,, ... (a,b,)e,)
=(ab,, ab, .....ab)c, cy ... ) )
=ty Ugy ooy @ )0, by DY 0 05 6,) = (e
aibe) = (ab)e,
Existence of identity. Let e = (e, e,, ....... en); where ¢, is the identity of the
group G, 1 €62

Now ae= (4, Ay, ..., @ )&, €, ...... se,) = (e, e, ... s @,8,)
={a,. 0y a)=a

Also e = (g, ey, ..., €)@, Uy, ..., 0,) = (&161), Colly, ...... > e,)
={a,. gy, ...... ,a)=a

ae=a=ea YaeG
e= (e, €4 ......, &,) is the identity of .

Existence of inverse. For ¢ = (¢, ,, ...... ca), let @ = (a7 a7t , a7,
where ¢! is the inverse of a, in the group G, 1 Si <.
Now o' =@, Ay ..., a a, a7t a7
= (0,70 aa,7, s = e, ey e) =0
Also ada= @ a7, ... ca, ey, ay ,a,)
= (a,tay, 700y, a7t a) = (e, e, o, ) T e

aqd’=e=da'e
o it the inverse of the element a of G.
G =G, %Gy % ... x G, is a group under the binary operation defined by
(@), @y oot @YD, by, . D) =0 )by, anby, o a D)
for (@,ay ..,a), (b b, ....b)e G
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Ihi."\ gl‘(lup 15 ('.a“(‘.d 'he group Df extel‘nal direct prodUCt Of th(! g‘r(lu[).‘n {'1‘
(‘.I PN (1
Agy venieny n

Remark. The external direct produet G, x G, x ... % G ol the groups G|, G, ... G 15

abelian if and only if the groups G,, G,...... .G are all abelian,

For example, let G = R° % R® x R®, where R® is the set of all non-zero real
numbers.

We kinow that R® is a group under usual multiplication,
For (a,. G, ug), b, by, by € G, we deline (a,, ay, a5) (b, by, by = (a,b,. ayh,,
a,0.).

Under this binary operation, G is an abelian group. The identity ol Gis (1, 1, 1)

and the inverse of the element (x. y. 2} is G is [l 1 l]
Xy oz

Example 1. Let G, be the group of integers under usual addition and G, be the
group of non-zero real numbers under usual multiplication. Show that the external
direct product G, % G, is a group.

Sol: Wehave G, >xG,={(@,a): 0, € Z ay¢ R°}

For (u,, ap), (b, b)) € G, X G, define (r,, a)(b,, by =(a, + b, ub)) e G, <G,

Associativity. Lel (a,, a,), (b, by}, (6, ¢ € G ® Gy,

Ly 0y (B by, ) = (o, al)(h, + e, byey)

= (o + (b e, aythye)) = ((a) + b)) ey (ayh) )
={u, + by, ah)e), ¢ = (0, )b b)e,, )
The product of G, % G, is associative.

Existence of identity. (0. 1) € G, X G, Let. (n, a) € G, x G,

Now (1, a0, N=(a, + 0, a,. ) = (1, ay)
and ©, Ya,, a) = O+ a, Lay) =(a,. ay).

. a )0, ) =(a;, a)) =0, )a,. a)
(0, 1) is the identity of G| %X G,
Existence of inverse. Let (1,, a)) € G, X G,
a € % a,e R
-3, €Z and g, +(-a)=0=(a)+a
1 1

1
Also —eR® and a,. —=1=— .0,
ads 75} Qg

Now {(a,. (1'2)[— al,-l—] = (31 +(-ay) ay. i] =0
s a
and [—al, ]({I], a,) = ((— a1)+al,—- az] o, 1)

1 .
[— s “a—] is the inverse of {u,. a,),
2

G, x G, is a group.
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Let  (a,. ay). (b, by)e G, X G, Structure Theorem for
(@, ﬂ'g)(bl- bg) = (a, + b!, ﬂzb.) — (bl +ay, 1)2(1'2) = (bl’ bz)(“v a,) Finite Abelian Groups
The external direct product G, X G, of groups G, and G, is an abelian group.
Example 2, Show: that G, X G, is an abelion group if and only if G, and G are
both abelian groups.
Sol. Let (g,, &), (g]. g € G * (.
G, % Gy is abelian

NOTES

iff (&, 8. (8. 8) = (&, &8, &)
iff €.2, 8,8)= @48, 8,8)
i g8 =88 and g,z 84,

iff G, and G, are both abelian,
The result holds.
Example 3. If G, and G, be o cyclic groups of orders 2 and 3 respectively then
show that the external direct product G, %< G,of G, and G, is also a cyclic group.
Sol. Let G,=(@ and G,= ).
G,={e, ay and G,=l{e,, b, b3,
where e, and e, are the identities of G, and G, respectively,
Now G, x Gy ={(e,, &), (¢,. b), (e, U9), (a0, ey, (0. b), (0, b}
The external direct product GG, X G, is a group of order 6.
Since G,. G, are abelian, the group G, X G, is also abelian.
We have ol@y=2 o(l)= 3.
Now (. Dye G, xG, and (a, D)#(e.¢)
@by = b)=(e, bH = (e, )
(@, b)® = (@, b%) = (a3, e,) = (e, e) = (@, &) # (¢,. €)).
of{a. by = 3.
Since o((a, b)) must divide o{G, X Gy} i.e., 6, we must have o((a, b)) = 6.
The group G, X G, of order 6 contains an element of order 6.
The external direct product G, X (i, must be a cyclic group.
Example 4. Let G be any group and I = {(a, o) : a € GY. Show that I is a

subgroup of the group of external direct product G % G. Further H is normal iff G is
abelian.

Sol. We have H= {{x, a7 :0e G}
Let e be (he identity of G.

i e,e)e H . H=z4é

Let (a, ). b.bye H

Now (a, )b, by =g, b, bV =(@h' . ab e H
(v abeG = able )

1 is a subgroup of G x G.
Let G be abelian.
Lel (@, m)e H and (g,,8) e GxG.
w8 g, g )7 =g e &M@ 8,7 = (8,08, £,08,7)

= (ag,&,"", 0g,&,”") = (ae, ae) = (a. @) € 11
H is a normal subgroup of G x G.
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Conversely. let I be a normal subgroup of G x G.
Let e G ~ (0, beGxG

(o, Bla, (e, by e H (- (@ aweth
= (or. DM, al{a !, b~y e H = (raa, bab Ve H
= {@.babHeH = g=bab' = ab=({badb"Hb
= ab = bu(b~' b) = ab=ba

G is abelian.
The result holds.
Example 5. If G, Gy, ...... , G be n group then show that
UG, xGyx ... XG)=HC ) x UG x ... . xZG ).
Sol. We have

G, xGyx..... x G, =Ha, ag ...... ca) e Gu1<i<nl
Let. (), 25 s 7)€ Z(Gy X Gy XL X (3,)
= (3 By e 20 Ay a.)

=) By e G HE 2y, o 2)
Y (@, Qg v 1) € Gy X Gy X X Gy,

= (2,0, 20y, ooy 2,0,) = B2y, Uy, o, 0,2,)
= I S AZ) 2y T Uy, e R0, = @LE,
= 2,€ UG, zE 26y, .. 2, € ZG,).

Similarly, we can show that
2 e UG e UG, . 2, € G
implies (z, 29 8) € LGy Gyx *@G )
The result holds.

3.3. INTERNAL DIRECT PRODUCT

A group G is said to be the internal direct product of its normal subgroups
N,, Ny, ..., N, if

B G=NN, ... N
(i7) Given g& Gtheng=mm,.... m,, m,€ N; in a uniquc way.

Theorem 1, Let a group G be the internal direct product of its normal subgroups
Ny N, N

Prove that for i+,

(B N;n N ={e (aeN,beN, = ab=bu
Prool. (i) l.et re N;n N,
= xe N, and xe N,
xeN, = x=e¢ ...e_ ¥, ... € g e e,
vxeN, = x=e .00, . O X, 8,

where each ¢, = e in the expressions of x.
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Sinee every element of G has a unique representation in the form mm, ......m . Swucture Theorem for
— Finite A\belian Groups
where m € N, we havey=e.

o N;nN;={a for i=)
(@yLevae N.be Nj, where 1 #5, NOTES
ae N; = a& GandN;isnormal
alba € N;

= blalha e N;. because bte N;
Also, beN;, = beG and N;isnormal

ba~'b! € N, (- aeN, = a'leN)
aba~'b e N, (- aeN)
aba”'b' € N;nN;

abalbl=e

L

ab(ba)y'=e = ab=ba
This completes the proof,

Example 6. Let a group (i be the internal direct product of its normal subgroups
N, N, Show that

ON, AN, ={e} @ ab=baforae N, be N,
Sol. () Let xe N, nN,

= re N,xe N,

We have x=ecx and x=uxe

Since every element of G has a unique representation in the form m m,, where
m € N, m,e Ny, wehaver=e

- N, nN, ={e}.
(¢iYLetae Nandbe N,

' ze N, = aeG

abal € N,

= abal e N, (v beN, = bleNy
Also, beN, = beG
- ba e N, (- aeN, = a'leN)
= aba b e N, = aba'ble N, AN,
= abathl=e = abbay=e¢
= ab = ba.

Theorem 2, Let a group G be the internal direct product of its normal subgroups
N, Ny , V.. Show that

CaN, xN,x....xN;
Proof. Define ¢ 1 N, X Ny x . x N, — Gby
¢lla, ag .oa)=may ... a, V(@ a, ... )€ Ny xNyx L xN,.
$is the well defined. Let. (0, 0y, ..., 00}, (0, by, ., D)€ Ny Ny x L xN_

*We have adopted the definition of internal direet product as given by Prof. LN.
Herstein, in his book ‘Topics in Algebra®.
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and (. g e @) = (b by i B
a,=5b, Vil1<i<n
= )y e a,=bb, ... b,

= O{a,. ty o, @) = 00D, by, o B
¢ is well defined.

¢ is a homomorphism. Let (0, a,, ..., a,), (0, by, ...l b)e N xN,x .. xN,
o, g oo, )b, by, s b)Y = 0@, by, aghy, a, D)
= (,b)ayhy) ... (@b)
= {1,y e a )(bbgy..... b) R forv;e N x;€ Ni)
=o((a,, ay ooy @) 9Ly, by )
¢ is a homomorphism.
¢ is one-one. Let {7, @y ... ,a ) (b, by, . Jh)e Ny x N x . XN,
and olay,. ay, oo A ) = (79N Y N ) X
Y a4y ... a,= by ... b,

Since G is the internal direct product. of Nj, Ny, ..., N,, we have
a,=b,a,=by ...a,=b,
(), @y oo, @)= by by e b).
¢ is one-one.
¢ is onto. l.et g € G. Since G is the internal direct product of N, Ny, ... N,
there exists m; € N, 1 £ £ n such that

g=mm, .. nm,
sy, my, o m Sy, m, =g
¢ is onto.
¢ is an isomorphism from N, x N, x ... x N, onto (.
SNp XN X ®xN, =G
Le., GzN, x N, x ... x N,

Theorem 3. Prove that a group G is the internal direct product of its normal
subgroups N, Ny, .., N i and ondy if
(H)G=N,N,....N,

()N, AN Ny NN N)=felfori=12 ..., n
Proof. Let G be the internal direet product of its normal subgroups N,, N,,

N,
. G=N\N,....N,. . () holds.
Let de N A INGN, LGN NG N
= de N, and d=dd,... d_di oo d,, where d, € N,
= 28 ... e, dey, ... e, =dd, ... d,_edy, ... d,, where each e, =e.

Sinee representation of elements of G is unigque, we have d = ¢, on comparing
the ith factors, . (i) holds.

Now we shall prove the converse By (), we have G= NN, ... N,
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Let. g € G and we have

wherex,, y;€ N;for 1£i<n

: KXy oo By = WYy e Yy
= 7Y X)W YT T Y e Y e 3D

= E )y Y=y )e

= Wy, ™ s 2y, D = 27Ny A1

(- ab=bavYaeN.be Nj)
LHSof (1) 1sin NN, ... N, and RH.S. is in NIA
. xly, =e (By Using Gip)
= n=xn
Similarly, we can show that.
X=¥Vi=2 8 ... n
XXy o X, SV Yy ¥,

The representation of g is unique.

G is the internal direct product of N;, N,, ..., N
This compleles the proof.

n

Example 7. Let a group G .be the internal direct product of its normal subgrups
N, N, Show that
. G/N,=N, and G/N,=N,
Sol. Since (3 is the internal direct. product of N; and N,, every element of G can
be expressed uniquely as the product of elements of N, and N,
Define ¢ : G — N, by 9@u,n,) = n, fornyn, € G.
Let. aa,, bb, e G
o, @) (b, 6,)) = 0l (b, a,)by) = d(a,b)(a,b,) = azb, = ¢(a,a,) d(b,b,)
(ay;e Ny, b e N/ = a,b, =ba,)
¢ is a homomorhphism
Letn, € N,.
en, € G and flen,) =n,.

¢ is onto.
By the fundamental thearem of homomorphism, we have
Gi/ker $ = N, LD
Let mn, € ker ¢
= ol =e¢ = n,ze = mi,=ne=n € N
kero c N,
Let n, e N,

neeG and o(me =ec
neckerd ie, n €kero
N, cker ¢.
ker¢=N,.
H = G/N, =N,
Similarly, we can show that G/N,=N,,

Structure Thearem for
Finite \belian Groups

NOTES
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3.4. EXPONENT OF A GROUP

l.et G be a finite group. If & is the largest among the orders of all elements ol G,
NOTES then k is called the exponent of G.

In other words, ¥ is the exponent of (he group G il there exists a € G such that
o(@) = k and no element of G has order exceeding k.

3.5. STRUCTURE THEOREM FOR FINITE ABELIAN
GROUPS

| Statement. Every finite abelian group G can be expressed as the internal
i direct product G, x G, X ... x G,, where cach G is a cyclic subgroup of G of order n;
‘ such that n,, /n; and the integers n, are uniquely determined and n iy ... n, = 0o(G).

Proof. Tn the proof of this theorem we shall be using the following result relating
to the order of elements of a group.

“The order of any element of a finite abelian group G divides the exponent of G
Now we begin with the proof of the ‘structure theorem’,

Let G be a (inite abelian group of order n. (> 1).

I We shall prove the resull by using induction on 0(G).

Let n= 1. In this case, the result holds trivially because G = {e} and {e} is a evelic
subgroup of G.

Let the result be true for all abelian groups of order less than n.
l.cl the exponent of G be n, and g, € G such that o{g) =n,.

| Let G, = (g,), the cyclic subgroup of G generated by g

| 1f G = G,, then G itself is cyclic and we arc done.

Let G =G,

- ol
GIG3, contains elements other than € and O(GIG;)=% <H.
1

1 < o((¥G,) < n. By induction hypothesis, let. G/G) = ﬁz xHy % ... x H,,

where each H; is a cyclic subgroup of G (=G/G,) of order n> 1) such that n,,, /n; and

the integers n, are uniquely determined for £=2, 3, ... t—1andmmn, ... 0= 0,
= o(G/G)).

.ot ﬁ‘- =H/G,, where H; is a subgroup of G containing G,, 2 i<t leth eH;
he such that &; = G h, is a generator of the eyclic subgroup H,

Since o(ﬁ‘-) =, we have (R)™ =2 =1,

e, Gk =6y or G =Gy or kM e G (=)

B = g™ for some m; such that | £m;<ny. Let o= (m, 1),

m, = of; and n, = oy; for some B, v, 2 1 and (B.y)=1
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Now og)=n, =0y, = o&") =y,
Since (B, )= 1, we have olg,"P) =y,
- olgy™) =y, = oll™) =y,
Also, o(&) fo(h).
ofhy;)

- n.‘io(h‘,) = o(hi"-') = —n— = ﬂ(h.‘-) =n, O(hl"'} =ny;

Since #, is the exponent of G, we have o(h)/n,.
= nyfoy, = njo; = o=nd forsomed; 21

A = glmi = gluiﬂi = glnaﬁaﬁ.
13
Define g=hig)™ vi=23 ...1-1

g =Gg=Gh " =Gy =T

and 8™ = (g P Y = by gy OB = (g "By < B
=g
o@)=n. i=2.3 ... =1L
Define H=(g)E,) ... &)
H is a subgroup of G such that o(H)nn, ... 0,

let ¢:G — G/G, be the natural homomorphism.

oD = 0@y ... @) = (g2 x () ... x (&)
=T, xH; x ... x H =G/,
Also fAD = AIG )G, ~ G=HG, =G,11 = @g)@)g,) ... ).
The fuct that oGy =n=nn,n,...n,
= 0(g,) 0(g,) 0(g,)... 0(g) gives G = (g) X (&) % ...... X (g,).
Also ol(g)) = o(g) = n such that n /.

This completes the proofl.

Remark. Keeping in view the scope of present book, we are accepting the uniqueness of
the above represencation,

SUMMARY

o The external direct product of greups is alse a group.

o Let a group G be the internal direct preduct of its normal subgroups N, N,
s N Then for i # j, we have

@ N~ N;. ={e} (fae N, be N; = ab=ba
s Let agroup G be the internal direct product of its normal subgroups N, N,
...... . N,. Then G=N xNyx. .. XN,

Structure Theorem for
Finite Abelian Groups

NOTES
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* A group G is the internal direct product of its normal subgroup N,, N, ... N

if and only if
OG=NN,. .. N
ON,ANN, NN LN ={edfori= 1,2, 0

FEvery finite ahelian group G can be expressed as the internal direct
product G, x G, X ... x G,, where each G; is a cvclic subgroup of G
of order n; such that ny,,/m; and the integers n, are uniquely determined and
mny ..., = 0(Q).

REVIEW QUESTICNS

We know that Z is an abelian group under usual addition. Show that Z x Z is also an
abelian group.

Let (3 be the multiplicative group of non zere rational numbers. Show that G X GxXGis
an nbelian group. Also write the inverse of the element (2, - 5, 1/) of G % Gx G,

If G, and G, be any two groups, then show that G, x (=G, % G,.
IfG,, G, and G, be any three groups, then show that G, % (G, xG=(G, % G, x G,

Let a group G be the internal dircet produet of its normal subgroups N, snd N,. Show
that GG = N, x N,
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UNIT NOTES

RINGS

STRUCTURE

l.earning Objectives

Definition of a Ring

Commuiative Ring

Ring with Unit Element

Ring without Zero Iivisors

Integral Domain

Multiplicative Inverse of an Element.
Field

Pivision Ring

A Property of Fields

Scalar Multiple and Powers of Elements of a Ring
Subrings

Test for a Subring

Intersection of Subrings

Homomorphism

Homomorphic Image of Additive Identity and Additive Inverse
Kernel of a Ring Homomorphism

[somorphism

o Summary

o Review Questions

4.0 LEARNING OBJECTIVES

After going through this unit, you should be able to:
s ring

» multiplicative inverse of an element

e ficld
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4.1. DEFINITION OF A RING

A non-empty set R with (wo binary operations denoted by '+ and ‘.’ and called
addition and multiplication respectively is said to be a ring if :

lL.a+b+ed=(+b+c Yo beceR
2, There is an element 0 € R such that
a+t0=aq=0+a VaelR

3. For a € R, there exists an element — ¢ in Rsuch thata + (—a)=0={-a) +a

d,0+b=b+ag ¥YabeR

S.a.(b.e)=(@.b).¢e Ya bceceR

6.a. b+o=@.DH+@.0gand(d+c).a=h.a)+c.a) Va bceR

The element ‘0 is called the-additive identity of the ring (R, +, ). The element
‘— & is called the additive inverse of ¢,

The additive identity of the ring (R, +, .) is represented by ‘0" and it has nothing
to do with the number zero,

In place of ‘+" and *.", the binary operations of the ring can very well be denoted
by other symbols like *, 0, B, @ eatc.

Axioms 1—4 shows that. (R, +) is an abelian group.

Axiom § states that. the hinary operation '’ is assoriative.

Axiom 6 stales that the muliiplicalion is distribulive over addition.

Remark. The binary operations of a ring are generally taken as ‘+ and " but these

aperations have no bearing with the usual addicion and multiplication of numbers,

4.2. COMMUTATIVE RING

Aring (R, +, ) is called a commuiative ring ifa. b= b.a Vabe R

Illustrations:

1. Z. Q, R, C are all commutative rings with respect ro the usual addition and
multiplication,

2. The set {a + ib : a, b € Z} is called the set of Gaussian integers and is
denated as Z[i]. Under usual addition and multiplication, Z[{] is a commutative
ring.

4.3. RING WITH UNIT ELEMENT

Aring (R. +, )is called a ring with unit element if there exists an element. '’
inRsuchthata . l=a=1.a Yae R

The unit element of a ring is also called its multiplication identity.
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4.4. RING WITHOUT ZERO DIVISORS

Aring (R, +, ) is called a ring without zero divisorsila. b=0foraq, be R
then cithera=00r b =0,

4.5. INTEGRAL DOMAIN

Aring (R, +, ) is called an integral domain if :
(7)) the ring (R, +, ) is commutative
(i1) the ring (R, +, .) is without. zero divisors.

In short, we can say that. a commutative ring without zero divisors is an integral
domain.

4.6. MULTIPLICATIVE INVERSE OF AN ELEMENT

Let (R. +. .} be a ring with unit element. ‘1’ and let ¢ be any element of R. An
clement b € R is called the multiplicative inverse of a il

a.b=1=b.qa
The multiplicative inverse of an element. o is denoted by a-!.

4.7. FIELD

Aring (R, +, ) is called a field if ;
() the ring (R, +, ) is commutative
(if) the ring (R, +, .) has unit element
(£t} every non-zero element of R has multiplicative inverse.
Equivalently. we can say that a non-empty set R with two binary operations ‘+'
and ‘. is a field if
() (R, +) is an abelian group
(1) (R —{0}. .} is an abelian group
(i) Multiplication ‘. distributes over addition '+
Thus a non-empty set R with two binary operations ‘+ and ‘" is a Geld if -
La+b+a=(a++c Yabecel
2. There is an clement 0 € Rsuch that a+0=g=0+a VYaeR
'0F is called the udditive identity of R
3. For a € R, there exists an element —a in R such that a + (- @A=0=-a+a
—ais called the additive inrerse of a.
4d.a+b=b+a Vg beR
S.0a.b.0)=(.b).¢c YabeceR
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6. There is an element 1 € Rsuch that a. 1=a=1.a0 VaeR

¥ is called the multiplicative identity or unit element of R.

7. For a (= ) € R, Lhere exist an element g™ in Rsuch ihata. al=1=gl.a
a!is called the multiplicative inverse of a.

S8.0a.b=b.a Yo, beR

9.0.B+0=(@.W+{w.c) and (b+c) a=0. a+ (. a VYa beeR

Remark. In axiom 9, we need writing only one equality, because the other follows by
using axiom 8.

4.8. DIVISION RING

Aring (R. +, ) is called a division ring if :
(@) the ring (R, +, ) has unit clement
@) every non-zero element of R has multiplicalive inverse.

Remark 1. A division ring is also called a skew field.

Remark 2. A commutative division ring is a field.

Example 1. Let R = Z, the set of integers and binary operations ‘+' and .’ be
respectively the usual addition and multiplication of integers. Show that (K, +, Jisa
ring.

Sol. We have :

lL.ath+e)=(@+by+c Vabcel

2. 0ecZanda+0=a=0+a Vaei

3. Forae Z. wehave—ge Zande+ (—a)=0=(m+a

d.ag+b=bt+ta Ya,bel

5.0.b.00=@.b).¢c Vabcel

6.q.b+e)=(a. b+ {a.c) and preoy.a=Gd.ay+c.a) Vabcel

(Z, +, ) is a ring.

Note 1. (Z, +, .} is also an integra) domain, because

Ha.b=b.a vYa bel

iy . b=0for a, b € Z implies either a =G or b=

Note 2. {Z, +, ) is not a field because 4 (= 0) € Z und there is no integer & such that

1. k=1=k.4

Example 2. Let C be the set of complex numbers and binary operalions +and "’
be respectively the usual addition and mudtiplication of complex numbers. Show that
(C, + .)isaring.

Sol. We have :

Loz +(z, +25) = {2 tz)tzy Va,z,25€ C

2.0=0+0NeCandz+0=2z=0+2 Vze C

3.Forz(=a+ib)e C,wehave —z(=-a-ib)e Candz+(=2)=0=(-2)+2z

4.z,+z,=2,%2 Vi, %€ C

5.2, . (g 2= (3. 25) . 2y V2,2,%6€C
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6.2, . (2, t 29 =(2).2) + (2. 2) and (2, +2).2,=(2,.2) t(z;.2)) V2,2, Rings
z,e C
(C, +, )isaring.

Note 1. (C, +, .} is also an integr‘-a.l domain, because NOTES
(i) the ring (C, +, .) is commutative
(i) z, .z, = O for 2, z, € Cimplies either z =0 or z,=0.
Note 2. {C. +, .} is also a field, because

(@) the ring (C, +, ) is commutative
(N1E1+0DeCandel=z=1.2Vze C

(it} Let z(= a + ib) be a non-zero complex number.

at+ b2z 0
a (- 5)

—_— i€ Cand
b2 al+bl

: (-5 . a {=b) . .
+ i a =1= o + ib).
@rs )[a2+b2 -'-a?+b2 i] (02+bz +a2+b21]( )

Every non-zero clement of C has 2 muitiplicative inverse,

4.9. A PROPERTY OF FIELDS

Theorem 1, Every field {5 an integral domain.
Proof, Let. (F. +, ) be a field,

(F, +, ) is a commutative ring.

1t 15 sufficieni to show that the ring (F, +, ) is without zero divisors.
Leta,be Fanda. b=0.
If ¢ =0, then we have nothing to prove.
Leta=0. Since (F, +, Jisafield, 3ateF: ag.al=l=gl.a
o a.b=0 = al. (a.by=al.0
= @ . a).b=0 = 1.b=0 = b=0.

The ring (F, +, ) iy without_zero divisors.

(F, +..) is an integral domain.
Remark. The converse of sbove theorem is not true. For example, {(Z, +, .) is an integral

domain and it is not a field.

4.10.SCALAR MULTIPLE AND POWERS OF ELEMENTS
OF A RING

Let (R, +, ) be a ring.
For a € R, we define
=atq, 3a=a+2a ...,¢ne=g+ - Do et
and a?=0.q. @=a.0’ . ..a"=a.a" et

Remark 1. If (R, +, .) is n ring then for the sake of simplicity, the product @ . b is written
as ab for a, b e R.
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Remark 2. I (R, + )is aring then for @, b € R, the elemenl o + (— ) is writlen as a - b.

Example 3. Let R bea ring such that x?=x ¥ x € R. Show that R is commutative.

Sol. Let. a, be R
= +h)i=a+b = @+ha+)=a+b
= al+abtbatbi=gt+h = ab+ba =0 LAD
Also (x+a)é=x+ux
= E+D)x+t=ax+x = 2+ rt=adid
= HHat=0 = y+x=0vxeR
()= ab+ba=ba+ba { ba+ba=0)
= ab =ba. .. Riscommutative.

Example 4. Let (R, +, .) be a ring. Shouw that the ring is commutative if and only

(t+b)f=a?+2ab+tb* Ya, be R
Sol. Let the ring (R, +, ) be commutative,
A xy=yxr VyyeR
Now @+ D)= (a+ e+ b=+ ba+a+ b= (aa+Dba) + (ab + bb)
=at+ab+ob+ b2 =a?+ 2ab+ b2
w+b?2=u?+20b+b* Yo beR
Conversely, let )
@+i=a® +2eb+ 0% Yo, beR
letx ve R
(+yi=a+ 2ty = @rPEty =¥ty +ayty
= (c+yr+Etyy=22+ay+ayty
= xrtyrtaytyy =ty day tyy
= ¥X = xy.
(R, +, ) is a2 commutative ring,

4.11. SUBRINGS

Let (R. +..) be a ring. A non-empty subset S of R is called a subring of the ring
(R, +. )il 8 ilself is-a ring under the binary operations “+' and " of R.

Example 5. If (R, +, ) is a ring, then {0} and R are always subrings of R. These
are called improper subrings of R. Other subrings, if any, are called proper subrings
of R.

Example 6. Z is a subring of the ring (Q, +. ).
Example 7. G is a subring of the ring (R, +, .).

4.12. TEST FOR A SUBRING

Theorem 2. Lot (R, + ) be a ring. A non-emply subset S of R is a subring of R if
andonlyifa-be Sandabe S Ya be S
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)

Proof. Let S be a subring of the ring (R, +, .). Rings
(8. +, )isaring. Leta, be 8.
= b, being the additive inverse of b. is in 8.
at+(-Bie,a-bisin 8, NOTES
Alsoabe S5 (' is a binary operalion on S)
. a~-be S abeS vabeb
Conversely, let a—-be 8,abe 8§ Va beS.

“+' i5 associative because elements of S are also elements of R.

letae 8 . ag-aef = at~a)el = 08
Letxe 5. . xe R
. xF0=x=0+x (-~ Risaring)
Letae 8. . O-a=-g€8§
For ne S, I-age S:a+—n=0=(-m)+a
Also, abedS = a-be8 = ag--be8S = ag+beb.

‘+' is a binary operation on 8.
“." i a binary operation on S becauseabe § Va, be S.
‘" is associative because elemen(s of § are also elemenis of R.
Distributive laws holds in 8§ because elements of S are also elements of R.
5.+, )isaring. . 8isasubringof the ring (R, +, .).

Example 8. Show that the set of all even integers is a subring of the ring

Sol. Let S = set of all even integers,
S # ¢ because 0 (= 2{0)) e 8.
Lel 2a, 2b e S.
2a-2b=2(a~b)ec 8 and (2a}2b) = 1ab = 2(2ab) € S.
2a-2b, Ca)y2D)e 5 V 2a, 2he S
S is a subring of the ring (Z, +, ).

4.13. INTERSECTION OF SUBRINGS

ring.

Theorem 3. The intersection of two subrings of a ring is also a subring of the

Proof, Let S, and S, be two subrings of a ring (R, +, ),
Let. ‘0 be additive identity of the ring R.

= e S5,0e8, = 0e8 N8, . S NS, #¢
Let a, be 5, nS,

= abeb,aq,beS, = a-babe S anda-b,abe §,
= a-babe 5, nS,

8, M 8, is a subring of the ring (R. +, ).
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¢ 4.14. HOMOMORPHISM

A mapping ¢ of a ring R into a ring R" is called, a homomorphism ol R inlo R’
NOTES it @ o+ b)= o) + o)
(i) (. b) = () . ¢(b)
foralla, be R.

The '+ and *. signs occurring on the left hand side of () and (1) are those of the
ring R, and the ‘+' and '’ signs oceurring on the right side of () and (i) are those of the
ring R".

Remarks. (i} Shows that the ring homomorphism ¢ is a group homomorphism of the
additive group (R. +) into additive greup (R’ +).

4.15. HOMOMORPHIC IMAGE OF ADDITIVE IDENTITY
AND ADDITIVE INVERSE

Theorem 4. If  is a ring homomarphism of ring B into ving R'. then
(D) 0(0) = O, where 0 and O are the additive identities of the rings R and R’
respeclively
G e-a)=-¢pa)Vac R
Proof. (i) For n € R, we have
() = 60 + @) = 0(0) + ¢la)
and ) = 0 + ola)
O0) + d(@) = U + ¢(w)
By cancellation law in the group (R,” +), we have §(0) = 0".
(i) For ad € R, we have
)t o-a)=dla+ —a)=¢) =
and t—n)+H i@ =¢(-a)+a)=¢0) =0
olen) + 0= @) = 0" = ¢{- ) + ()
~ Ry definition —d{a) =¢(—a) fe, & a)=—{a).
Examptle 9. 7ff is 0 homomorphism of ring R into ring R and g, a homomarphism
of ring K’ inlo ring R”, show thal gof is a homomorphism of ring R into ring R”.

Sol, By definition gof is a mapping from R into R”.
For a. b € R, we have
gof)la + b) = g(fla + b)) = g(fla) + AbY)
= @(fla) + g(fb)) = gofMa) + (gofi(h)
and (@of)(ab) = g(flaby) = g(fle) AbY)
= g(fle)) g({(1)) = (gof{a)goNH(®)
gof is a homomorphism of R inio R”,

Theorem 5. If ¢ is a ring homomorphism of ring R into ring R', then o(R) is a
subring of the ring IV'.
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Proof. D R = o= 0) € ¢[R) Rings
o(R) is non-empty.

Let o), o(b) € &(R)
= abeR = a-babeR = &a-5), olah)e d®) NOTES
o{ar — b) = (e + (— b)) = dlar) + ¢(— b) = olar) — (b}
and plab) = d(a) o)

o@), ) € $(R) = ¢@) - $@d). o(a) ¢(b) € O(R)
$(R) is a subring of R’,
Remark. '0' is represcnting the additive identity of rings R and R’ both.

4.16. KERNEL OF A RING HOMOMORPHISM

1f ¢ is a homomorphism of ring R into ring R’, then the set {a € R: ¢(a) = 0, the
additive identity of R’} is called the kernel of the ring homomorphism 4 and written
as ker ¢.

Since o) =0, 50 0¢e ker 0.
ker ¢ is always a non-emp(y set.
Theorem 6. If ¢ is @ homomorphism of ring R to ring R’, then
(i) ker ¢ 15 a subgroup of B under addition.
(i) ae ker dand re R then ar, ra € ker ¢.
Proof. () 9(0)=0 = 0Oe ker¢ .. ker¢isnon-empty.
Leta, b g ker ¢
o) =0,¢tH=0
Now Mo —8) = ole + 1) = 6() + 0= b) = ¢(en) + (— $(b))

=dla)—ob)=0-0=0
a—be ker¢

ker ¢ is a subgroup of R under addition.
(i) Letae kerdpandre R
- Mo =@ o) =0.¢(r) =10 (~ e kerd)
and ra)=¢F @) =o(r). 0=0

ar, ra € ker ¢.

Example 10. Let R=fa+J5b:a, be Z} R is aring under usual addition and

multiplication of real nunibers. Define ¢: R — R by ¢ (@ + ng) =a - J5 b. Sheu that
¢ s a homomorphism of R onto R and its kernel consists of 0 only.

Sol. We have R={a+V5b:a be Z}
Also da+ B =a—+5b

=qa+ Jg(—b)e R for a++5bheR
Let a+5bc+Jbde R
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Algebra v e+ VB + e+ VBd) =+ o)+ B+ d)
=@+~Bo+d=@-VEb+(c-V5d
NOTES =o(a+ V5b) + dc + V5 d)
Also  8((a+ VBB + V5 d)) = otar + 3bdy + 5 (ad + be))
and ={ac + Hbd) — Jg(ad + he)

dla + ng] olc+ -Jgd)z(a—wlgb)(cw» ng: {ac + 5[)(})_\[5((“14_ be)
ol + VB b)e + B ) = dla + VB b) e + B o)

¢ : R — R is a homomorphism.

Let x+ ngeR
= r,yeZ = x,-yeZ = x+5(-»eR
and o+ B =x— By =x+ By
¢ is onto
Let x+ nge ker ¢.

olx + Jﬁ_y) =0 ie, x- ng =0 or x= ng
Since x, ¥ € Z, the equality x = ng is possible only when x=0,y=0,
x+By=0+B(M=0 . keré¢={0}

4.17. ISOMORPHISM

A mapping ¢ of a ring R into a ring R’ is called an isomorphism if
() ¢ is a homomaorphism Le.,
ol + D) = o) + o), o) =dl)p(B) Va, beR
(i) ¢ is one-one
i ¢ is onto.
Two rings are said to be isomorphic if there is an isomorphism {rom one ring
onto Lthe other.
Note. 1. A homomorphism ¢ : R = R’ is called an epimorphism if ¢ is onto,
2. A homomorphism ¢ : R = R’ is called 8 monomorphiam if ¢ is one-nne,
2. A homomerphism ¢ : R = R’ is called un endomerphism if R"=R.

4. A homomorphism ¢ : R = R is called an automorphism il ¢ is one-one and
onto.

Example 11. Let R be a ring with unit element ‘I Using its elements we form a

ring B by defininga@®@b=a+b+TandaGb=n+b+abuwherea be R, and the
addition and multiplication on the right side of these relations are those of K. Show

that rings R and R are isomorphic.
Sol. Define ¢ : R — R byoim=a—-1,ne R
¢ is a homomorphism.

46 Self-Instructional Material




Leta. be R Rings
Mo+P)=(@+b)-1=ag+b-1

and PP =@+t oG +1=@-D+H-1)+1=a+b-1
ola + b) = ¢(@) © o(b). NOTES
Also olal) = (ab) = 1
and Ma) © ¢b) = ¢(a) + $(b) + ¢(a) ¢(b)

=a-D+d-D+@-1b-D=ab-1
dab) = o) © o(b)
¢ is a homomorphism.
§ is one-one.
Leta,be R and ¢(a) = ¢(b).
= a-1=b-1 = a=b

¢ is one-one.

0 is onto.

Lot ac R

= ' teR = a+leR and ¢+ =(a+ D=-1=a.
¢ is onto.

¢ is an isomorphism.

Example 12. Let ¢ be an isomorphism of a ring R onto ring R If R is an integral
domain, then show that R’ is also an integral domain.

Sol. Letx,ye R".
da, b e Rsuch that ¢(a) = x, o(by = .
Now xy=0(@)od) = olab) = 0(ba) = o) da) =yx (- R is commutative)
R’ is commutative.
Let xy=0forx.ye R’
Ja.he Rsuch that o) = x. o(h) =y
w=0 = 6@od)=0 = Hab)=60) = aob=0

= either a=0 or b=0
Now a=0 = d@=0{) = x=0
and b=0 = B =90) => y=0.

xy=0 = either x=0 or y=0
R’ is also an iniegral domain.

Example 13. Let R be a ring with unit element 1 and ¢ : R > R be a
hromomorphisni of ring R into an integral domain R such that ker ¢ = R, then shouw that
f(1) is the unit element of R’

Sol. Let e R".

S = o(11) r'= (1) d(1)r
= ¢ — o) o(1)r' =0

= o) [F—e(1)r'] =0
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3.

4.

= o(3=0 or rF—p{1y'=0
o(Dh=0 = leker¢ = kery=R, whichisimpossible.
("~ An ideal containing the unil element always coincides with the ring)
F-¢(lyr=0 = r'=o6)r

= (L =r=rd(l) (v R'is com.)
= ¢(1) is the unit element of R”.
SUMMARY

A non-empty set. R with two binary operations denoted by '+ and “.” and called
addition and multiplication respectively is said to be a ring if :
atb+)=@+b+ec Vva beelR

There is an element. 0 € R such that ¢ +0=a=0+a VaeR

For o € R, there exists an clement —a in R such that o+ ) =0={~a) +a
a+b=hb+a YabeR

a. b.o)=@.b.c Ya beceR
a.b+ro=@.D+u.andb+o).a=h . +{.a) Ya becek

A ving (R, +, ) is called a field if

() the ring (R, +, .} is commutative

(i§) the ring (R, +, .) has unit element

(iif) every non-zero element of R has multiplicative inverse.

Every field is an integral demain.

Let (R, +, ) be a ring. A non-empty subset. S of R is called a subring of the ring
(R, +, ) if § itself is a ring under the binary uperations '+ and . of R.

The intersection of two subrings of a ring is alzo a subring of the ring.

If ¢ is a homomorphism of ring R into ring R’, then the set {g € R: ¢(a) =0, the
additive identity of R’} is called the kernel of the ring homomorphism ¢ and
write ker §.

REVIEW QUESTIONS

Show that. (R, +, ) is (i) a ring (id) an integral domain (if)) a fisld, where the hinary
operations '+ and "' are respectively usual addition and multiplication of real numbers.

Let R = {40 n € Z}, Let the binary operations 'usual addition” and ‘usual multipbcation’
be denoted by +' and *. respectively. Show that :

) (R, +, ) is a commutative ring. i) (R, +, .) has no unit element.

(iif) (R, +, .y is not. an integral domain. (it (R, +, .) is not a field.

Let R={a+ J2b:q be Q. Under usunl addition and multiplication, show that :
@ (R, +, )is aring (i) (R, +. .) is an integral domain

(i) (R, +, ) is » fleld.
Let R =ifa+ h% e, b e Q). Under usual addition and multiplication, show that (R,

+, ) is not. a ring.




10,

11.

12,

13.

14.

15.

16.

17.

18,

let R={a+ b5 :a b e Z} Under usual addition and multiplication. show that :
() (R, +. ) is commulative ring with unit element.

() (R, +, ) i= an integral domain.

20y (R, +. ) is not a field.

let R=1{0, 1, 2, 3, 4, 5}. Let ® and © denota the operations "addition modulo & and
‘multiplication modulo 6 respectively. Show that :

() (R. @, O} is a commutative ring with unit element
@) (R, @, ©)is not en integral domain.
(i) (R, ®, @) is nat. a field.
Shew that (N, +, X} is nol a ring.
Show that the set R of real numbers is a subring of the ring {C, +, ).

Show that the sct of matrices [g g]‘ where a, b € Z 15 a subring of the ring of all 2 % 2

matrices over integers under usual addition and multiplication of matrices.

a 4
Show that the set of matrices [O 0]-‘ where @ € Z is a not a subring of the ring of all

2 % 2 malrices over integers under usual addition and multiplication of matrices.
Let § be a subring of a ring R. Define $ : 5 = K by 8(x) = x, x € 8. Show that ¢ is a ring
homomorphism for § into R.

X
Define ¢ : (Z. +, .} ~ (Q. +. ) by ¢(x) = g Show that ¢ is hot a ring homomorphism.

Let R and R’ be rings. Define ¢ : R = R by ¢l@) =0, @ € R. Show that ¢ is a ring
homomorphism and ker ¢ = R.

Let R be aring . Define ¢: R — R by $(n) = a, @ € R. Show that. ¢ is a ring homomorphism
and ker = {0}.

Let H be the ring of all continuous real valued functions defined on [0, 4|. Let 9 be a
mapping from the ring R into the ring R of real numbers defined by ¢() = (1), fe R.
Show thal ¢ is a homemorphesm of R onto R. Show that its kernel consists of all funciions
in R vanishing at x=1.

Let. ¢ he an isomorphism of a ring R onto ring R". If R has a unit element then so do ring
R’

Let fbe an isomorphism of a ving R onto ring R”. If R is an integral domain, then R is
also an integral domain.

Let R= {2n:ne Z} and define addition ® and multiplication & inRbya®b=a+

ab
banda@ b= —2— for all @, b € R. Under Lhese operalions, R is a ring. Show that this

ring and the ring of integers are isomorphic.
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IDEALS AND QUOTIENT RINGS

5.0. Learning Objectives

5.1, Iniroduction

5.2, ldeal

5.3.  Sum of two Tdeals

6.4, Product of two Ideals

5.5. ldeal Generated by a Set

5.6, Principal Tdeal

5.7. Principal Ideal Domain

5.8. Maximal Ideal

5.2  Prime [deal
5.10.  Quotient Ring
5.11.  The Fundamental Theorem of Homomorphism
5.12.  Field of Quotients of an Integral Domain
5.13. Embedding of a Ring
514, Unil

5,15, Divigibililty in a Commuiative Ring
5.16.  Grealest Common Divisor ((;.C.D.)
6.17. Least Common Multiple (L.C.M.)
5.18.  Associate
5,19, Prime Element
5.20.  Irreducible Element
5.21. Uniqgue Faetorization Domain (UFD)

i
s Summary

o Review Questions
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5.0. LEARNING OBJECTIVES

After going through this unil, you should be able to:
» ideal. sum-and product of two ideal

¢ maximal ideal, prime ideal

» ring, greatest common divisor {G.C.D)

» least common divisor (L.C.D}

5.1. INTRODUCTION

In this chapter, we shall define ‘ideal’ of a ring, an analog of the concepl of
‘normal subgroup’ for a group. We shall take up different kinds of ideals like prineipal
ideal, maximal ideal and prime ideal. We shall also consider quotient ring of a ring
with respect to an ideal and the embedding of an integral domain in a field.

We shall end this chapler with the introduction of principal ideal rings and
unique [actorizalion domain.

5.2. IDEAL

Let R be a ring. A non-empty subset I of R is called a left ideal of R il
() 1is a subgroup of R under additionie. a—bel Va bel
iDrael vreR ael
Let R be a ring, A non-empty subsel [ of R is called a right ideal of R if
@ | is a subgroup of R under addition ie. a—bel VYa, bel
(iHDarel vYreR ael

Let R be a ring. A non-empty subset I of R is called an ideal {or two sided
tdeal) if it is both a left ideal and a right ideal.

Thus a non-empty set. I of a ring R is an ideal of R if
Na-hel VYabel
iyra,arel YreR,oel

Fvery ideal of a ring is also a subring of R but a subring of R may not be an ideal
of R. This is because if  is an ideal of B, then r. s e l= rel,se R = rsel An
ideal requires a stronger closure property than a subring, For example, the set Z of
integers is a subring of the ring (Q, +..). However Z is not. an ideal of (@, +. .} because

1 1y 2
2¢ Z, = but 2 =|==¢Z
3EQ u (3) 36!

If the ring R is commutative. then every left (resp. right) ideal of R is a right.
(rosp. left) ideal. Thus, in a commuiative ring every left (or right) ideal is an ideal.

If R is a ring then {0} and R are always ideals of R. These are called improper
ideals. Any other ideal of R other then improper ideals is called a proper ideal.

A ring having no proper ideal is called a simple ring.
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Example 1. Let R = {[3 3] abede z}. R is a ring under usual addition

and multiplication.

Letl= {I:g g], a,be Z}. Showe that I is o left ideal of R buit not a right ideal of R,

0 0 0
Sol. I = {[g 0]:0’552} I # ¢, because [0 0] el

g O0)le O
Let [b 0]’1:d 0] el
aO_u::O-_utl'--'cOEI
5 0 d 0__- b-d O
r s

P q aO'_pa+qb06I
rosild 0l Lra+sd O
Iis a lefi. ideal of R.

: a Ol[p ¢f_far ag| 4., . .
Alsa, [b O][r s__[bp bq]’ which may not be in [,

[ is nat. a right ideal.

Example 2. Let R be a ring with unit element 1. If Lis anideal of Rand 1 € I,
then show that I =R,

Sol. Since | is an ideal of R, we have IC R.
Letre R - rlel ie, rel
Rcl
Combining, weget 1=R.
Example 3. Let ¢ : B = R’ be o ring homomorphism. If A is an ideal of R, then
show that ofA} is an ideal of 0(R).

Sol. oy ={ola): ae A}
e A = o0)e o) . ¢(A)is non-empty.
Let o(a), 9(b) € o(A)
dla) — o) = ol — B) € G(A) (0 abheA = a-be )

Let. ¢(r) € ¢(R), where re R.
o) () € dlrey € H(A)  and o) ¢(r) = dlar) € $(A)
( reRaeA = ragre i)
${A) is an ideal of o(R).

Example 4. Lot R be a ring und L is a left ideal of R. Show that the set
Ml)={xe R:xa=0vYae L}isanidealof R.

Sol. DR and 0a=0 Vael.

= NDeall) = Al)=¢

Letx,x,€ aly, o rma=0, xe=0 ¥V ac I.

Now (x, ~x)a=(x, + (—x)a=x0+ (—x,0)=x0-x,aq= 0-0=0
= (x,—x)u=0VaeL = x —x¢ AlL).
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Let re R and xe ML), .. xa=0 ¥Yael Ideals and Quotient Rings

Now ryya=rix)=r0=0 YaelL
rx € A(L)
A(L) is a left ideal of R. NOTES
Also (xric=x{ra) =0 (w reRael = rael)
= (ra=0 Yoael. = are ML)

A1) is a right ideal of R,
ML) is an ideal of R.
Theorem 1. The Kernel of a homontorphism of a ring K into a ring R’ is an ideal

of R.
Proof. Let ¢ - R — R be a homomorphism.
0 e ker ¢, because f{U0) = 0. o ker ¢ ts non-empty.
Let a.beckerg . =0 =0
Now ol =by=olr+ (b)) =p@)+ b =0(@)-¢B)=0-0=0
a—be kerd
Let reR and age kero, .~ o)=0

0(ra) = $() 0(@) = 6().0=0 and  ¢(ar) = d(a) #(r) = Q.o(r) = 0
ra, ar € ker ¢,
ker ¢ 15 an ideal of R.
Theorem 2. 4 field cannot have any proper ideal.
Proof. Let F be a field and 1 be an ideal of F.
LetT=(0) »~ Jaz0el
acl = aec FandF being a field, we haveal e F.

aalel (- T[isan ideal)
= lel = (Dxel ¥ xeF
= xel ¥ xeF

= Fgl te, 1=F
F cannot have any proper ideal,

Example 5. Show that a homomorphism of a field into a ring is either one-one
or takes each element lo 0,

Sol. Let ¢ : F — R be a homomaorphism of a field F into a ring R.
ker ¢ is an ideal of F. Since F is a field, F has no proper ideal.

R kero=(0) or kero=F

Let ke ¢ = (0) Let @, b € F and ¢(a) = o(D).

= -0 =0 = $la==0 = a—-bekerp
= a-b=0 = a=b

¢ is one-one.
Let kero=F . d)=0 V ael.

The result holds.

Theorem 3. If a commustative ring with unit element has no proper ideal then. it
is a field.
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Proof. Let R be a commutative ring with unit element ' ¥ and having no proper
ideal. |

In order to show that R is a field it is sufficient to show that every non-zero
element of R has muliiplieative inverse.

let a(=0) e R

Define Ra={ra.re R}
0eR = Or{=0cRa - Ra=¢
Tet P, Ty € Ra
= ria-ra=ra+t-ra=e +t-rhe=0, - rpne Re
(- r,-1,6R)
For re R, rira@)=(r)ae Ra ¢: rmeR)

Rais a left ideal of R. .~ Ra is an ideal of R, because R is commutative,
Now Ra# (0). because bLa=a(=0)€ Ra. .. Wehave Ra=R.
= le Ra = l1=xaforsomexe R

x is the multiplicative inverse of a,

Every non-zero element of R has multiplicative inverse. - Risa field.

Corollary. Let R be a ring with unity such that R has no right ideal except
{0} and R. Prove that R is a division ring.

[Hent. For a(= ) € R, show that aR is a right. ideal].
Theorem 4. Let A and B be two left ideals of a ring R. A w Bis aleft ideal of R
if and only if either A Bor Bg A

Proof. A and B are lefi ideals of Lthe ring K.
let. AgB or BgA

AcB =» AuB=B and BcA = AuUB=A

If either case, AW B is an ideal of R.
Conversely, let A w B be an ideal of R. If possible, let Ag Band BZ A
- Jxe A, xeB and yeB yeg A
reA =' vre AUB and yeB = ye AuB

x—ye AUl
= x-yeA or x—yeB
let rx—ye A

r—-{x—y)e A or ye A, which ix absurd,
Similarly, x -y e Ais impossible.,
Our supposition 1s wrong.
Either AcB or BgA
INlustration. l.et K be the ring of integers.
Thesets A={2n:ne Z} and B={n:ne Z}are both ideals of R.

Iere 2e A,he B

. 2,5e AUB

Let A W B be an ideal of R.

= 2-5e AUB = 3 AUR

This is impossible.
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A u B is not an ideal of R. This has happened because neither A € B nor  Jdeals and Quotient Rings

Bg A

5.3. SUM OF TWO IDEALS NOTES

If A and B are twao ideals of a ring R, then their sum A + B is defined as follows:
A+B=fe+B:ac A and be B}
Theorem 5. Prove thal the sum of two left ideals of a ring is also a left ideal of

thering. .
Proof. Let A and B be two left ideals of a ving R.

By definition,
A+DB={A+b:ac A and be B}
0eA0eB = 0+0E=0eA+B . A+B=¢o
let a,+b,a,+b,e A+B, wherea ,a, e Aand b b€ B.
~ a,-o,€ A and b -b,eB
oo Hbh)— (@t by)=(a@ —a)+ b, —-be A+ B
letre B and a+be A+ B, ‘
reRacAbelR
rae A and rbe B
rie+b)=ra+rbe A+ B

A+ Bis aleft ideal of R
Remark 1. The sum of two right ideals of a ring is alko a ringht ideal of the ring.
Remark 2. The sum of a lefl ideal and o right ideul may not be a lefi (or right) ideal of

Lhe ring.
Example 6, If I, and I, are two left ideals of aring R, then show that I is aleft
ideal of thering I, + 1,
Sol. Since {,, I, are left. ideals of R, their sum I, + 1, is also a left ideal of R.
Let a,+tay,aj+a, €l +1, whereag,a/el;, and aya,€l,
a, ta,€ Randso (g, +a)) (@ +a)e [ +1,
I, + I, is a subring of R and hence a ring in itself.

We have a,—a’el, Va,a'€el,

lLet o, ta,el +1, and a €l
= a+a,€R.a’el

= (o, +apa e 1,

I, is aleft ideal of I, + L,

5.4. PRODUCT OF TWO IDEALS

If A and B are two ideals of a ring R, then their product AB is defined as follows:

1]
AR = Za,-b,-:a,-eA,b,-EB,neN

i=l
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Theorem 6. Prove thai the product of two ideals of a ring is also an ideal of the
ring.
Proof. Let A and B be two ideals of a ring R.

By definition

Tl
AR = Eaib,-:a,-eA,b,-eB,neN
i=1

0cA0eB = 00(=0eAB . AB=¢

H 1]
Lot z a;b;, E a;'b;’ € AB, wherea, ¢/ e A, b, b e B

i=1 i=1
i ] Ll t
2 a;b, ~ z a;'b’= Z a;b; + 2 (—a;")b;" & AB, being finite sum of producls.
i-1 i=1 i=1 im1

Letre R.

r[i a,-b,—] = Z rlad;) = z {re;)b; €AB ('re R, ;e A= rae A)

i=1 i=1 f=1
Also [2 a,-b,-]r =Y (o)r =Y abrcAB (- reR.bB=bre D)
i=1 i=1 i=1

AR is an ideal of R.

Remark. In proving the above theorem, we have used only the follawing facts:

(i) Ais a left ideal of R.

(i) Bis a right ideal of R.

Example 7. If A and B are two ideals of a ring R then show that the ideal AB of
R is contained in the ideal A " B of R,

n

Sol. Wehave AB= {2 ab;:a;eA, b eB,neN

i=1

and AnB={x:xe A xe B

il
let 3 ab € AR, wherea,e A, b€ Bne N.
i=1
beB = beR = abeAVi [ Ais a right ideal of R]
o,eA = aeR = obeBVi [~ Bis alell ideal of R]
ab e AnBYi

"
Za,-b,- € AnB I+ An Bis an ideal of R]
iml

ABc AnBR
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5.5. IDEAL GENERATED BY A SET

lLet R be a ring and S. a non-empty subset of R. An ideal A of R is said to be
generated by 8 if A is the smallest ideal of R containing S. Alternatively,

(i) S ¢ A and
(if) for any ideal Lof R, S C 1 implies A C I
Woewrite A= (SlorA=<8>
Theorem 7. If A and B ‘are two ideals of a ring R, then. the ideal generatd by the
set A v Bisequal to the ideal A +Bie,(AUB)=4+B

Proof. ae A = a=a+0eA+B .. A€ A+D
beB = b=0+beA+B .. BeA+B
: AUBCA+DB
Let I be an ideal of R such that AVB QL
Let a+be A+B,whereae A, be B,
= a,be AeB
= abel - AuBcD
= a+tbel {*+ 1is an ideal)
A+Bcl

A+ Bis the ideal generated by AuBie, (AvB)=A+B

5.6. PRINCIPAL IDEAL

Let. R be a ring, An ideal of R generated by a singleton set is called a principal
ideal.

Let. S = {m), a € R and A be the ideal generated by 8. We say that the ideal A is
generated by a and write A = (@) or as A = < ¢ > Thus, A is the samkllest ideal of R
confaining .

Example 8. Let R be a commulalive ring and 4, an ideal of B. Let a € A be such
thatbe A= b=raforsomerc R Show that A =(a).

Sol. Wehave a € A Let I be an ideal of R such thatge 1.

Letbe A, . dreR:b=ra Sincelisanidealof Randae 1, re R, we have
rae |

= bel = Acl
A is the smallest ideal of R containing a.
- A= (@)
Theorem 8. Let a be an element of a ring R with unit element. Prov that

@) = {2 Fa8; 1y 8 eR,neN}

i=1

Proof. Let A= {2 ras;:r,s;€R,ne N} i

i=]
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l1eR = lol=meA - Az¢andoe A

i

m
let 2 ras;, Z rias;" e A

=1 izl

-

i ] H

m
’ . - .
ras; — E r’as;’ = E ras; + E {-r"Yas;"€ A, being a finite sum.
it fxl i1 i=1

Letre R

r[i ":asi] = i r(ras;) = i (rr)as; e A
i=1

i=1 i=1
m " n
Z ras; [r = 2 (ras;)r= 2 ra(srle A
i1 i=1 i=1

A is an ideal of R containing «.
I.et T be any ideal of R containing . We shall show that AC L.

Letr,s;e Rfori=1,2,.......n and ne N,
ael,reR = racl 1<i<n
rael s, e R = ras;el 1£i<n
n
z ras e ]
i=1
x\(; |
A is the smallest. ideal of R containing a.
A=(@
b1
(a)= Z rias; 1T, 8, eRmelN
i=1

Corcllary. Let R be a commutative ring with unit element. and a € R.

= {z Ras; i, s eR,nEN&

i=1

Now z ras; = Z ars; = a(z r,-s,-] = g, for some re R,
i=1 i=1 i=1

. (a)={ar:re'R},

For example, let R be the ring of integers under usual addition and multiplication.

Here (2y={2n:ne R}

This is the principal ideal of R generated by 2.

Theorem 9. Let a be an elemendt of a comutative ring R with unit element. Prove

that (o) ={ar: re KL

Proof. L.et A=dar.re R}
leR = a=aleA .. Azx¢andae A
Lot ar arg€ A
ar, -ar,=a(r —r) € A . {~ rn—rpeR)




Let arye A and reR
@rpr=afr)e R and rar)=(arpr=o(r, e R (-~ Riscom.)
A is an idal of R conlaining a.
Let 1 be any ideal of R containing ¢. We shall show that AcC 1.
ael == agrel YvreR = Agl (. Iis an ideal)
Ais the principal ideal generated by ¢ ie., A=(a).
(@) ={ar:re R}

5.7. PRINCIPAL IDEAL DOMAIN

An integral demain B with unit element is called a principal ideal domain if
each of its ideal is principal.

In other words, if A is an ideal of a principal ideal domain R, then there exists
a € R such that

A=(@={ar:re R}
A principal ideal domain (PID) is also known as a principal ideal ring.
Example 9. Show that every field is a principal ideal domain.
Sol. Let F be a field.
F is a commuiative ring with unit element.
Let az0and ab=0for somea, be F.
a=0 = g exists
o =a'0 = (@' ab=0 = th=0 = bh=0
I has no zero divisor.
F is an integral domain.
Since F iz a field, its only ideals are () and F.
For xeF, ¥x=1lxe(l) . F=(D
Every idal of F is a principal ideal,
F is a principal ideal domain.
Every field is a principal ideal domain,

Example 10. Show: that the set of integers Z is a principol ideal domain under
nsual addition and multiplication.

Sol. We know that Z is a commutative ring with unit. element '1'. Also, ah=0is
poskible in Z only when at least one of @ and b is zero.

There are no zero divisors in Z,
Z is an integral domain with unit clement.

Let Abe any idal of Z. If A is the null ideal, then A= (0), s0 A is a principal ideal.
Now lel us assume that. A # ().

Jal least one a{= 0 € A.
aeA = —age A

Since either ¢ or — ¢ is positive, A contains positive integers. Let n be the least
positive integer in A. We shall show that A = (n).
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HeA = nmrelA YreZ = {(WCA
Let nt be any element of A. By the division algorithm in Z, there exist integers ¢

and r such thatm=nqg+ r, wherer=00r 0<r<n.

NOTES

ne Aandge Z = nge A
= m-ngeA = reA (. m=ngtr = r=m-—ng
Since 1 is the least positive integer in A, so ) < r < n is impossible.
r=0
m=ng = me@ = Ac(n
A=) . Aisaprincipal ideal.
Every ideal of Z is a principal ideal.
Z is a principal ideal domain.

Remark. We know thal every [ield is a PID The converse of Lhis is not Lrue, because Z s

a PID and it is not a field.

5-8I

MAXIMAL IDEAL

60  Self-Instructional Matevial

An ideal M # R) of a ring R is called a maximal ideal of R ilf whenever A is an

ideal of R such that M c A c R then cither A=M or A=R

In other words, an ideal M( R) of ring R is a maximal ideal if there does not

exist. any ideal between M and R.

Example 11. Show that an ideal of the ring of indegers Z is maximal if and only

if it is generaled by some prime integer,

Sol. Let p be a prime integer and A= (p).
Now Azl (v 1egd)
Let Bhe anidealof Zand AgBC Z
Since Zisa PID, 3be Z:B=(H).
AcB = pe)y = p=hgforsomeqge Z
Since p is prime, eitherb=1 or g=1L
b=1= B=Z and g=1 = p=b 1=b = A=8B
Fither R=A or B=2Z
A is 2 maximal ideal of Z.
Cuonversely, let M be a maximal ideal of Z.
SinceZisaPl).3me Z:M=(m).
We assume that m > 0, because {m) = (— m).
If possible, let m be not. a prime integer.
Jafz 1), b(z 1) € Z such that m = ab
m=ab = me{@®d = Mg
Also (@) = Z, becausc a = L.

Mc(mcZ
= =M - M is maximal)
= AeM = a=meclorsomece Z.




= m=ab=mob=michy = 1=cbh
This is impossible because b = 1.
Qur supposition is wrong. .. m is a prime integer.

5.9. PRIME IDEAL

An ideal P of a commutative ring R is called a prime ideal of Rifube P o b€
R implics thateae Porbe P.
Illustrations (i) Let R be an integral domain. Let " = (0).
Let abe O)fora, be R
ab = 0. Since R is an integral domain, etthera=0orb=0.
Eitherge Porbe P.
(0) is a prime ideal of R.
(¢) Let Z be the ring of integers.
Z is a commutative ring with unit element.
Let p be a prime number.
- m={pn . ne Z}
Let abe () fora, be Z

= plab = pla or plh (- pisprime)
= ae (p) or be (.

() is a prime ideal of Z.
(#) Let R be the commutative ring of even integers. We know that (4) is a maximal
ideal or R.
Wehave2e Rand 2% 2=4¢ 4. Here 2 ¢ (4).
(4) is not a prime ideal of R,
Example 12. Give an example of a finite commuiative ring in which every
maximai ideal need not be a prime ideal,
Sol. Let R={0. 2, 4, G}. R is a commutative ring under addition and multiplication
modulo 8.
Let M={0. 4}
M is an ideal of R. Let. 1 be an tdeal of R such thac M g Ic R.
[ is a subgroup of R under addition module 8.
= oMoR) = ol)=1 or 2 or 4
o(l) = 1 is impossible because M|
oh=2 = I=M
ol)=4 = I=R
M is maximal ideal.
Now 2Q,6=4cMand 2¢ M.6¢g M

M is not a prime ideal.

ldeals and Quotient Rings
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Example 13. Show: that every non-zero prime ideal of a principal ideal domain

is a maximal ideal.

NOTES

Sol. Let. P be a non-zero prime ideal of a principal ideal domain R.

"Tetaz0Me Rand P = ().

Lot @ = (&) be an ideal of R such that PcQ C R
ge P =aeQ = a=brforsomereR.
=bre? = beP or reP
let bel . brel ¥ rR
= QcP = P=Q.
Let rel . r=arforsomer’e R
r=agr’ = r=bnr = rMl-r=0
1=br"=0 (- r=0 = a=b0=0, whichis impossible)
bri=1 = le{) = Q=R
PcQcR = ecitherQ=T or Q=R
P is a maximal idea]l of R.

3

U

5.10. QUOTIENT RING

a+U.

and

Self-Instructionaf AMatevial

Since.

Let R be a ring and U, an ideal of R,

U can be considered as a subgroup of the abelian group R under addition.
the group R is abelian, a right coset U + a of U in R is same as the left coset.

It iy sufficient to say that U+ a is a coset of U in R,
Lel R/ denote the set of all distinet cosets of U in R.
- RU=fU+a:ae R}
We define addition and multiplication in R/U as follows:

U+ay+(U+a)=U+(@g+b)
U+adU+by=U+ab for U+a U+heRU.

Operations on R/U are well defined.
Let U+a=U+a and U+b=U+bd
Now aclU+a = aeU+a = a.=ul+a’{'0rsomeu.leU

helU+b = beU+h = b=u,+b lorsomen,el

a+rb=(@ +a)+ @+ b)=n tu,+a’+ i
= U+(l+b=—“U+u.1+u-2+a.'+b' D
Since U is an ideal of R, we have 1 + u, € U.
U+ u, +u,=U

() = U+(a+d)=U+{"+b)
= Addition in R/U is well defined.
Also ab = (u, +a) (uy + b) =1y + b+ @'y + al’
= U+ab=U+uu, +uly+au,+ ol (2



Since U is an ideal of R, we have e, w,d’. a'u, e U Ideals and Quotient Rings

= i, +u b+ au e U
= U+, +u b +au,=U
@& = U+ab=U+ab’ NOTES

= Multiplication in R/U is well defined.
Associativity of addition.
et U+a U+b U+ee R/U.
U+a+ U+ +U+]=U+ad+U+b+a=U+a+{d+o)
Also [(U+ad+U+B+U+)=U+a+)+U+e=U+{a+b+¢
U+ay+[U+b+U+al={U+a}+ U+ b+ U+¢)
. a+rhrao=(@th+c)
Addition is associative.
Existence of additive identity. Let U+ ¢ e R/
0eU = U+0eRAU
Now U+ay+U+0)=U+a+0=U+n
and U+ +U+ay=U+0+a=U+a
U+0 fe, Uisthe additive identily of R/U.
Existence of additive inverse. Let U+ ne R/U.
= aeR > ~ae R = U+(~-aeRU
Now U+a)+U+—ad=U+(a+()=U+0=U
and U+—a+U+=U+{(—ad+-m+ay=U+0=U
U + (- ) is the additive inverse of U + a.
Commutativity of addition. Let. U+, U+ be R/
U+a)+ U+ =U+a+b=U+b+ta=U+H+U+a)
Addition is commutative.
Associativity of multiplication. Let. U+, U+b U+ ece R/AU
U+ U+ U+o]=0+a) (U+be)=U+albe)
Also [(U+aU+BjU+ey=U+ab)(U+c)=U+ (ab)e
U+a) [(U+BHU+ ) =[U+aU+H)I U+ o albe) = (ab)o)
Multiplication is associative.
Distributivity of multiplication over addition, letU+o, U+b U+ce

R/U.

U+ U+ +U+e)=U+adU+b+c)=U+tab+d=U+ab+ ac
={U+ab)+ U+ ac)
=U+apU+bH+U+a)}U+0)

Similarly. we can show that

(U+H+U+U+@=U+HU+ @+ U +c)U+a)

s R/Uis a ring. This ring is called the quotient ring of R with respeci (o the
ideal U of R.
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Algebra Theorem 10. Let 1] be an ideal of a ring R and R/ U, the quotient ring of R with
respect to the ideal 1.
@) If R is commutative then sois R/
(@) If R has unit element 'T', then R/ U has unit element U + 1.
Proof. () Let U+, U+ be R/U.
U+t U+h)=U0+ab=U+ba=U+b U+ a)
(v ab=bwn)

NOTES

R/U is commultative.
(/) Let U+ae RU.
U+aU+D=U+ra()=U+u
and U+ DU+ad=U+Da=U+a
U+ayU+D=U+ra=U+1U+a)
U + 1is the unit clement of R/
Theorem 11. Let {7 be an ideal of a ring R. Defined: R > R/ U by ¢fa)=U +a
¥ g € R. Show thai
() ¢ is « homomorphism of R onto R/ U
(i) ker o = U.
Proof. Wehave ¢ : R =5 R/U defined by ¢la)=U+a ¥ ae R
@) Leta,be R.
: d@atb)y=utatb=U+a)+TU+b=dw+b

and deb)=U+ab=(U+a) U+ b =@ ¢(b)
¢ is 4 homemorphism.
Let U+ae RU

ceR and o@=U+aq¢
¢ is onto.
@)y Let we U
: ) = U+ n=1U = zero of R/U
= we kerd = Ucgkero.
Conversely, Let a. € ker ¢.
@) =U or U+ta=U
- O+taeU+yg = O0+a ie, aelU
= kerd¢cU .. ker¢=U,
Remark. Part (i) says that every quotient ring of a ving is o homorphic image of
the ring under consideration.

5.11. THE FUNDAMENTAL THEOREM OF
" HOMOMORPHISM

Statement. Lef ¢ be a homomorphism of a ring R onto a ring R, Then R/ker
o= R

Proof. ¢ is a homomorphism of ring R onto ring R’. Let U be the kernel of the
homorphism ¢.
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U is an ideal of ring R, Ideals and Quotient Rings
R/U is a quotient ring of R.
Definey : RUS R byywlU+a)=dle R ¥ U+age RAL
v is well defined. Let U+ a, U+ b. e RMUandU+a=U+b. NOTES
Let g = u+ b for some u e U,
g=0+tae U+e = acU+b
a-b=uandthusa—-be U
. e~ =0 (- U=kerd)
= YD+ P-0=0 = dW-o®=0 = o) =06}
(U + ) =yl + b).
y is well deflined.

Ul

vy is a homomorphism, Let U + a, U+be R
yU+ay+U+by=ylU+a+b)=e@+b)
=@+ o) =yU + ay+ wlU + b)
and y((U + a)(U + b)) = w(U + ab) = ¢lab) = d(a) ¢(b)
=y(U+a)yU +b)
W is homomorphism,
yis one-one. Let U+a, U+ be RU and y(U + a) = yw(U + b).

= o) = o(b) = 6@ —¢b)=0

= M) +o—)=0 = dla+ =0

= dla—=0 = ag-bekerd ie, a-beU
Let. a—b=u, wuel

= a=u+b = U+ta+U+nu+bz=U+b

yU+a)=yU=+h = U+a=U+b
V¥ is one-one.

w is onto. Let « € R'. Since ¢ : R - R’ is onto, there exists ¢ € R such that
ol =a’.

- U+tae RU and yU+a)=¢a) =a
¥ is onlo,
Yy is a one-one homomorphism of R/U onto R

RUzR ie, Rkerdz=R"

5.12. FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Let D be an integral domain with al least (wo clements. Let. D, =D —{0}. .. D,#¢
Define a relation ~on 1D x1)_as follows :
(o, b}~ (e. dh if and only if ad = be.
~ is an equivalence relation,
Let (a.b)e DxD,
We have ab=bu. - @D~ Ve DxD
~ is reflexive.
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Tet 0. (e, ehe DD, and (a.b)~{c. .
= ad=bc = c¢h=da = {e d)~ @b
- is symmetric.

Let (o, b), {c. ), (e, Ne DxD, and (4, b)~(c, ) and (c, d)~e N

NOTES = ad=bc and c¢f=de
= adhf=de)Y = adf=bieh
= adf=blde) = {ahd = (hedd
= af=be (- d=0andD is an integral domain)
= (e, b) ~ (e,
-~ -~ is transttive.
The relation ~ on 1) X D is an equivalence relation.
The relation ~ partitions the set D x D, into mutually disjoint. equivalence
classes,

Self-Instructional Material

For (@, b) e D x D, lel. % denote the equivalence class of {a, b).

% ={c, e DxD_:{c, d}~ (o, b)}

Let F be the family of all these equivalence classes,

Let E,-(i €F and 2=%
b b d
Since ~ is reflexive. (@, b) € %.
= (. hye % = (@, M~.d = ad=be
If %,% e F and are equal then, we have ad = be.
Conversely, let ad =be. wherea, b, e.de Dand b =0, d= 0.
= wh~@c.dh = @be 3 = %:% ( {a, b)e%)

The elements %,% of F are equal if and only il ad = be.

We define addition and multiplication in F as (ollows.

a ¢ _ac e ¢ .
%‘i_%:adb;bc and 32?&1‘ for E'EEP'
Operations on F are well defined,
Let e o and £o L
b ¥ d d
= ab'=ba’ and ed =de LD
(H = ab'dd’ =ba’dd” and bbed” = bb'dc

= ab'dd’ + bb'ed =ba’dd’ + bb'de’
= adb’'d + beb'd =a’'d’bd + b'c’bd
= {add + beYb'dd = (@'d” + beNbd




and

ad+be _a'd’ +b'c a ¢ _a ¢
= d . bd b d ¥ @
(By equality of elements of F)

= Addition in F is well delined. NOTES
(N = abed’ =ba’de’ = (acX(D'd) = @c)(bd)

ac a’c a ¢ a ¢
= —_——— = = =T =

bd b'd’ b d b d

(By equality of elements of )
= Multiplication in F is well defined.
Now we shall show that (F. +, ) is a field.

Let al= B e 1D E,Ee F
a a
9.8 o O=ae = aa=0 = a=0
a a

( Disan 1)
This is impaossible,
0 @

~ 2= Thus, F has at least two elements.
a a
Addition is associative. Let %,%,? € F.
a (e e a (cf+de) oadf +b(cf +de) _adf +bef +bde
b \d f) b df )~ bidf) bdf

e {ad + be)f + bde _ adf +bef +bde
bd f (bd)f bdf

Existence of additive identity. _Let.% e F.For kiz0e D, %e F.

Now %+%=3£;TM)_).=.§%=% (-« akb=bka)
O,a_(Ob+tha _ka_a
E b kb kb b
2, 0_¢ 0. ¢
b B b k b

—g— is the addtiive identity ol F.

Here note that %=% for any Az 0) € D because (0)) = 0(k).
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e .

Existence of additive inverse. [.et % e k.
= aeD = —-gelh = ;;’e F

Now 2+___a=ab*b(‘ﬂ}=ab—ab_%

b b bb B2 b
—e.a_ (-a)btba _—ab+ab _ O
b b bb b* b’
e, -2 0 _-a g
B2 b b
-a . o a
—— is lhe additive inverse of —.
b b
0 0
Ilere note that i =2 for any k(= 0y € D.
. . a ¢
Addition is commutative. Lel >3 e F.
e, ad+be cbrde_c a
v d bd db d b
(F, +) is an abelian group.
 te e L a ¢ e
Multiplication is associative. Let E,E,? e F.

2[3 EJ_E‘_ ce _ace_ac 3_(2_5}3
b\d f) b df bdf bd f \b dJf

HeT 6o

Existence of multiplicative identity. Let % e F. Forkizhe D, -%- e F.

ka

hd
kb b

Il

=

Now and E )
k

oA

i a
b’ b

| =
e aela

-k
2

& la

&
b
k. e . .
7 18 the multiplicative identity of F.
11ere note that —E=% for any A(z 0) € D, because kd = kA

Existence of multiplicative inverse. Lel.% € F and #

o &
E et

= g = 0 for otherwise and

iR
o)
| O

|
|
for any k(= 0)
iz cqual to 0 = 2 e F.
k a




Now il £)-=9E=£ nd E g-@.-f_{’.
0 b'a ba ab a'b ab ab
eb_ab ba
b'a ab a'b
b . L oae e . a
~ is the multiplicative inverse of —.
a b
Here note that.ﬂ is the multiplicative identity because ib—_-’li for any k(= 0)
ab ab k
e .
Multiplication is commutative. Let. E’E =
ac_oc_ca_c @
b'd bd db d'b
(F, ) is an abelian group.
Distributivity. Let PR ; e F.
ele . ej_¢e cf+de _alcf +de) _acf +ade
b'ld f df bdf bdf

a e _iac ge achf +bdae (lacf +adedd _ acf +ade
B f bd bf bdbf (bdfib ~ bdf

Second distributive ld\‘\- holds as a consequence of commutative law of
multiplication.

(F, +, )iz a held.
This field is called the field of quotient of the integral domain D.

5.13. EMBEDDING OF A RING

Aring R is said to be embedded in a ring R’ if there exists an isomorphism of
Rinto R, g

If R is embedded in R’ then R’ is called an over-ring or extension of R.

Theorem 12, Every integral domain with at least hwo elemendts can be embedded

in a field.
Proof. Let D be an integral domain containing at least two elements.
Let D,=D-{0, . D =¢

Define a relation ~on D x [} as follows :
(er, b) ~ (. ) if and only if ad = be.
~ i5 an equivalence relation.
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The relation ~ partitions the set. D X D_ into mutually disjoint. equivalence
ctasses. For (@, D) e N x D, let % denote the equivalence class of (i, b).
S=le.de DD, d~ @by
f.el F be the family of all these equivalence classes.

In F, the elements %:% iff g, b) ~ (e, ) ilf ad = be.

L

For (-;- 5— € F, we define addition and multiplication as follows :

e, c_edtbe o c_ac
b d bd b'd bd
Under these operations, F is a field. This field is called the field of quotients of
the integral domain D,
Let k be any arbitrary but fixed non-zero element of .
Define¢: D> F by q;(a):% Yae D

¢ is well defined. Leta, be D

_ak _bk
o) ==~ oy = 5

ak bk
a=bh = akk=hkbk = ey
¢ is well defined.
¢ is a homomorphism. leta, be D.
ola+ b= M
k
ak bk akk+hkbk
Also ¢(ﬂ) + ¢(b) - T + _E- - bk
_la+bkk _(a+bk |
- kk k
ola + b) = (@) + ¢(b)
_(ab)k _abkk _ak bk
Also, o{ub) = T oler) o(b)
¢ is 2 homomorphism.
¢ is one-one, Lel a, b € P and ¢{a) = ¢(D).
ak bk
= 2% = alkhk = hbk
= kr-b)=0 = ku-0)=0 = a-b=0 (- DisanlD)

¢ 15 one-one.
¢ is a one-one homomorphism on I into I,

¢ is an isomorphism of D into F,
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The integral domain D is embedded in the field of quotienis of the integral [Ideals and Quotient Rings
domain D,

Every integral domain with at least two elements can be embedded in a

field. This completes the proal. NOTES

5.14. UNIT

Let R be a commutative ring with unit. clement. An clement a (2 0) € R is called
a unit in R if there exist an element & € R such that ab= 1.

For example, let Fhe a field anda @ 0) € F.
Let b be the multiplicative inverse of a.
ab=1.
ais aunitin F.
Every non-zero element in a field is a unit.

Remark. The ‘unit’ and ‘unit element’ are different concepts, A commutative ring with
unit element may have more than one units but its unit element is unique.

Illustrations
1. £ 1 are the only units in the ring of integers Z.

2. % 1 and % i are the only units in the ring 2fi], where Z{i] = {x+ iy : x, v € Z}.
This is so because we have

MOH=LEDED=1LGOE)=1

5.15. DIVISIBILITY IN A COMMUTATIVE RING

Let. a(z 0), b be elements of a commutative ring R. a is said to divide b if there
exils ¢ € R such that. b = qe.

We shall use the symbol a/b to represent the fact that a divides band e 7 b to
mean that. a does not divide b.

If o divides b. then we say that a is a factor of b. Further a is called a proper
factor of b if ¢ and ¢ are both non-units, where b = ac.

For example, 2/10 in the ring of inlegers Z, because 5 € Zand 10=2.5. Here 2is
& proper factor of 10 because 2 and 5 are both non-units in Z.

Remark. An element a € Ris a unit. if and only il @ divides 1.
Theorem 13. If a, b, ¢ be elements of a commustative ring R, then
O ab. ble = ale
U alb, ale = a/tb=ze)
(itd) alb = abd ¥ deR
Proof. (i) alb = b=mforsomexeR
ble = e¢=byforsomeye R
Now c=lhy=(w)y~=alxy) = ol (. xyeR)
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(i) ath = b=axforsomexre R
ale = c=ayforsomeye R
Now bre=axtay=a{xxzy) = a/(bzxc). (- x:xyeR)
(i) ath = h=axforsomexe R
= bd={(ed=alxd) = albd - xdeR)

5.16. GREATEST COMMON DIVISOR (G.C.D.)

Let R be a commuiative ring and a, b be any two non-zero elements of R. A non-
zoro element. d € R is called the greatest common divisor (g.c.d.) of a and b if

(i) dia, dib
(if) whenever c(# 0) € R is such that ¢/ and ¢/b then eld.
we write o = (¢, b) whenever d is the g.c.d. of a and b.

5.17. LEAST COMMON MULTIPLE (L.C.M.)

Let R be a commuiative ring and a, b be any two non-zero elements of R. A non-
zoro element [ € R is called the least common multiple (l.e.m.) of ¢ and b if

(i) o/, bil
(i) whenever ¢(# 0) € R is such that a/c and b/c then He.
We write { = [, b] whenever 1is the Lem, of @ and b.

5.18. ASSOCIATE

Lot R be a commutative ring with unit clement. An clement @ of R is said to be
an associate of b € R il @ = ub for some unit i in R.

If o is an associate of b, then b is an associate of @ because @ = ub implies b=
ula.

If @ € R, then all the associales of ¢ can be obiained by multiplying different
units of the ring by a.

For example, the ring of integer Z has only (wo units 1, — L

-. For anv a(z 0) € Z, the associates ol ¢ are a(= 1.a) and —a(= (- Va).

Remark. !l o and b are assoviales then a=u, b und b = u, a for some units u, and u,.

Theorem 14. Let K be an integral domain with unit element. Two non-zero
clements «, b of R are associates if and only if atb and bla.

Proof. Lot non-zerc elements a, b of R be associates.

Jaunit ve R:a=wub.
a=ub = wla=u'why = b=ula

Now a=ub = bla and b=u'la = ab
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Conversely, let a/b and bfa. Ideals and Quotient Rings
alh = b=ouxforsomexe R
bla = a=byforsomeye R

b= ax = (hy)x = blxy) NOTES
= b-bixy)=0 .= bl-bxyy=0 = bl-x=0
= 1-xy=0 ¢ bz0and Risan 1.D)
= xy=1 = xandy are units in'R.

a and b are associates.

Example 14. Let R be an integral domain with unit element and d, = (a, b).
Show that an.element d,of R is also equal to (a, b) if and only if d  and d, are associates.

Sol. We have d, =(a.b).
Let d, = (a, b)
d\fa. d\ib. doja, d,tb, d /d,, djd,
Let. d,=xd, and d =yd,
= dy = x(ydy) = Ld,— (x)d, =0
= (1-xyd; =0 = l—xy=0 ¢ dy=0)
=% =1

x, y are both units.

d, = xd, implies that d, and d, are associates.
Converselty, let d, and d, be associates.
o d, = ud, for some unit. 1z in R,
We have (o, D)y =d,

= dfa, d b = ndja, udJb = dja. djfb
Let cla,eth. o edd, . _ (0 d={a b))
= clud, = vchud, = rvcid, = cd,
(Since yisaunit,Ire Riuv=1)
d, = (a, b)

The result holds,

Example 15. If I is a PID, then show that any two non-zere elements a, be R
havele.m. in R,

Sol. Let. A=(@ and B=(h).
A Bis also an ideal of R,
Let AnB=({).

le AnB = leA = [I=ax forsomexe R
le AnB = eB = I=by forsomeye R
a/l and O/
Lol ale, bie for some c € R,

= e=ak, ec=buforsomed. pec R
= ce{m, ced = ce AnB = ce )
= c=ulforsomeneRsomeue R = Ul
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all. bt and ale. ble = e
fis the Lem, of g and b,

5.19. PRIME ELEMENT

Let R be a commutative ring with unit element. /A non-zero, non-unit element.
p e Riscalled a prime element of R if for every a, b in R, p/ab implies p/la or  pfb.

Remark, A non-zero, non-unit element pe R is not prime if there exists a pair of elements
i.be Rusuch that plfaband p # . p ¥ b

5.20. IRREDUCIBLE ELEMENT

Let R be a commutative ring with unit element. A non-zero, non-unil element
pe Risecalled an irreducible element of R if for every ¢, b in R, p = ab implics either
a or I is a unit.

Remark 1. A non-zero, non-unit element p e R is not irreducible if there exists a pair of
elements a. b, € R such that p = ab, where a € d. b are both non-unit elements of R. In other
words, @ and b are proper factors of the non-irreducible element p of R,

An irreducible element of a ring cannot have a proper factor,
Remark 2, [n the ring of integers Z, every prime number is both a prime clement and
an irreducible element.

Remark $. The ring {a + J6bi:a, b € Z] is ulso denoted by Z15il.
Remark 4. if ¢ + 5 bi is a unit of R, then there exists ¢ + 5 di € R such that
@+ VBbc+Bdh=1 = (a2+5bD) (@ +5d9 =1

= a2 +567=1 = a=+], b=0

= a+Bhi=x 1+ (B . 0)i=%1,
The units of B are £ 1.
Theorem 15. If B is an integral domain with wunit clement, then every prime
element is ulso an irreducible element.

Proof. L.ct. p be a prime element of R.
p # 0 and p is not a unit.
Letp = ab, for some a, be R

= ab=p.1 = plab = pla or pib

Let pla. o a=phforsomele R

- p=ab = p=(@b = pl=piab) = p(-ib)=0
= 1-Xxb=0 (- p#0andRisan1D)
= =1 = bisaunit.

Similarly, if p/b then @ is a unit.
p is an irreducible element.

Remark. The converse of this theorem is not frua. But if the iniegral domain with unit.
element happens to be a principal ides] ring. then the converse is also Lrue.
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5.21. UNIQUE FACTORIZATION DOMAIN (UFD)

An integral domain R with unit element is called a uwnigque factorization
domain if :
(#) Every non-zero, non-unit element in R can be written as the product of [inite
number of irredueible element of R.
(i} The decomposition in (7) is unique up to the order and associates of the
irreducible elements.
Example 16. Le! B be a commustative ring with unit element. Show; that every
prime element in R generaies o prime ideal of R.
Sol. l.etp be a prime element. in R,
7 is non-zero and non-unit. element and for every a. b e R, piab = pla or
pib. Leted € (), the ideal generated by p.

= IreR:ed=pr

= pled = ple aor pid (. pisaprime clement of R)
= c=px or d=pyforsemex ye R

= ce (@ or de ()

(M is a prime ideal of R.
Example 17, Show that the ring of integers is a UFD.
Sol, The ring of integers, Z is an integral domain with unil element,

Fvery prime in Z is an irreducible element. of Z. The units in Z are only — 1
and 1.

Let. # be an inleger other than 0, - l 1,

n can be expressed as the product of finite number of prime elements and
hence irreducible elements,

The expression is unique excepl lor order and sign.
Zis a UFD.

SUMMARY

*  The kernel of s homomorphism of a ring R into a ring R’ is an ideal of R.

« Let $:R— R be 2 homomorphism of ring R into ring R”, If A is an ideal of R then f{A)
is nn 1deal of o(R).

»  Afield cannot have any proper ideal.

*+ Il n commulative ring with unil element has no proper ideal then it is a field.

s I A and B, are two lelt (resp. righl) ideals of a ring R, then A + B, and A, n B, are
also left (resp. right) ideals of R.

« Lot Rbe aring and S. a non-empty subsct of R. An ideal A of R is said to be gencrated
by §if A is the smallest ideal of R containing 8.

s letRbe aring. Anideal of R generated by a singlton set. is called a principal ideal. If
the ideal A is generated by the set {a}. then we write A = (a) or as A = <a>.

* Let p be a homomorphism of a ring R onto a ring R’. Then Riker = R’.

s If Ris a commutative ring with unit elemeat and M is an ideal of R, then M is n

maximal ideal of R if and only if R/M is a field.
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If R is 1 commulative ring and P is an ideal of R, then P is a prime ideal of R if #nd
only if R/ is an integral domain.

Fvary integral domain having at least two elements ean be embedded in a field,

Lot R be an integral domain with unit clement. Two non-zera clements a, b of R are
associates if and only if /b and b/,

If R is an integral domain with unit element, then every prime element is alse an
irreducible element.

If B is a principal ideal domain, then every irreducible clement is also a prime ele-
menti.

REVIEW QUESTIONS

Lat R be a ring and a € R. Show that Ra = {r¢ : r € R} is aleft ideal of R.

Let R be a commutative ring and a € R. Show that the set ¢R = {ar : r € R} is an ideal of
R.

Let R be a'ring and ¢ € R. Show that the set r(a@) = {x € R: ax =0} ix a right ideal of R.

Show that Z is n subring of the ring (R, +, ) but neither a left ideal nor a right ideal of {R,
+..).

Lot H= {[2 b]: a,b,c,de Z}, Show that the set {[a b]: abe Z} is a right ideal of R.

d g0
a b ¢
The set. R = ild ¢ fl:a.b.c.d,e.f,ge€Z; is a ring under matrix addition and
o0 g

multiplication. Show that.:

00 a M0 0 a
A=ilo 0 bl:abeZ isanidesiof Rbut B=4¢0 0 0|:eeZ; is not an ideal of R.
g 00 000

Further B is an ideal of the ring A.

Show that the subset A of all matrices of the form g b] .a. be Zforms a subring of the

ring R of all 2 x 2 matrices having integral elements. Also show that A is neither n left
ideal of R nor a right ideal of R.

In the eommutative ring (Q, + ), show that 4 divides 9.

If a/b and afc in a commutative ring R, then show that

affmb+nuc® Vv n,nel.

Show that. 1 and — 1 are the only units in the ring of integers.

T« is a unit in a commutative ring R with unit elament, then a7' is also a unit in R.

Show that Lhe product of twe units in a commutative ring with unit element is siso a
unit..

Let R be n commutative ring with unit element. Show that the relation in R defined hy
‘is an associate of ' is an equivalence relation.

if pr, q arc prime clements in an integral domain R with unil clement such that pfg, then
show that p and g are assoeiates,

Show that 1 + §is an irreducible element of the ring Z[f].
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EUCLIDEAN RINGS

6.0. Learning Objectives
6.1. Introduction
6.2.  Euclidean Ring

®  Summary

o  Review Questions

6.0. LEARNING OBJECTIVES

After going through this unik, you should be able fo:

s ouclidean ring.

6.1. INTRODUCTION

In this chapter, we shall introduce Fuclidean rings. We shall prove that every
Euclidean ring is a principal ideal ring as well as a unique factorization domain. In
ithe last. we shall prove a theorem regarding the maximal ideals of a Euclidean rings.

6.2. EUCLIDEAN RING

An integral domain R is called a Euclidean ring if for every a (= 0) € R, there
is defined a non negative integer d{g) such that.:
O di) <dab) Va0, b0 e R
(i) Given « (2 0), b(¢ 0) € R, there exisi elements ¢, r € R such that o= bg + r,
where either r = 0 or d(r) < d{bh).

Euclidean Rings
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The condition () given above can also be written as d(b) < d(ab). Also, d(a) is

defined only for non-zero clements of R. In other words, (0} is not.defined. An Euclidean
ring is also known as a Enclidean domain.

NOTES

and
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Remark. if ¢ =0 and b 2 0, we can write a = .0+ 0 or 0 = bg+r, where g=0, r=0.
The requirement (@) is trivially true when a=0.

Example 1. Show that the set of integer Z is a Euclidean ring under usual

addition and multiplication,

Sol. We know that Z is a commutative ring.
Also, b= 0 is possible in Z only when at least one of @ and b 1s zero.
Z has no zero divisor.
Z is an integral domain.
For every a(z 0) € Z, wedefinedl@=|al. - d{o) is a non-negative integer.
() For non-zero integers a, b, we have
lal€lallbl=1abl ie,da)<dab)
¢ bz0 = b1z
-~ dimsdiahy vV aM, Mz e Z.
@let a=®Hbz0Hel
Dividing a by b, there exist integers g and r such that
a=hg+r, where 02r<|bi.
Now Osr<|bl = r=0 or O<r<|b]!
= r=0 or |lri<ibl
= r=0 or d@<dd.

For non-zero elemenisa, b of Z, there exist g, r € Z such that o= bg+r

where either r =0 or d(r) < d(D).

Z is 2 Buclidean ring.
Example 2. Show that the integral domain Q of rational number with d{a}

=|a | Va0 e Qisnot a Euclideun domain.

2 3
|. =—'b=—
Sol a B 5

_4(238)_,4(8).18]|.8
(}(“b)'d(s'a]’d(%] ‘25‘ 25

2 6
d(@) % diab). because 5 $-2—5

Q iz not a Euclidean ring,

e e e -
s



Example 3. Show that every field is a Euclidean domain. Euclidean Rings
Sol. Let F be a field.
F is a commutative ring.
Leta # 0 and ab =0 for somea, be F. NOTES
az0 = a'exists.
ot@h)y=0t0 = (@'ab=0 = 1Wb=0 = b=0
F has no zero divisor.
F is an integral domain.
For every o= 0) € F, we define d{a) = the integer ‘1.
d(a) is a non-negative integer,
() For non-zero elements o, hof F. we have di@ =1 and dgh)=1
o () £ dab).
(i) Leta(z0), b(zQ) e F.
: a=1.a=@dbYHa=bbr)=bdla)+0
= a=bg+r.whereq=blage Fandr=0,
F iz a Buclidean domain.
Every (ield is a Eueclidean domain.
Remark. In ihe above example, the 'l invelved in the relation a~'ag = 1 is the unit

element f.e., the multiplicative identily of the field F whereas the '1" involved in the relation
d(c) = 1 is first positive integer.

Theorem 1. Every Euclidean ring is a principal ideal domain.
Proof. Let R be a Euclidean ring.

R is an integral domain. In order Lo prove that R is a principal ideal domain,
we should show R possesses unit element. and every ideal of R is a principal ideal.

Let A be any ideal of R. If A is the null ideal, then A = (0), s0 A is a principal
ideal.

Now let us assume thai A = (D).

Since R is a4 Euclidean domain, so for every a(z 0) € R, there is defined a non-
negative integer d(m) such that

Odl@ysd@b)y ¥ az0), b0 e R

(i) Given a(z 0), b(= () € R, there exists elements ¢, r € R such that. o = by + r,
where r-= 0 or d(r) < d(b).

Let. M={d(x): x(=0) e A}
M is a non-empty sei of non-negative inlegers.

et b{# 0y € A be such thar d{d) is the least element of M. We shall show that
A= (b

beA = breAVreR = GB)cA
Let ¥ be any element of A. If y =0, theny € {0}, so let y 2 0.
(3iven y(= (). bz 0) € R. there exists clements ¢, r € R such that y = bg + r,
where r =0 or d{r) < d{b).
yeA and be A = ye A and bge A = y-bge A
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Algebra = re A ¢ y=bgtr = r=y-bhyp
If possible, let r 20 =~ d(n) < d(d)

By definition of b, dby £ d(r).
NOTES This is a contradiction . r=0.
= y=bg = ye@® = Ag®

A={b . Alisarprnncipal ideal
Every ideal of R is a principal ideal.
Now. we shall show that R has a unit element.
In particular, R itself is an ideal of R.
Jage R:R=(w).
Also ge R - 3AbesR:ab=a
Let x be any element of R.
= xe({) = x=ayforsomeye R

Now xb= (b =ah=yab)=yr=ay =
= xb=x (. R is commutative)
= xb=x=bx

b ix the unit element of R.
R s u principal ideal domain.
Theorem 2. If B be a Euclidean ring, then any tico noni-zero elements a and b in
R have a grealest common divisor d in R and d = kg + ub for some }, p e R.

Proof. Let A={xa+tyb:x, ye R}
Ox+0y=0+0=0ec A . Azg
Let vatyh vatybe A

(a0 + y,b) — (rpa + 3,b) = (v, —x)a + —yhe A
(- XXy ¥R = y-x, ¥ -yE R)
Also, re R = rixja+yd)=@x)a+r(y)beR
¢ x,,y,€R =rx,ry, €R)
A is an ideal of R. Since everv Euclidean ring is a principal ideal domain,
the ideal A of R is a principal ideal.
Let A={(d), forsome d € R.
Also d=1de {die, A
(+ a PID always have unit element)
K d=a+pb forsomei.pe R
Now a=1lg+0b and b=00+1b

a,be ALe, (D
= a=md b=nd lorsomem, ne R

= la, d/b Now, lel e/, cfb

= chha,ciuh = ca+pb) = od

d=gecd. of (@ b) and d= Aa + pb, where A, p e R,
This completes the prool.

Theorem 3. Let R be a Euclidean ring and a, b be non-zero elements of B. Show
that :
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) dta) = d(ab) if bis a unit (i) dio) < dfab) if b is not a unit.
Proof. We have o(g) < d{ab). ~AD
(i) Lel b be a unit in R.
. Thereexistsce R:bo=1
o a=a(l)=albe) = (ab) ¢
= d@) = d{iab) &) =2 dlab) = di@) 2 diad) A2
(O and &) = d(o) = diab).
(if) Let b be not a unit in R.
Since ¢ 20, b# 0 and R is an LD, we have ab = 0.

For a=0,ab %0, 3q re Rsuch that
n={ahyg+r wherer=0 or ()< d(ah)
r=0 = a={h)g = al-bg)=0 = I-bg=0 C a=x0)
= bg=1 = bisaunilin R
This is impossible. -~ r=z0

. dir) < diab)
a=@h)g+r = rza—-uabg = r=afl-by
= dry=d@(l -by))zd@ = d@) =dr)
= dysdin<dah)y = da)<dab).
Theorem 4, Every Euclidean ring is a unigue factorization domain.
Proof. Let R be a Euclidean ring.

R is an integral domain, We know that every ideal of a Euclidean ring is a
principal ideal.

R being an ideal of R is principal.
Jae R:R=(a)
Also geR .~ 3beR:ab=a
Let x be any element of R.
= xye{g) = x=ayforsomeye R.
Now xh=@mb=(@ya)b=ylah)=ya=ay=x
= xb=x = zb=x=bx ¢ R is commutative)
b is the unit element of R.
The Fuclidean ring R is a principal ideal domain.

Since R is given to be a Euelidean ring, for every a(¢ 0) € R, there is defined
non-negative integer d{a) such that

O dlaysdaby¥az0),bx0e R

(i) Given a(z ). b(z 0) € R, there exists elements g. r € R such that a=bg + r,
where egither r =0 or d(r) < (D).

Now we shall show that.

() Every non-zero, non-unit element in R can be written as the product of finite
number of irreducible elements of R.

(i) The decompaosition in (i} is unique upto the order and associates of the
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Algebra irreducible elements.
We denote the unit element of R by '’
For xe R, d(1) £d{l.x) = d(x)
NOTES . d{1) is the minimum value of the d-function.
Let a be any non-zero element.in R, . (@) =2 d(1).
If d(a) = d(1), then @ must be a unit in R and so @) and (i) holds trivially. Let
d(@) = d(1). We suppose that () and (i) are true for all £ € R such that. d < d(a). ifa
an irreducible element of R, then the result holds (rivially. So suppose that @ is not. an
irreducible element.
3b,ce R:a=bcandb, ¢ are non-units,
. d)y <dbe) and  dic) < d(be)
= diy < dtey and  die) < d(w) ¢ a=bhe)
By induction hypothesis, b and ¢ can be wrilten as the products of finite
number of irreducible elements of R.

Lat, b=ppy.oby, aNd C=D Py o Py
a=be=ppy . Dy, PyiP s oo By
i, A=P Py e P,

(1) holds. Lel a be also equal (o the product of irreducible elements /. pg

. PPy p,=mpy P LD
Since the Fuclidean ring R is a principal ideal domain, every irreducible element
in R is a prime element.

PPy PP Dy »’,, are prime elements.
Now p, divides p p, ... D,

p, divides p,’py" ... L.
p, divides at least one of p).'py oo 1V

Without loss of generality, let p./p )"
p, =up, for some v € R.
Since p,” is irreducible, either w or p, is a unit.
i is a unit, because p, being a prime cannot be a unit.
p,” = up, implhies that p, and p,’ are associates,
) = pwy.. P, = up Py P
Since R is an inlegral domain and p, # 0, we cancel p,.
Doy o po=uppg L L 2)
Now we can repeal the above argument on the relation (2} with p,. If 0 <0,
then after n steps, the L..H.S. of (1) becomes 1 while the R.H.S. of (1) reduces to the

product of 7 units in R and (0’ — n) prime numbers. Since prime numbers are not units
in R, the produet on the R.H.S. cannot be 1.

n < n’ is impossible.
Similarly #’ < n is impoessible.
n=n

Also every p is associate of same p” and 5o every p’ is associate of same p.
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This eompletes the proof.

Theorem &. An ideal A of a Euelidean ring R is maximal iff A is generated by
some prime elemeni of K.

Proof. Lot A= (p), where p is a prime element of R. Let B be an ideal of R .»_-‘_-uch
that Ac B R. Since évery Kuclidean ring is a principal ideal domain, the ideal Bis a
principal ideal.

Let B=(b) for some b e R.
. AcB = peB = p=briorsomere R
Sinee p is prime and R is an [ . D, 8o p is irreducible.
p=br = cither bor ris a unit,
Letbbeaunit .. bez=liorsomece R
= I=b)e B = B=RL
Jetrheaunit. . rs

| for somese R
o p=br = ps=brs=b1=b = be(p) = BcA
= B=A

Either B=A or B=R. . Theidecal Ais maximal.

Conversely, let A be a maximal ideal of R. Since R is a Euclidean ring, A ={p) for
same p € R. We shall show Lhal p is prime. Il possible let p be not prime,

P is not irreducible.
I m, ne R;p=mn and neither m nor # is a unit in K.
p=mn = @Erc@m)cR.
Since (p) is maximal, either (m)=(p) or (m)=R.
m=@ = me@p) = m=kpforsomekeR
= p=mn=hkpn
= 1=kn = nisaunii (- p#0andRisan D)
This is impossible. - (m) = ().
mMy=R = le(m = l=xmforsomexe R = misaunit.
This is impossible - (m) 2R,
Qur supposition is wrong,

pis a prime clement in R.

SUMMARY

s Every Euclidean ring is a principal ideal demain.
* If R be a Fuclidean ring, then any two none-zero elements ¢ and b in R have a
greatest common divisior din R and o = g + pb for some 4, p € R.

s IfRis a Kuelidean ring and ¢, b be non-zero elements of K, then
(1) dia) = d(ab) if b is a unit
(1) d{g) < d(ah) if b is not. @ unit.

Every Kuclidean ring is a unique factorization domain.

An ideal A of & Euclidean ring R is ¢ maximal ideal iff A is generated by some
prime element of R.

.
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REVIEW QUESTIONS

Let a, b, ¢ be any three elements of a Euclidean ring R and (g, §) = 1. If a/be then show
that «/c.

Show thal » non-zero element. ¢ in a Euwclidean domain R is a uait iff di@) = d(1).

Let R be s Euclidean ving and @, b are non-zero clements of R. If d{a@) < d (ab), show that
b is nol a unit.

Let R be a Buclidean ring and @, b are non-zero elements of R. If g und b are associates.

show that (@) = d(b).
Shew that every Euclidean ring possesses unif element.

Let R be a Euclidean ring and A be an idesl of R. Show thal there exists an element
a, € R such that A={q;r:re R}.
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7.0. LEARNING OBJECTIVES

After going through this unit, you should be able to:
* polynomial over a ring

» degree of a polynomial

» sum and product of polynomial

s classification of polynomial.

7.1. INTRODUCTION

In this chapter, we shall prepare rings of pelynomials using elements of a ring
as their coefficients. We shall end this chapter after obtaining a method, called
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Algebra Eisenstein Criterion, of deciding whether a polynomial over integers is irreducible
or not, over the rational numbers,

NOTES 7.2. POLYNOMIAL OVER A RING

Let R be a ring. An infinite sequence (i, 0, ¢y, ... ) of elements of B is said to
be a polynomial over R if only finitely many terms a; are non-zero elements of R.

In other words, there exists a non-negative integer # such that a; =0V i>n.

For example (4,0, 3,5, a,, g, ... ywitha, =0V n=>3isa polynomial over the
ring of integers.

7.3. USUAL NOTATION FOR POLYNOMIALS

Lel (@, a,, @y, ......) be a polynomial over aring R. This polynomial is denoted
by a, + a,x + a,x* + ...... . Here x is only a symbol and is called an indeterminate.
Also. 12, %, ... are symbols. The elements ag. ¢, a,, ...... are called the coefficients of
the polynomial. The different formal power symbols x, x* x3 ... are meant just to
indicate the position of the corresponding coelficients. The symbol ‘+ connecting the
terms in the polynomial gy + ax+ o + . has no hearing with the ‘addition” of the

&
ring R. Also, the zero appearing in a polynomial is the zero element of the ring,

If in the polynomial (a4, @, @, .....), ;=0 Vi=n, then this polviiomial is also

n
wrilten as Z axt.
i=0

In the notation of {t,, a;, @y, ... Jasa,+axt "z-‘f2 +......, it.is also assumed that.
if @, =0 for some i, then the corresponding terms ax’ i.e,, Ox* need not be written.

il (ay, @y, @y ...} 18 & polynomial over a ring R such that » is the largest non-
negative integer with ¢, # 0, then a, is called the constant term ol the polynomial
and a, is called the leading coefficient of the polynomial, We can write this polynomial
as @yt ax+ ap?+ L T axt A polynomial (a4, @, ay, ......) is called a constant
polynomial ifa, =0 vi>0

For example, (1,5,0,0,7,0.9, a5, a, .....) wherea; =a,= ... = 0 is a polynomial
over the ring Z, because only finitely many terms are non-zero. This polynomial can
also be written as 1+ 5y + 022+ 0% + Tot + 068+ R8 + 02T+ 0B+ or simply as
1+ 5x+ Tx* + Oxb

7.4. POLYNOMIAL RING OVER A RING

Let R be a ring. Let R[x] denate the set of all polynomials over the ring R.
Rixi = {{eg, @), 0y, ... ) iz € R and only finitely many «, are non-zero}
Equivalently,

Rlx] = {a,+ a,x+a,x%+ ... 1a;€ Rand only finitely many ¢; are non-zero;.
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L
or Rix| = Z a;x' :q,€ Rand for some non-negative integer n, a, =0 Vm>n }
i=0

We shall show that R[x] is a ring. We define equality, addition and multiplication
in R[x].

[.et f=(ag a0y .....), 8= (b b, b,,.....) € Rlx].
We define f=gif andonlyif g, = b, for i=0,1, 2, ...
We define frg=c, € g e ).where¢,=a;+b, Vi
In order 1o add two polynomials, we add the corresponding coefficients,
We define fe=(dyd,d, ... ),
whered, =ab, +ab_ + ... +a_ b +tab, Vi

In particular, dy=azh, dy=ab, +a b, dy=agb, +ab +aby ...
Since R is a ring, each ¢; and d; is in R.
Let m and # be non-negative integers such that

;=0 Vi>m and b=0 Vi>n

Fori>max (m,n), ;=aq,+b,=0+0=0

Only finitely many ¢; are non-zero.

[+g¢e Rlxj.
For i>m+n,

d=ab,+ab,_ +... ta b +a

NUCY: TR PP a;,b, +ab,
=a0+a 0+ .. +aq0+0b,_  +... +0b+0by=0+0+. . . +0=0
Only finitely many «, are non-zero.
fg e Rlx].
In order to write fg in terms of the indeterminate x, we write [ and g separately
in terms of x and multiply these and use the formula Y¥*x* = 27*,

Thus, if f= 2 a;x’ and g= i bx'

i=0 im0

max {n, n)

then frg= 2, (la+b)d
i-0

o
and fg= E (agh; +ab,_ + ...+ a_ b +aby i
. i=0
Addition and multiplication in R[x] are well defined.
Addition is associative.

Let f=(ay o, 0y .08 =g, b by ), h=(cp. ¢, cqy e ) € Rlx].

f+@+h)=(ag a,a,...)+[(by, by, by ...} + ey 01, €50 ..00)]

= (G @) Uy, )+ Byt g by + 0y, by F oy, )
= (ag+ (bt ey, ay + (0, +¢) a,+ (by + ¢y, ...
= ({ug+ b+ e oy T b)) e (gt by) + ey, )

FPolynomial Rings
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Algebra =(ag+ by a, +b,a,+h, . Y+ (tg cp 0, )
= [lag ay, ag. ... )+ Qg by by, Mg e e )=+

Existence of additive identity. Let[={a, a,, a, ....) € Rlx].
NOTES Let . i=(000 ...} Rx].
[+i=(a, a,a,:..)+(0,00 ..
=yt 0, a,+0,a,+0, ... Y=g ay, ay )=

Similarly, i + /=1 fri=f=i+f
i i the additive identity.

Existence of additive inverse, Let f= (a,, a;. 4y, ... ) e RBfx].
= ty By, Ty, oo € R = —a5—0,.—0y ... € R
= (=, — 0y .. ) € R[x].
We denoie this element of Rjxj by — £
JHE=N=1uy uy, 0y, .. Yt (g —ay, —ay, )
S(@y— 0y G =), Ay — Uy, ... ) = 0,00..)=i

Similarly, hH+f=1
frep=i=enef
- fis the additive inverse of f.
Addition is commutative. [t is left as an exercise,

Multiplication is associative.

Let f= (g a g, ), 8= by by, ) = (e e 0y ) € Rl
[ = (a0, a,.....) [bg by, b, ) € € o))
= (1, ¢y, g, o Bl + byeg, by + biey + baeg, )

= (ag(by o), tglbgey + bieg) + a, (e, )
Also Uoh = l(ag. a, agy oo b, by, by, Niey. €4 €00 )

= (apby, aghy + ab,. agby + a b +azhy, o )eg e, €y )
= ({agby) ¢ wgboie, + (agh, + @ byey, .....)
= (g, tylbocy) + aglh cg) + ahyey), ... )

= (agboto). tolhoe, + by + ay{boey). )
f (=i = (2)h.
Similarly, we can show that f(g + My =fg + fhoand g+ I)f=gf + I.
Rix] is a ring. #
Corollary 1. If R is a cummutative ring then Rfx] is also a ecummutative ring.

Corollary 2. If R is a ring with unit element 1 then R[x] is also a ring with unit
element and the unit element s (1,0, 0, .....).

Example 1. Show that the ideal (x) of the ving Zfx] is a prime ideal but not a
maxiniol fdeal.

Sol. Lel f(x), g(xy € Z|x] such that f(x) g(x) € (x).

There exists ) € Z[x] : fx) g(x) = xh(x) (D
Lot f=a+ax+ ... +a, X",
g =by b+ bt
and h)=cy+ex+ .. + e, 0P,
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Comparing the constant terms in (1), we get agh, =0

= a,=0 or by=0 (- Zisan [.D.)
=0 = flo=ax+. ... +ax"=x(o+. .. +a x" e (v)
b=0 = gW=bx+...+bx"=xb +...+bx" e @

Either flv)e (x)or g(¥) & (¥).
+ {x) is a prime idcal of Z[x].
Now we shall show that (x) is not a maximal ideal of Z[x].
(x) = Z[x} because 2 € Z[x] but 2 & (4.
Let A be the ideal of Z{x] gencerated by 3 and x.
3 & (x) because 3 2 xf(x) for any f(x) € Zx].
- (McA
Also, 4 € Z[x] and 4 cannot be expressed as 39(x) + xyr(x) for any &(x), w(x) in Z[x].
: A c Zix]
(x) 1s not a maximal ideal of Z[x] because (¥) ¢ A < Z[x].

7.5. DEGREE OF A POLYNOMIAL

l.el K be a ring.
Letf=(ag.a,.ay ... ) Le, ag+ax+apt+ . be a non-zero polynomial gver R.

Only finitely many a; are non-zero. If for a non-negative integer n, ¢ # 0 and
a, =0V m>n, wesay that the degree of the polynomial fis n and write deg f=n.

If degree of a polynomial is zero then we say that it is a constant polynomial.
The degree of zero polynomial is not defined.

Illustrations. (f) 2+ 3x% + 7x° is a polynomial of degree 5 over the ring of integers.

(i) 4 is a polynomtial of degree 0 over the ring of integers. This is a constant
polynomial.

Remark. If a polynomial f over a ring R 15 expressed in tertns of the indeterminate x,
then we generally write [ as f(x).

7.6. DEGREE OF SUM AND PRODUCT OF POLYNOMIALS -

Let f=a+tax+ .. +a, x"a, «0
and gx)=by+bx+ ... +bxt b 20
be polynomials over a ring R,
deg fixy=m and degg(x)=n

max {m.n)
» Wehave filo+gx= 2 {a; + b)x'
i=0
=max{m,n) ifm=zn
deg (flv) + glx)) 1=m fm=nanda, +b, 20
<m ifm=nanda, +b, =0

In general, deg (f{x) + g(x)) < max {deg f(x), deg g(x)}.
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Algebra

Also fx) g(x) = % b, +ab,  + ... ra_b +ab)y
= + if b 0
NOTES deg (f(x) 2(x)) {{,’.ﬁ -t ﬁ:b: Zo.

In general, deg (f(x) g(x)) < deg f(x) + deg g(x).
Remark. If Ris an integral domain, then @b, # U whenever a,_ = 0, b, #0.
We have dep (f(x) g(x)} = deg f(x) + dezg g(x).
Theorem 1. If R is an integral domain then Rix]is also an integral domain.
Proof. R is given (o be an integral domain.
R iz a commutative ring.
R[x] is alse a commutative ring.
Let fay=uytaxt. ... tax" a 0
and gy =byrbx+ . +ban b, 20
be any two non-zero elements in R{x].
Since R is an integral domain and e, b, =0, s0a,b, 0.
The product f(x) g(x) of f(x) and g(x) will contain Lhe term a_ b, x™*".
fg) =0 ¢ a,b, 20
; f20, 5020 > f(Yg)=0. .~ Rlx]isanlD.
Theorem 2. If Fis « field then Flx} is an integral domain and not a field.
Proof. F is given (o be a field.
F is a commutative ring.

F[x] is a commutative ring.

Let ab=0,a0inF.
= alleh)=a'0 = b=0 . FisanlLD
Let f=a,+ax+. ... +ax"a,*0

and g =by+bxt. . +b N a, 20

be any (wo non-zero elements in Rix|.
Sinee F is an integral domain and a, . b, 20.s0a, b, 2 0.
The product f(x) g(x) of f(x) and g(x) will contain the term @, b, 2™,
g =0 ¢ a b 20
fA #0820 = flghy=0. -~ Flr]isan integral domain.
Let f(x)(= 0) € F and deg f(x) 2 1. The unit element of I is the constant.
polvnomial * 1",
If possible, let multiplicative inverse of f{z) exists and let. it be g(x).
flx) glx) =1 (1)
This shows that g(x) = 0, lor otherwise we would have
0 gx)=[(x) . 0=0=1
Sinee F is an integral domain. we have
deg (Fx) g(x)) = deg f(x) + deg glx) 2 1
(1) is impossible, because deg (1) = 0.
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A non-zero element in Flx] may not have multiplicative inverse in Flx].
F[x] is not a field,
Remark. Orly non zero constant polynomials are invertible in F[x].
Theorem 3. (Division Algorithm), If F'is a field then for any two polynomials
f(x), gix) e Fix], g(x) = 0, there exist polynomials q(x) and r{x) in Fix} such that
fx) = g(x) g(x} + r{x), where r(x) = ) or deg r(x) < deg g(x).
Proof. f(x), g(x) are elemenis of Fix] and gz(x) = 0.
1T deg fix) < deg g(x), then we write f(x) = g(x) . 0+ f(x).
fl) = g(¥) g(x) + (&), where g(x) = 0 and r(x) = f(x).
. deg r(x) < deg g(x).
So, let. us assume that deg f(x) = deg g(x).
We shall prove that result by using induction on deg f(x).
If deg fix) =0, then deg g(x) =0 i.e, g(x) is a non-zero constant and (g(v)"' e F
¢ Fis a field)
We write f(x) = (800 (g(x))y™) fln) + 0.
! f) = (@) (@)™ fx) + 0.
fx) = g{x) q(x) + r(x), where q(x) = @) fix) and r(x) = 0.

let the result be true for all polynomials on the left of the relation “f(x) =
&(x) q(x) + r(xy, whose degree is less than deg f(x).

[Let fy=a,+ax+ ... ta, x"a, #0 (N
and g =by+bx+. . +ba" b #0 o (2)
and mza.

Since Fis afield, b, 1e b
Multiplying (2) by a, b ~'x™", we get
+a,b7'b, xm +a xm (B

Subtracting (3) from (1), we find that fx) - a, b~ g(x) = [,(x), say, is a
polynomial which is either zero or is of degree < m., ’

If [i{x)=0then ftx) —a_b ~'x™"g(x) =0,

{Imbn—lxm-al g(x) = umbn—lboxmﬁn + "_mbn—lblxm_hﬂ +

- f(x) = g(x) (@b, + r(x}, where r(x) = 0.
Now, let deg £,(x) <m.
By the induction hypothesis. 3 ¢,(x). r,(x) € F|x] such that.
1,00 = 80 0, + 1, (),
where r,(x) = 0 or deg r,{x) < deg g(x).
= fly-a,b 1xm"g(x) = gx) q,() + r (x)

= f) = g((a, b, x™" + q () + 1, (2)
= [(0) = g(0) q(x} + r(x),
where g(¥) = a_b 1x™" + q,(x} and r{x) = r (x).
The resuit is true for £ (x). (v rx) = 0or deg r(x) < deg g(x)}
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For given fix), £(x) € Fla], and g(v) = 0 there exisis g(x). r(x) € F[x] such that
) = 2(1) g(x) + r(), where r(®) =0 or  deg 1(x) < deg g(x)).
The division algorithm holds in Fv].
Caution. The ‘division algorithm’ holds in Flx|, only when F is a field.
Theorem 4. If Fis a field then Ffx] is a Fuclidean ring.
Proof. F is given to be a field.
I is an integral domain.
= Fla] is an integral domain.
For every f(x) (# 0) € Flx] we define d{(f(x)) = deg f(x).
d(f(x)) is a non-negative integer.

Let () & 0). glv) = 0) e Flx]

deg (f(x) g(x)) = deg f(x) + deg g(x) (- Fisan D))
= deg /() < deg ((v) £(0)

= dif(x) S dfx) g0 ¥ A0 (= 0). glv) ¢ 0) € Flx].

Let fix) (= 0, g(x) (2 0y € Flx]. By division algorithm, there exists polynomials
g(x) and r{x) in Flx| such that
flo) = glx) q(x) + r(¥), where either r(x) = 0 or deg r{x) < deg g{x)
f(x) = g(x) g(x) + r(x), where cither r(x} =0 or d(r(x) < (g(x)

F[x] is a Euclidean ring.

Corollary. Since every Fuclidean ring is a PID. the Kuclidean ring Flx] is also
a PID.

Theorem 5. If Fis a field then Fix] is a principal ideal domain.

Proof. F is given to be a field.

F is an integral domain with unit ¢lement.

= F{x] is an integral domain with unit element.

Now. we shall show that every ideal of F[x] is principal ideal.

Let A be any ideal of Ffx]. If & is the null ideal, then A= (0), so A is a principal
ideal.

Now let us assume that A = (O).

There exists a non-zero polynomials in A. Let g(x) be a non-zero polynomial
of lowest degree m belonging to A, We shall show that A= (g(x)). Let f(x) be any element
of A

Ry division algorithm, there exists polynomials ¢(x} and r(x} in Flx] such
that

f(x) = g(x) g(x) + r(x), where r(x) = O or deg r{x) < deg z2(x).
Now e A and g gxre A ("~ Ais an ideal of Flx])
JO—g) gl e A de,rix)e A
deg r(x) cannot be less than deg g(x).

. r{x)=0.
= f(x) = g(x) y{x)
Every element of A iy some multiple of g(x). ~ A= (gQ)

Ais a principal ideal.
Flx] is a principal ideal domain.




Example 2. Show that Z[x]) s not a PID.

Sol. To show that Z[x] is not a PID., it is sufficient to show an ideal of Z[x] which
is nol. a principal ideal.

Let A be the ideal of Z|x] generated by 3 and x. [T possible, let. A = (f(x)) lor some
fix) e Zx].

3,xe A = JI=fivyeg(v)and x=1) hio

for some elements g(x) and A(x) of Z[x].
I=fx)glx) = deg(N=degflx)+degglx) (- ZisanlD)
0 = deg f(x) + deg g(x)

= deg fix) =0, degglx)=0

~ f(d) and g(x) are constants.

~ Either f@)=1, g)=3 or fi=—1, s¥)=-3
or =3 gw=1 or f)=-3, msO=-1.

i

fl=1 = A=( s dlw) e 2Z[x)
= p)=1 = dxye A . A=2Z[x]
fy=—-1 = A=D1 - ¢x)e Z[x]
= )= =N e A - A=Z)
fO=+tt = A=Z}] .~ 4eA ¢! e Zx)
= 4= 3y,() + xy,(x) for some v, (1), w,(x) € Z|x]
= 4 =130 for some a € Z, which is impossible . f) =z 1

fy=3 = x=3hix) = x= 3R, T A x+ + h,x"), say
' ¢ x=fx) B(x)
= 1=3A,, which is impossible .. f(x} # 3. Similarly, f{x) 2— 3.
Qur supposition is wrong. - Als not a principal ideal of Z[x).
Z[x] is not a PID.

7.7. POLYNOMIAL IN n VARIABLES OVER A RING

Let Rbe aring. Let x), x,, ..., x, be n variables.

Let R, = Rlx,|. the ring of polynomials in x, over the ring R.
R, = R, [x,], the ring of polynomials in xyover thering R,
R, = R;lx,), the ring of polynomials in x, over the ring R,.

R, = R, \lx,]. the ring of polynomials in x, over ring (he R__,. -
The ring R, is called the ring of polvnomials in # variables X, Xy .., X, OVer
the ring R and is denoted by Rlx, x, ., x L.
The elements of Rlx,, x,, ... . x,] are of the form z qGa ... a; x,1x,"

x,» where equality and addition are defined coeflicientwise and multiplication is

defined by the use of distributive law and the rule of exponents

{xlllle‘g ...... xnh' )(xlhxziz ...... xn"" ) = xltlf‘hleﬂ"h ...... x"l" *Ja .
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Theorem 6. If R is an integral domain then Rfx [ SO xn;' is also an integral
doniain.

Proof. R is given to be an integral domain. We shall prove the result by using
induction on the number of variables.

Let rn = 1. Since R is an integral domain, so Rjx,| is also an integral domain.
The result is true for n = 1,

Let the result be true for i — 1 variables.

Rlx,, xg, ......, £, ;] is an integral domain.
= Rlx,, %5 .oy X,y 11%,] is an integral domain,
= Rlx,. xy ... x| is an integral domain.

The result is true for any number of variables.

Theorem 7. If B is a unique factorization domain, then Rix, x,, ...... v x )is also
a uniquie factorization. domain.

Proof. R is given to be a unique factorization domain. We shall prove the result
by using induction on the number of variables.

Let # = 1. Since R is a unique factorization domain. R[x,] is also a unique
factorization domain™.

The result is true for 7= 1. Let the result be true for n — 1 variables.
Rix,, xg ..eot , X,_,] is a unique factorization domain.

= Rl¥,., %5 ..., x,][x,] 15 @ unique factorization domain.

= Rlx,, % .. , x,] is a unique [actorization domain,

The result is true for any number of variables.

7.8. IRREDUCIBLE POLYNOMIAL

1.et F be a field. A polynomial p(x} € Ffx] is called an irreducible polynomial
over Fif for every a(x), b(x) € Fix},

p) =a() bx) = either a(x) or b(x)has degree 0’
Ilustrations :

(1) The polynomial 2 —fof Q[x] is irreduciblc over Q and not over R hecause

2% —5=(x-B)x ++5).
(i) The polynomial x2 + 4 of R[x] is irreducible over R and not over C because
2+ 4=+ 20 - 20).

Example 8. Let F be a field. Show that every irreducible element of Fix] is an
irreducible polynomial of Ffxf and conversely.

Sol. Let f(x) be any irreducible clement of F[x]. If possible, let f(x) be a reducible
polynomial.

3 g(v). h(0) € Fix] such that f(x) = g(x) h(x) and deg g(x) > 0, deg h{x) > 0.
=5 g, hix) g F
= g(x), Ii(x) cannot be units of ¥

*We have accepted this result, keeping in view the scope of this book.
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= g(x), hix) cannot. be units of Fx] (v Units of F and Flx] are same) Polynomial Rings

f(x) cannot be an irreducible element of Flx]. This is absurd.
f(x) is an irreducible polynomial.
Conversely, let f{x) be an irreducible polynomial of F[x]. NOTES
f(x) is not. a constant polynomial. . f{x) is not a unit. of Flx}.
Let f(x) = g(x) hix), where g(x), h(x) € Flx].
Since f(x) is an irreducible polynomial, either g(x) or (%) is a constant polynomial.
Let gix)y=g,eF
Since g,20. g, 'eF
&isaunitin F . g;is aunitin Flx]
f(x) is an irreducible element of F|x].

Note. From now onward, we shall be restricting ourselves Lo polynomials aver the field
of rational numbers @. In other words, we shall be considering polynomials belonging to @[]
only.

7.9. CONTENT OF A POLYNOMIAL

Let f(x) = ay + a,x + ... + @ x" be a polynomial with a,, q,, ...... a,e€ Z. The
greatest common divisor (g.c.d) of the integers a,, @, ...... . a, is called the content of
the polynomial f(x).

For example, let f{x) = 4 + 10x - 83,

Theged of 4, 10,0, -8is 2,

The content of f(x} is 2.

7.10. PRIMITIVE POLYNOMIAL

Let fy=ay+ax+ ... + a,x" be a polynomial with (N TR a, € Z. If the
greatest common divisorof o, @, ... . @, 18 | then f(x) is called a primitive polynomial,
The content. of a primitive polynomial is 1, For example, the polynomial 3 + 4x + 72 is
a primitive polynomial, because g.e.d. of 3. 4, 7is 1.

Remark. Let fix)=a,+ax+ ... .. @& be a polynomial with integer coefficients. f(x) may
or may not be primitive. Let f(x) be not primitive.

letc=g.cd (ay a,, ..., a,) be thecontent of f(x). . e>1,
Also, clay, c/a. ... cla,. '
Let ag=cbg, ay =¢eb, ..., aq, =ch, forintegers by, by, ..., b,

Alsoged. (g, b, ..., b)=1
The polynomial
bot+bx+ ... + b x" is primitive.
Now f)=ay+ax+ ... +ax"=ed,+bxt ... + b, x")

f(z) = (content of f(x)). (a primitive polynemial),
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Theorem 8, The product of tiwo primitive polynomials is also a primitive
polynomial,

Proof. L.et. fW=a,tax+. .. +a a"
and gy =by+tbx+ +b
be two primitive polynomials.
By definition,
f(x) 8(x) = apby + (agh | +a e+ +a, b ™
If possible, let. f(x) 2(x) be not primitive,

All the coefficients of f(x) g(x) would be divisible by some integer larger than
i and hence by some prime number p, because there always exists a prime factor of a
positive integer larger than 1.

Since f(x) and g(x) are both primitive, p cannot. divide cach and every coefficient
of f(x) and g(x).

Let a. and b, be the first coefTicients of f(x} and g(x) respectively which p does
Ly k ’
not. divide,
play, play, ... pla;,. bra and pib, p/b,.....ph,_ pTh,
In /(x) (). the coefficient of &7*#
= (bt abyy ot b)) T bt @b F Al Tt a0

By the choice of a;, we have p/lazb ok

+ulbj_k_l+ ...... +“;_1b,l.-+l)

Ry the choice of by, we have pia,, by + a by, * e +a.,by

By the choice of p, it divides all coefficients of flx) gx).

p must divide a;b,. Since p is prime, either p/a; or plb,.

This contradicts the choice of @; and b,

Our supposition is wrong.
The product. f¥) g(x) is also a primitive polynomial.

Theorem 9. (Gauss Lemma). If the primitive polynomial f(x) can be ﬁwtored
as the product of ko polynomials having rational coefficients, il can be factored ns the
product of twwo polynomials having integer coefficients.

Proof. el f(x) = g(x) h{x), where g(x) and f(x) are polynomials having ralional
cocfficients. By clearing denominators and taking out common factors we can then
write

£(x) = (a/b) g,(x) I (), where @ and b are integers and the polynomials g,(x) and
fi, (x) are primitive.*

= bf(x) = ag,(x) It (x).

Since f(x) is primitive. the content of bf(x) is b(1} i.e., b.

Similarly, the content of ag,(x) &, (x) is 0.

*For example, let f{x) = 3 + fix - 2% — 2x3,

Jix) is also equal to the product of polynomials % +% xand %— 3 22,

_ 4
{34

4 3 1
=—3-(1+2x)z(3—xz)=I (1 + 233 — +2).
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We must have b=a.
fx) = Q) g, (&) b () e, flx) = g(0) Iy (x).
f(x) can he faciored as the product of twe polvnomials having integer
coefficients,

7.11. THE EISENSTEIN CRITERION

Statement. Let f(x) =a, + a,x + ... + a,x" be a polynomial with integer
coefficients. Suppose that for some prime number p, p? + g plag pla, pla, ... ,
pla_,pyra,.

Then f(x) is irreducible over the rationuls.

Proof. We have fiv) =a, +a,x+ .. +ax"

Let e=gedlu, a. ... ;a) and ay=chg, 0, =cb, . ,u, =cb,

fy=c,+bx+ ... + b, ¥") = cg(x), say.

£(x) is a primitive polvnomial. IT f(x) is itsel primitive, then we take ¢ =1
and g(x) = f(x).

pra,. = prcb, = prepth,

pla, = pleb, = plb, ¢, pto
Similarly, p/b,, p/b,, ...... , p/b, _,.
pira, =p*tcb? = Pt bt - prc = pircd

P2 by piby plb, piby, ... pib,_.pth,
If possible, let the primitive polynomial g(x) be reducible over rationals.

The primitive polvnomial g(x) can be factored as the product of ewo
polynomials having rational coefficients.

By Gauss Lemma, the primitive polynomial g{) can be factored as the
product. of two polynomials having integer coefficients.

Let glx) = (cg+eyx+ ... +e X )dy+ dx+ ...+ dx*), where the ¢'s and d's are
integers and r, ¢ > (.

Comparing constant terms, we get by = ¢y,
. vy, = plegd, = plc, or pld,
If possible, let p/e, and p/d,, both.
€y = Ap, d, = up for some integers A, p.
= bo=cody=hpp? = p3b,, which is impossible,
p cannot divide ¢,. d;both. Let p/e, and p ¢ d,.
We claim that p cannot. divide all ¢'s. If possible, let p divide all ¢'s.

= Pleg+ex+ ... +tex) = plgly)
= piby+byx+ .. +b, a7+ b ™
= pib, (o plbg.pby, .. .plb,_, = py+tbx+ . +b x"h

This is impossible.

; cannot divide all ¢'s. Let ¢, be the first ¢ not divisible by p, k <r < n.
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Now b, =c¢,d, +e,d, +ed, o+ ... +¢,_ dy +ed,
We have pib, picy, picy, pley. ..., ple,_,
NOTES pib, — od, teyd,  +ed .t dy)

= ple,d, = ple, or pld, Thisis impossible, because we havep + ¢, p 1 d,,
(ur supposition is wrong.
The primitive polynomial g(x) is not reducible over rati.onals.
£(x) is irreducible over rationals,
f(3). being a constant. multiple of an irreducible polynomial is also irreducible
over rationals,
Example 4. Show that the polynomial x¥ — Ix + 2is irreducible over Q.
Sol. et fy=xt—4x+2
fO) =2+ (- D+ 0a% + 0 + 1}
Let g =2, 0, =—1,a4,= 0,0,=0, 0, =1
Let - p =2 Thisis a prime number.
Now (D27 2, 22, 204, 200,200,211
Pt @y plag, play, play, plag. p T ay
By Eisenstein criterion, the given polynomial is irreducible over Q.

Example 5. Show that the polynoniial x* - p is irreducible over Q. Here p is
some prime number.

Sol, Let [ =x"—p.
R =—p+0x+02+. .. +0x" 4+ 1x®
Here ay=—p,a;=0,0y=0, ... v, =0,0,=1

Wehave p? ¢ p).p~p. p/l0, pi, ... O p L
By Eisenstein criterion the given polynomial is irreducible over Q.
Example 6. Let p be a prime number and f(x) = !+ +x+ 1 Show
that f(x) is irreducible over Q.
Sol. We have
fO =t +x+ L

= )

It
+
-
+

L Wl-x") xP-1
1-x x-1
Replacing x by x +'1, we get.

@+ -1 1+ -1
f(x+l)_(x+1)—1_ x

=%[1+PC,J:+PCZ);2+ ______ +PC”‘+>._1]
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3]

= % [PCy + PCox +..coee + PCxP 1]
cp+ PPV et
2
-1)
Let. dg=p,a = p(p2 yueen L 1
piroag plag play, ... pta,

By Eisenstein criterion f{x + 1} is irrcducible over Q.
If possible, let f(%) be not. irreducible over Q.
J(x) = g(x) h(x) for some gix) () € Q[x} with deg g(x) > |, deg h(x)> 1.
fx+ D=glx+ Dh(x+ Nand deg glx+-1)> 1, deghix+ 1} > 1.
flx + 1) is not. irredueible over Q. This is impossible.
Our supposition is wrong.

f(x) i.e., the given polynomial is irreducible over Q.

SUMMARY

M R is a ring then the set of polynominls Rlx] over R is also a ring.

If the ring R is commutative, then R[] is also commutative.

If the ring R has unit element then R[x] also has unit cloment.

If R is an integral domain, thea R{x] is also an integral domain.

If F is a field (hen F[x] is an integral domain and not a field.

If F is a field then F[x] is a Euclidean ring. '

If Fis o fieid then F.[x] is & principal ideal ring.

IT R is an integral domain then R[x,, x,. ......, x,] is also as integral domain,

If R i & unique factorization domain then R[x,, x,, ...... . x,]is also a unique Factoriza-
tion domain.

The product of two primitive polyncmials is also primitive.

Gauss Lemma. [f the primitive polynomial f(x} can be factored as the product of two
polynomisls having rational coefficients, il can be lactored as the product of twao
polynomials having integer coefficients.

Eisenstein Criterion. Let. f(t) = a, + a,x + ... + a,x" be a polynomial with integer
coefficients. Suppose that for some prime number p, p2# o, play, pla,, pla,, .....
p/a,_, ¢ 1 a,. Then f(x) is irreducibla over the rationals.

=]t

REVIEW QUESTIONS

¥ Ris aring and £, g, b € R[x}. then show that :
B Fig+ iy =fa+fh i) @+ W = gf+ hf
If R is a commutative ring and f. g € R[x], then show that fg= gf.

If R is a ring with unil element 1, then show that R[x] is a ring with unit element
1,0,0.0, .....).
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10.

Let. R[x] be the ring of palynomials over a ring R. Show that R'={(2, 0,0, ...... J:axe R} ie
the set. of all constant. polynomials is a subring of R[x] and R is isomorphic to R’

If R is a ring, show that it can he embedded in the ring R[x].

If R is an integral domain with unit element, then every unit in R is-a unit in R[x] and
every unil in R[x] is a unit in R.

Let. R be a an integral domain with unit element. Show that if @ is an irreducible element.
of R then « is also an irreducible element of R[x].

Let R be a commutative ring with unit element. If (x) is a prime ideal of R|x] then show
that R is an integral domain,

Let R[x] be the ring of polynomials over the ring of real numbers. Let A = {f{x) e R[x}:
fl0y = 0 = f{D}. Show thar A is an ideal of R[x] nnd the quotient ring Rix}/A is not an
integral domuain.

If ¥ is » field then for any two polynomials f(x), g(x} € F[x], g(2) = 0. there exists unique
polynomials g(x) and r(x) in F{a] such that f(x) = g(x} g(x) + r(x), where r(x)=0uor deg r{x)
< deg g(x). This is called ‘the divieion algorithm’.
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8.0. LEARNING OBJECTIVES

After going through this unit, you should be able lo:
= field. subfield, binary operation
e vector space, subspace, sum of two space and subspace.

8.1. INTRODUCTION

Before we go lo the concepl.'of\-'ecl.or space, we [irst define (ield, subfield, internal
and external binary operations.

8.2. FIELD

A non-empty set F containing at least two elements and with two binary
operalions, denoted additively (+) and multiplicatively (), is called a field if

() ¥ is an abelian group w.r.t. addition (+).

(i} The set.of all non-zero elements F—{0} is an abhelian group w.r.{. multiplication

(.).
(i) The multiplication distributes over addition
Le., alh +¢y=ab + ac } wbecl
and (b +c)a=ba+ca

A field with addition and multiplication compositions is written as : (F, +, ).
Note that (he multiplicative inverse of a non-zero element of a field is unique.
Some examples of number fields are :

Q.+ ). R+ ) and (C.+ ).

8.3. SUBFIELD

A subset S (containing more than one element) of « field Fis called a subfield of
Fif Sis a ficld w.r.b. the addilion and mulliplication in F.

For example,
() The field (Q, +, .) is a subfield of the field (R, +, ).
Gi} The field (R, +. ) is a subfield of (C. +, ).

8.4. INTERNAL BINARY OPERATION

Ifin a non-emply sel S, a*be Sforall a, be Sand a* bis unique, we say that
the binary operation * is an indernal binary operation on S,
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8.5. EXTERNAL BINARY OPERATION

Let V and F be two non-emply sels. Ifvx o€ Vforeachve Vand e F, and
1 x o is unique, then * is called an external binary operation on Vover I

In the external binary operation, « is an clement of V, « is an element of F and
v * o is an element. of V.

8.6. VECTOR SPACES

So far, we have studied algebraic structures such as groups, rings or fields which
involve only internal binary operations, i.e., binary operations in which the element
associated Lo an ordered pair of elements of the underlying set is an element of the set.
Now, we are going to introduce a new algebraic structure called Vector Space, which
involves an external binary operation. The motivation {or this algebraic system is the
sct. of veetors, where veetors can be added and can be multiplied by scalars (reals or
complex) to produce veclors.

We now, define the concept of a vector space over a field F.

8.7. DEFINITION

Definition. Let (F, +, .) be a ficld. Then, a non-empty set 'V together with tiro
binary operations called vector addition +' (internal composition in V) and scalar
multiplication ' (external composition) is called a vector space over the field F if the
following conditions are satisfied :

1. (¥, +) is an abelian group i.e,,

O Visclosedw.orl. Y ie, q,veV = ut+treV
(1) Addition is commutative tu+ v=n+u, Yu,ue V
(iir) Addition is associative !

utrwr=m++tw, Yo weV

{ir) Exisience of identity : There is a unique vector  in V., called the zero vector,
suchthaty+0=u=0+uy YueV

(v} Existence of inverse

For each vector 1 in V, there is o unigue vector - u in Vsuch that u + (—u) =0
=(Cw +u

2. The scalar mulliplication, ‘. which associates for each
nue Vandae F, aunique vector au € V satisfies :
0 1Lu=u, vune V
au+v)=saqu+mr, YuvelVagekF
() a+u=au+bn, vVue Vanda, be F
(i) {vb)(1) = albu), Ve Vanda be F.
Elements of F are called scalars and those of V are called vectors.
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Algebra Thus, a vector space is a composite of ‘@ field’, ‘o set of vectors” and two operations
wilh cerlain properties.

We say Vis a vector space aver the field F and is denoted by V(F) but when there

is no chanee of confusion, we just refer to the vector space as V.
NOTES

Veclor space is also called the linear space.

8.8. A PLANE VECTOR IS AN ORDERED PAIR (a,, a,) OF
REAL NUMBERS

A space vector is an ordered triplet (a,, a,, a,) of real numbers.
We do not make any distinction between the plane vector (,, a,) and the directed

line segment 6;), where O is the origin and I is the point whose cartesian coordinates
are (a,, iy). In fact, we write (@, ay) = (;f'

In this ease the vector (@), @,) is also called the position vector of P. Similarly, in
the case of space vectors, we write (¢, a,, a,) = 6;3 The vector (0, ¢, 0) is the zero

vector 1s space.

The set. of all plane vectors (i.e., the sel. of all ordered pairs of real numbers) is
denoted by V,. The set of all space vectors (L.e., the sel of all ordered triplets of real
numbers) is denoted by V.. Since V, is cartesian product R % R, we also denote V, by
R2. Similarly,

Va=RxR=xR=R%

Two plane vectors (a,, ay) and (b, b)) are equal iff ¢, =bjand a, = b,

Two space veclors (ay, @, @) and (b, by, b,) are equal il @, = b.a,=b, a;=b,

Addition of vectors in V, is defined by (a,, ) + (b, b)) = (a, + b}, a, + b)) for al]
vectors (. ), (b, by) e V,.

Multiplication of vectors in V, by a real number X is defined as

Ma,. ay) = Ay, Ay, for (0, a)) € V,and L e R.

Likewise, we define addivion and scalar multiplication in V.

Proceeding exactly as in the above example, we see that V, and V; are
vector spaces over K.

8.9. VISUALISATION OF A VECTOR SPACE INVOLVES
THE FOLLOWING FIVE STEPS

(f) Consider a non-ecmpty sel V,
(i) Nefine a binary operation an V and call it vector addition.
(¢77) Define scalar multiplication on V.
{iv) Define cquality in V.
(v} Check that V forms an abelian group w.r.i. vector addition and thal scalar
multiphcation satisfies the four properties mentioned in the definition of vector space.
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Proceeding on the lines of V,. and V,, we now generalize to the set.of all ordered
n-tuples in the following example.

Example 1. Consider the set R* (also denoted by R,) of all ordered n-tuples of
real numbers defined by

Rr={N={(x, x, ... Jx aisreal, i=1, 2,3, ..., 1)

Prove that R" is a vector space over R w.r.l. usula addition and scalar
multiplication defined in R".

Sol. The n-tuple X = (x,, x,, ..., x,} 15 called an n-vector, x; is called the ith
coordinate or component of X. 0= (0, 0, ....., 0} is called the null vector.

We define addition and scalar multiplication among n-tuples as follows :
HX=(, % .,x)and Y =0y ...... ,¥,) then we define

N+Y=(, ty, 5+ yp o X, +,).
This {coordinate wise) addition is called vector addition.

I & is a real number. we deline AN = (Ax|, Ax,, ... Ax,) and is called (coordinate
wise) scalar multiplication (A is called a scalar).

Two veetors X and Y are equal iff x,=y,i=1,2,3 ..., n
Now, we check that the set R® of all ordered n-tuples of real numbers is

a vector space over R under coordinate-wise vector addition and scalarx
multiplication :

Now, (1) R® forms an abelian group under vector addition,
For, H X+ Y=Y + X (commutative law of addition)
@)X+ X +Z2)y=X+Y) + Z (associative law of addition)
(57) There is an n-tuple 0 = (0, 0, ..., () called the zero vectior such that
X+0=X=0+X,¥XeR"
(f1) For each X in R*, there exists a unigque Y in R” such that
X+Y=0=Y+X
Yisdenoted by - X andis thevector - X = (— ), —x,. ... —x ) X =(x,, ¥y, ..o, X,).
(2) The scalar multiplication satisfies the following properties :
M 1X=X, ¥ Xe R"
WaX+Y)=agX+a¥, vX,YeR"andee R
G {a+HX=aX+bX, vXeRanda be R
) (ab)X = a(bX), YXeRanda, be R
Hence R" is a vector space over R.

Note that R" is a vector space over R but R" is not a vector space over C,
the field of complex numbers. For, suppose A is a non-real complex number,
then AX = (Ax,, Ax,, ......, AX_) is not in R because the numbers Jx, are non-real
complex and R" contains only n-tuples of real numbers.

The special cases n = 2 and # = 3, give the veclor spaces

RE=V, and R:=V,

The special case 1 = 1 gives the vector space V|, which is nothing bus the space
of real numbers, where addition is the ordinary addition of real numbers and sealar
multiplication is the ordinary multiplication of real numbers.
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Example 2. Show that theset M, (R)of all m xn mafrices with matrix addition
and scalar multiplication is a vector space over K.

Sol. We shall denote the set M, (R) briefly by M in our solution.

Composition : Matrix addition is an internal binary composition in the
set M.

We know that sum of two matrices of the same order m % » is always defined
and is a matrix of order m % 3 and hence belongs 1o the same set M.

Also multiplication of a matrix A=[4q,]
matrix e = o, ]

mxn DY A scalar o (we R) is a
nx, And henee belongs to the same set M.

Now, (I) The set M is an abelian group under addition as shown below :
() Commutativity

Let A={a,, and B= [hijl

Then A+B=B+A I Matrix addition is commutaitve]

be two matrices belonging to the set M.

mxn

(fi} Associativity

let A=| ai._,.]mX", B=] bij]mn and C=]| c,}]mml be three matrices helonging to the
set M.
Then (At R+ C=A+B+0) [ Macrix addition is associative]
(fii) Existence of Identity
Let A = [ ayl,,x, be any matrix belonging to the set M,

Then, there exists a m % n null matrix O_,_in M such that
A+0=0+A=A
(i) Existence of Inverse
Let A=[ay,,, belong to the set M.
Matrix —A=]- a‘-jlmxn also belongs to the set M such that A+ (—A)=(-A)

+A=0 iv a;eR = -a;eR]

Hence the set M is an abelian group under addition,

Properties of Scalar Multiplication

(11) Prom the properties of matrices, it follows that scalar multiplication satisfies
the fullowing properties :

MH1LA=AVYAe M
(iDoaA+By=aA+oB Yaee Rand A Be M
M+ PMA=cA+PA Yo, Bpec RandAe M
GNeP) A=aPy) Va,pfe Rand Ae M
Thus the set M satisfies all the postulates of the vecior space.
Hence M, (R) =M. the set of all m x it matrices over R is a vector space.
Example 3. Show that any field forms a vector spuce over iiself.
Sol. Let F be any field.
Let V=F.

Since F is a field, F has two binary compositions defined in it say addition (+)
and muluiplication (. ).

Addition eompesition of I is vector addition in V and multiplication composition
in F ig scalar multiplication.
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Now (1). (V. +) is an ahelian group ¢ V=F is afield),
(I) From the field properiies of T, it follows that scalar multiplication satisfies :
M1l . u=u Yuev

Ga+y=aut+tar vVuveV.aefF
Ggita+Hu=au+by VYueVanda beF
@) (ab) v = a) Vue Vanda, be F.
Hence, V is a vector space over F.
Example 4. Let 11 be a subfield of o given field F. Show that F can be regarded
as a vector space over H. .
Sol. Let us take the usual addition in the field F as vector addition. Let us
define the scalar multiplication in the following way :
Ifie Fand a € H, then ai: may be taken as the product ol these elemenls as
already defined in the field F.
Now, (D) F is an abelian group under vector addition,
(ID From the field properties of F, it follows that the scalar multiplication satisfies
the following properties :
@1l .u=u Yue Fandle H
(au+ey=au+raqr Yuur eFandae H
Gipa+Hnn=au+by VwueFanda be H
() {ub) v = abu) Viue Fanda be H
Hence, F i1s a veelor space over the subfield .

Note. The field R of all real numbers is a subfield of the field C of all complex
numbers. So C is a vector space over R+. But, note that R is not a vector space over C
because R is not closed w.r.t. scalar multiplication. For example, 2 e R, 3+ 2i ¢ C but
2 (3 + 2{) doea not belong to R.

8.10. SOME GENERAL PROPERTIES OF A VECTOR
SPACE

If Vis a vector space over a field F and 0 is the zero of V and 0is the zero of the
field F, then

Habd=0, vae F
G 0u=0, YueV
Gi) (= Du=—u, YueV
() a—w) =— () = (— @) u, YaueF,ueV
@ ali — ) = au — au, Vae F.unreV
() lfou=0,thena=0 or u=0.
Proof. {f) Let ne V.
Then =i+ 0) = au + al
= ald=0
(ir) 0+0=0,0€eF
= W+ =u=0uvueV
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= O+ O = One

= Ou=0

{71} —Du+nu=CDnu+lu==1+Hnu=0u=0
= (— D u=—1.

Proofs of others are lefi to the reader as an exercise.

VECTOR SUBSPACE

Sometimes we are not interested in the entire region of a vector space, but are
interested in only a particular part of it, For example, we may be interesting in one-
dimensional lines or two-dimensional planes in the three dimensional vector space V,,
especially on those lines or planes which pass through origin. Such lines or planes
form a veetar space on their own, Such cases lead to a new concept known as vector-
subspace which we shall, now introduce.

8.11. VECTOR SUBSPACE

A non-empty subset W of « vector space V over a field F is called a subspace of ¥V
if Wis a veclor space over F under the same operations of vector addition and scalar
multiplication as in V.

Following example itlustrate the concept of a subspace

Example 5. Consider the vector spare

V=Ri={{x,x, ) | x;e R}
of all ordered triplets of real numbers over R under the operations of coordinate-uise
addition and coordinale-wise scalar multiplication.

Lel We={lx, x, M | x,x,€ RV

Then Wis a subspace of V.

Sol. et 1t = (x,, x,, O) and v = (y,. ¥, 0) be any two elements of W.

Then, u + v = (v, + ¥, 4, + ¥, 0 and an = (ax,, ax,, 0) belong to W forag e R,

The zero element (0, 0, 0) e W.

Negative ol w8 — = (- x), — 2. Oye W,

Other laws of associativity and commutativity for addition, distributive laws

and scalur axiom Lr=u, ete. are all true in W, because elements of W ave elements of

V and in V all these laws are true. Hence, W is a subspace of V.
In the above example, we note that te prove that W is a subspace of V, we
explicitly checked only the followings
) The sum of any two vectors in Wisin W, Le., W is elosed w.r.t. veetor addition.
¢i) The scalar multiple of any vector in W is in W. i.e., W is closed w.r.t. scalar
multiplication.
(1) The existence of 0 in W and the existence of a negative for each element in W.
The vther axioms were not. explicitly checked, because this, as the following
theorem shows, was nol necessary. In fact, the theorem shows that even (iii) need not
have been checked.
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Theorem 1. The necessary and sufficient condition for a non-empty subset Wof
a vector space V (F) to be a sub-space of V is that W is closed w.r.L. veclor addition and
sealar multiplication in V.

Proof. (1) The condilion is necessary, If W is a sub-space of V, then W is a vector
space and therefore, W is closed w.r.t. vector addition and scalar multiplication.

(2) The condition is sufficient i.e., if Wis closed w.r.t. vector addition and scalar
multiplication in V, then W s a vector sub-space of V.

Ifue Wand le F.then—te Fand - Due W

(* W is closed under scalar multiplication)

But, —Du=-((luw)=—u
Hence, HeW = —uneW VueW.
Now, HueW. —neW = u+—uw)y=0eW

{Since W is closed w.r.t. veetor addition).

Commuiativity and associativity also hold good as they hold in V2 W,

= {W, +) is an abelian group.

Other postulates of vector space hold good in case of W as they hold in V 2 W.
Hence, W is a vector subspace of V,

Theorem 2. A non-emply subsel Wof V is a subspace of a vecior space V(F), if
and only if for each pair of vectors u, v e Wand each sealar ae F, thevector au+ve W.
Proof. (i) I.et W be a subspace of V.

Ietw.re Wandae F
Now.oe Fandue W = aue W
one W re W = gutre W

(i) Let W be a non-empty subset of V such that. ar + v € W for all vectors u, '
W and all scalars ¢ € F. Since W is non-empty, there is a vector i € W and hence (- 1)
w+w=0isin W, If i is any vector in W and a is any scalar, then the vector au=au + 0
is in W, In particelar (- ) u = —wu is in W. Finally, if v, ve W, thenu+v=1lu+ris
in W,

Hence W is a subspace of V.

Theorem 3. The necessary and sufficient conditions for any non-empty subset
W{F) to be a subspace of V(F) are :

@O re ¥ =u—-ve ¥
Ghoe Fundue W = aue IV
Proof. (1) Conditions are necessary
Lel W be a subspace of V(F).

n e W = u,-veWw (Inverse property of W),
= nt{—eWw (o Wi closed w.rt. +)
= H—rew

As W is closed w.r.t. scalar multiplication,
acF,ue W=aune W

Sq, the conditions are necessary.

lector Spaces
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(2) Conditions are sufficient
Let W be a subset of V(F) such that
Du, e W = u-veW

MaoecF,ueW = aneW,
Second condition implies :
Now veW,leF = neW, -leF = -NDueWwW = -—ueWw
ie., additive inverse of cach element of W exists in W.
Taking " = i, the first condition implies,
neWuneW = u-ne W ie, 0eW
Thus, identity element exists in W.
All other postulates hold good in W as they hold in V.
ITenee, W is a subspace of V.

8.12. PROPER AND IMPROPER SUBSPACES

Every vector space V(F) has two subspaces, namely :
(1) W = {0} consisting of the single element zero and iy called el space or zero
space.
(i} W =V, the vector space itself,
These two subspaces are called improper subspaces of V. All other subspaces, if
any, are called proper subspaces of V.

Example 6. Let V'=R? be the three dimensional space. Let W={{x, 3, 2) |
ax +by +cz=0,x, v, z€ R}, a, b, ¢ being fixed real nuumbers. Show that Wis a subspace
of V.

Sol. Let. u= (%, 5, 2,0 =%, ¥, 2,) be any two clements ofWandaoe R
Now,' auw+o=olx,y;.2)+ Xy, 58)= (o, oy, 02)) + (X, ¥y 25)

= (o, + X, 0y, T Y, oz, +2,) ..
Also, ax,+ by, tez; =0 and ax,+ by, +cz,=0
= oo, + by, +cz) + (ax, + by, + ez} =0
= afow, + x) + oy, +y,) +eloz, +2)) =0 L2

From (1) and (2}, it. follows that cur + v e W
Hence, W is a subspace of V.

Remark. The above example shows that any plane passing through the origin is a
suhspace of R2.

Example 7. Let V be the vector space of ®ll square matrices of second order
over R.

. o . .
Let W= {[g b a,beR } be the set of ail second order diagonal matrices over

R. Show that W is a subspace of V,

a 0 0
Sol. Letu= [01 bl] L= [32 bz] be any lwo elements of W and a € R.
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a, 0 )] a.cx O 0 Tector Spaces
Then, o+ r=ao [01 b1] + [gq bz] = [01 bla] + [82 b2]

e +ag 0
- 0 bla + b2

Hence, W is a subspace of V.

] e W, (o o+a,bot+b eR)
NOTES

8.13. SOME MORE EXAMPLES ON SUBSPACES

L () W={(x. ® | xe R} is a subspace of V,(R).
In fact, W rcpresents x-axis and is a part of the planc.
() W ={(0, 3 | ¥ € R} is a subspace of V(R).
2. Let V = R3 he the three dimensional space.
Then, (H W={(0.y.2) | y.z e R} is a subspace of V,
This in fact represents the plane x =0,
(e} W ={(x, 2¢, 1) | x € R} is a subspace of V.
3. The n-square symmetric matrices form a subspace of the space of all n-square
matrices over F,
4. The set of all scalar multiples of a given element i1, of a vector space V(F) is a
subspace of V,
Note. if W is a subspare of V(F) and & is zero in W and 0 is zero in V, then 6 and 0
coincide.
(For,00e W. ButCu=0,Vue V
So, in particular 08 =10
Ilence 0 e W
0 acts as zere in W and hence is wero in W. Thus, 0 and 0 coincide),
Example 8. Show that W={(a, b, ¢) | a. b, c € @} is noi a subspace of V;(R).

Sol. Since Q ¢ R, W is a subset. of V,(R).
Now, #=(1,23eW and o=4J3 € Rbut

o = (Jg, 2«[3- :3J§) € W. (- J§ g Q)
W is not closed under scalar multiplication.
Hence, W is not. a subspace of V,(R).

Example 9. If Vis the set of all 2 x 2 matrices over R, then prove that (i) the set
of all 2% 2 singulor matrices (i) the sel of all matrices A for which A% = A, are net
subspaces of V,

Sol. (f) Let W be the set of all 2 x 2 singular matrices.

, _[s 0 _[o o By _ _
Now, A—[O O],B—[o S]E\V, (- TAlI=0,lBi=0»
50
But, A+B=[g g]E\V ( io 3|=15¢0]

W is not a subspace of V.
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10
Then I= [0 l] e W, ¢ =D
NOTES :

s rer=[g e o elle 2)(e )

8.14. LINEAR COMBINATION OF VECTORS

For avector space V(F), f w, r e Vand a, b € F. then
at +bre V.
In general, qv; +agry + ... +ap €V, forv,e Vanda,e F, (=12, ..., n)
This leads to the following definition :

8.15. DEFINITION

A vector ve Vis said to be a Linear combination (1..C.) of the veclors v, , vy, . ...,
v, € Vifthere exisl scalars a,, ag, ... ,a, € Fsuch thatv=a,v, + ap,+... +tan,.
Examples. ) v, =(, 1, 1), vg=(,0 1), v5= (t, 0, 0), then the vector
r= (8. 3.7 is a linear combination of the vectors v:;. 1, and 1, as is clear from
U= 3uy Ay o,
(0) Zero vector 0 is always a linear combination of any finite number of vectors
Pyt e Uy because
0=00v,+0v,+ ... + 0 .
@) Ie, =(1, 0,00, v, =0, 1, 0), 1y = (U, 0, 1), then any vector in space v, can be
expressed as a linear combination of v, v, and r4. For instance, the vector . = (4, 5.7
can be written as
v =4, + 5y, + Ty
1. By, b, are called unit veclors in V,.
In the space v, (R), then n veetors (1, 0, 0, ... M, @ 1,0 ... N 1) P
{0,0,.......,0, 1y are unil veclors.
e, =0,00,v,=(1,210 and v = (2. — I, 1), then v is not a linear
combination of 1, and vy since any linear combination of | and v, must have its lust
componeni zZero.

1

. -17 . ' :
Example 10. Write the vector v = [? _ 2] in the vector space of 2% 2 matrices

as a linear combination of '
1 1 1 I 1 -1
=lo -1 Y27 -1 070 o)
Sol. Let =t ar, T ap i a,a, a € R (D

3 -1]_ [t 1 11 1 -1
= 1 —2|=% 0 -1 %|-1 0|7 %0 o
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By definition of equality of two matrices, we have
a tayta,= 3, NOTES
a +ta,—a,=-1,
—a,= 1,0 = 2.
Solving these, we get ¢, =2, a; =— [, a; =2,
Putiing thesc values of a,, a,. @, in eqn. (1),
=20, —u, + 21y

8.16. SPAN OF A SET

The span (or linear span) of a subset 8 of a veclor space V is the set of all finile
linear combinations of S.

In other words, if S is a subset of V. the span of S is the set

{rug yagu,+ o, a ey ) @, any scalars, n positive integer ; u,, iy,
coenes 11, € B}

The span of S is denoted by <S>

If § contains only a finite number of elements w,, w,, ......, u, say, then <S>1s
also written as < uy, Ug, ..oy U, >

For example, in the vector space V;, take the set
W=1{(,00, 0, 1.0}

Any lincar combination of a finite number of elements of W is of the form a
(1,0, 0+ b0, 1, 0y=(a, b, 0.

The set. of all such linear combinalions is < W >,

Actually, <W>={{a. b. 0} | a. bare scalars}. It is a subspace of V. In fact, it is
true in all cases and prove this assertion in (he form of {ollowing theorerp :

Theorem 4. The sel of all linear combinations of a given non-emply subset of a
vector space YVIF) is a subspace of V.

Proof. Lel {v). vy, ... , t,} be the given set of veclors € V(F).
Let W denote the set. of all linear combinations of given set. of vector
W=4¢ v =L +0 vy ¥ O, + .. + 0., is a linear
combination of v, t'y, 'y, ... . b, and hence € W]
Let. n=aqu tag,t . tar, .
and v=bie bt 0y
be any two linear combinations of the given set of vectors,
Then, nte=(oy bl by, + o +{@, +b)r,
is also a linear combination of the vectors.
Also, ki = (ka v, + (hagu, + + (haju,

where k is some scalar.
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Thus. the set W of all linear combinations of the given set of veetors is closed
under vector addition and scalar multiplication,
Henee, W is a subspace of V(F).

Remark, It should be noted (proved above in proving W= ¢) that all the vectors of the
spanning or generating set of a sub-space W also helong to W,

8.17. DEFINITION

A space which arises as a set of wil linear combinations of any given set of vectors,
is said to be generated {or spanned) by the given sel of vectors. The given set of vectors is
said lo be the set of generators of the space.

One can see that a set of veetors &2, 1y, ... , i, of avector space V is a generating
set. of a subspace W of Vil
Doy L, €W
(#) 1 € W implies there exist scalars g, 4, ......, @, in F such that
w=ap tag,t oo +ar,

A subspace Wof Vis said to be finitely generated if we can find a generating sel
for W consisting of finitely many elements,
The space generated by the vectors ¢y, vy, ..., v is denoted by <), vy, .o 1, >

Note. The space < v,, V,, ......, v, > does not depend on the order of vectors and
on how often any vector is repeated in the sequence

For example,
< (1,00 (0, 1), (1, 2) > =< (1,00, {0. 1} >
Examples. @ {(1, 0, (0, D)} is a generating set of the two dimensional vector
space RY as any vector (x. y) in RZ can be written as

. x(1, 0) + (0, 1),

@) (1, 0,0, (0. 1. 0, (i), 0, 1)} is a generaling set of 3-dimensional veclor space
R? hecause any vector (x, ¥. 2) can be wnitten as
x(1, 0,0+ 0,1, 0) + 20, &, 1)
GH L V=R, W={(x.y. 0} | x,ye R}
Then, {(1, 0. B, (0, 1, B} is a generating sec for W. Another generating set. for W
i5{(1,0.0). (2, 3, 0.
(i) The vectors ty = (1, 1, 1), v, =(1, 2, 3), vy =(1, 3, D) andv,=(3.2, 1)
span R,
For, any vector (&, y, 2) of R? can be expressed as
(x, . = v, +agty + ayty Ty
iLe., y.2y=a(,1, D+a,(1, 2,3 +ay(l, 3, D +a,(3.2, 1)
which implies
a,ta,tayt3e,=x
a, + 2a, + 3a, + 2a, =y
o, +3a,t 2a,ta, =z
These equations arc consistent as these are three equations in four unknowns.

Hence, the vectors vy, 1y, 1y, b, span R,
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) In V, = RZ (3, 7) belongs to < (1, 2). (0, 1} > but. does not. belong to < (1. 2),
(2, 4) =

Seol. (3. 7) belongs to < (1. 2). (0, 1) > if it i5 a linear combination of (1. 2) and
©. 1, e, if

@, D=a,(1, 2) + a0, 1) = (a,, 20, + a;)

for some suitable a,, o, € R.

This is possible if @, =3 and 2a, + @, =7

Solving these equations, we get a, =3, a, = 1

Thus, (3. =301, 2)+1(0, 1).
Hence, (3. De<(1.2,{ bH>
Again, if (3, De <, 2), (2 1> then

B, D =a, (1, 2} + a,(2, 4) = {a, + 2ay, 2a + 4a,)
for some suitable a; and a,,
This implies a, + 20, =3, 2a, + 4q,=T.
But, these equations do not have 2 common sohation.
Hence, B. e <12, 4>
(vt) In the complex vector space V, (Ch. (L+ §, 1= i)belongsto<(1+ i.]1),
(1,1, - >
Sol. < {1+, 1), {1, 1, —i} > is the space of all linear combinations of (1 + ¢, 1),
(L.(1-
=faf{l +i, 3+ A1, (1, - | o, B are complex numbers}
={(o+B+oi,t+ P -pi) | o, P are complex numbers}.
Now, (A+i, 1-NDe<(l+i D, ,1,-)=>

il (1+i, 1, == (e + B+ oai, a+ B —Pi) for some o, B
e il l+i=a+P+otand 1 —fi=a+3~pi
re. if l+i=a(l+d+PRandl—i=a+B (1 -1

i.e. if (solvingloro, By, u=1+ipP=1-i

Hence, (145 1-De<(1+i 1},(1,1,-i)>

Remark. 4 non-null space always conlaing an infinite himber of elements. So, the space
generaled by a non-emply set § alivays has an infinite number of elemments. Bul, 5 itself may be
a finite sel.

Example 11, Show: that the set {(f, 2, 3), (0, 1, 2), (0, 0, 1)} which is a sub-sel of
¥ = R3 generates or spans the enlire rector space V.

Sol. Let S5=1{(1,2, 3, 0 1, 2), 0,0, D} be the given set.
Let (&, b, ¢} be any vector belonging to
v, =R

Consider . bd=a(l,2,N+HO, 1, +v(0,0, 1
={x, 20+ B, 3o+ 2B +v)

a=a )
2o+p=b L (2)
Ja+2B+y=c (3

Putting oo =g from (1) in (2),

Tector Spaces

NOTES
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2a+B=b or p=b~2a

Putting values of o and B in Eqn. (3),

Ja+2b—daty=c or y=a-2b+c
3 w. B, ¥ such that
the vector (@, b, ¢)is a linear combination of vectors (1, 2, 3 (0, 1, 2) and (0, 0, 1).

Therelore {u, b, ¢) € L(5)

Hence V, € 14S) (1)

Of ecurse L&) gV, (2}
[Because every linear combination of vectors of S belongs ro V]

From (1) and (2), we have V, = L(8).

Theorem 5. If S is a non-enipty subsef of a veclor space V, then < 5 > is the
smllest subspace of V containing 5.

Proof, By the above theorem < S > is a subspace.

It containg S because each element. 1 of § can be written as lu. i.e., a finite
linear combination of 5. To show that < 8 > is the smallest. subspace containing S, we
shall show that. if T is any other subspace containing S. then T contains < 5 > also.

5o, let a subspace T contains &

Now. any element of < 8 > is of the form ¢ i, +ayu, + ... +.a,1,, where a/s are
scalars, u/s are in § and ». is a positive integer. Since S Teach ;e T. Since T is a
subspace, a,u, + g, + ...+ a,u, € T. Thus each elemencof <S> isin T.

Remark. < § > ={0}.

Cor. If v, vy oo, UL W, Wy e, W, are Veclors in a tector space V sueh that each
w; is @ linear combination of vy, vy, o, UL heR <, Wy o, P CSU, Uy U

INTERSECTION AND SUM OF VECTOR SPACES

Theorem 6. The intersection of trvo subspaces of a vector space V(F) is o subspuce

of V.
Proof. Let W, and W, be two subspaces of V(F).
W, n W, # ¢ as zero vector of V belongs to both W, and W,,.
Letu,ve W, nW, and aePF
Now, wre W, nW, = wveW andu,ne W,
moveW ;aelF ‘= autre W, [- W, is subspace]
and uveW,;aeF = autvreW, [~ W, is subspace]
ae+tve W, autnre W, = autve W,nW,
Thus, w,reW, nW, aeF = aut+tre W, nWw,

[lence, W, n W, is a subspace of V(F).

The result can be generalized to any number of subspaces. More precisely, il
W, W, ..., W, are n-subspaces of V, then their intersection W, nW,n...nW,_
is also a subspace of V.

Note. The unian of two subspaces may not be a subspace.
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For example, let. W, = y-axis and W, = y-axis in V, (= R?). Here. (1. ) & W,
and (0, ) e W, . So, (1, 0) and (0, 1) belong to W, UW, . But, (1, 0) + 0, D=0, 1)
& W, U W,. Therefore. W, U W, is not closed w.r.t. addition. Hence. W, U W, is not a
subspace of V.,

However, if one of the subspaces is a subset of the other, then the union of two
subspaces is a subspace. This is proved in the following theorem :

Theorem 7. The Union of fieo subspuaces of a vector spuce is « subspace of the
rector speae if and only if either is contained in the other.

Proof. Let. W, and W, be two subspaces of V over a field F.

ITW, CcW,. then W, UW, =W, and hence W, UW, is a subspace.

If W, g W, then W, U W, =W, and hence W, U W, is a subspace,
Conversely, let W, o W, be a subspace.

We shall show that either W, c W, or W, c W,

Suppose if possible, neither W is a subset of W, nor W}, is a subset. of W .

Then. there exists an element u € W, butweg W, A
and  there exists an element re Wy butve W, A
Now, neW, = neW uWw,
and reW, = re W uw,

Asu, ve W, uW,, therefore, u+ve W, uW,

(. W, UW,isavector space)

Now, n+rre W, uw, = utve W, or u+rve W,
Case (1) ut+tve W,
Also, ne W,
(u + v)— 1= c € W,, which contradicts (2).
Case (i) ntoeWw,
Also re W,

(r + 1) — v =1 e W,, which contradicts (1)
Thus, in both the cases we arrive at a contradiction.
Therefore, our supposition is wrong.
Henee, either W, © W‘z or W, cW,,
We have seen that W | @ W, isnolin general a subspace. However, < W, v

W, > is the smallest subspace of V containing W, U W,, Moreover. one can see thal
<W, U W, > consists of elements of the Lvpe e +v, ue W andve W,

8.18. LINEAR SUM OF TWO SUBSPACES

Let W, and W, be two subspaces of the vector space V(F). Then, the lincar sum
of W, and W), is denoted by W, + W, and is the set of all possible sums u + v where
ne W andre W,

e, Wl +W,={u+rluweW, and ve W,
a b
For Example : Let V= {[c d] a,b,c,de R}.
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~Then clearly V is a vector space of all 2 x 2 malrices over R w.r.L. usula vector
addition and scalar multiplication defined in matrices.

Let W, = {[ g]
L

Then, one can easily see that W . W, are two subspaces of V.

a,c,deR} ,

a,beR}.

. 2a b
W, +W,= {( . d] a,b,e,de R}
Obviously, W, oW, +W,
(. ne W, 0¢ W,su+0=ue W, +W, Yue W)
Similarly, W, oW, + W,
ITence, W UW,CcW, +W,

Theorem 8. Linear sum W, + W, of twwo subspaces W, and W, of a vector space
ViF} is a subspace of V(F).

Proof. Let n, ve W, + W, and a any arbitrary scalar in F.
. o, . T eue

Then, 3 1), v, € W, and 1y, v, € W, such that

u=u tuyand v = Fey

a4 v=ale +u) + @ o) =l o)+ ety
A L] I} b T
Since qu, v, e W oand auy+ iy € w,
{~ W, and W, are subspaces)

{ou, + v} + {auy + )€ W, + W,
= aluy + uy) + (v + e W, +W,
= au+ve W, + W,
Thus, 1, ve W, + W, ae F=>an+ve W, + W,
Hence, W, + W, is a subspace of V.

Remark. Une can show that if W,, W,, ... , W are subspaces of V(F). then W, + W, +
..... + W _is also a subspace of V,

Theorem 9. If IV, and W, are tiro subspaces of a vector space V(F), then
W, +W,=<W,uoW,>
i.e., linear sum of W, and W, is the subspace generated by the union of W, and W',
Proof. Clearly, W, C W, W, and W, g W, + W,
W, UW, oW, +W,
Since < W, U W, > is the smallest subspace containing W, UW,, therefore,
<W,UW,>cW +W, LAD
Conversely, let u+ 1€ W, + W, wherene W, ve W,
Lu+ lv=u+vre <W UW,>
- W, +W,c<W, uW, > ; (2
- From (1) and (2),
W +W,=<W UW,>
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Remarks. (N Jf W, and W, are tiwo subspaces of V(Fj then W, n W, is a subspace of Vand
is the largest subspace contained in W, as well as W,.

iy W, + W, contains W, as well as W, and is the smallest subspace of V thet coniainsg
both W, and W,

() W + W, =W andif W, cW,then W, +W, =W,
(1) The operations of forming the sum of subspaces is associntive and commudative. If

W, W,, ..., W_aresubspaces of Vithen W, + Wy + ... + W is, irrespective of any bracheting that
might be inserted and irrespective of the order of the summands, the set of all vectors in V
expressible as (a vector in W} + (u vector in W) + ... + (@ vector in ).

8.19. DIRECT SUM OF SUBSPACE

Let V be a vector space over a field F. Let W . W,, ... W_be subspaces of V.

Then, each vector in the sum W, + W, + + W, can be expressed in atleast one way
in the form

(avoctor in W)+ (aveetorin Wy + + (a vector in W ). In most of the cases,
we can oxpress a veclor of W, + W, + + W, in more than one way. In case we can
express each vector in W, + W, + ... + W _in exactly one way as :

{avector in W)) + (a vector in W) + . + (a vector in W}, then we call the sum
W, +W, + . +W, of subspaces W, W, .., W, _asthe direct sum of subspaces W,

W, . W andwewriteitas W, @W, & &W_

For example: @} In R (R), W, =<(1,0,0)> W,=<(0, 1,0)> W,=<(0,0. 1} >
arc subspaces of R3(R). Any vector (a, b, ¢) € Rican be uniquely written as (@, b, ¢) =
@, 0,0+ 0. b )+ (0 0 c)where (g, 0,00 e W, (0,b,0)e W,, (0,0,0) e W,.

Then, RE=W, @W oW,
¢ry If V is a finite dimensional vector space and (e, &,, ....., e ) is a basis of V, then
V=<eg,>®<e,>@ ... . B<e, >

The following example, shows the difference between the linear sum and the
direct sum of two sub-spaces.

Example. (i) Consider the vector space V,(R).
Then, W, ={(a. b, 0) | a.be R}, W,=1{(0, 0, ¢) | c€ R}, are subspaces. (Show 1),
Now any vector (@, b. ¢) € V,(R) can be written as
@b d=(m b O+ 00 )]
where, (a.b,)e W, and (0,0.c)e W,

Moreover. any vector (a. b, ¢) € V,(R) can be written in form (1) uniquely as the
sum of elements of W, and W,

Hence, Vi(R)y=W, & W,
(if} Take W,={a.b.0) | a.be R}
and W,={0.b. o) | b,ce R}

Then, W, and W, are subspaces in V,(R). (Show !)
Now, any vector (z, b. ¢} € V,(R) can be written as

(, b, e)= [a,%,(}}+(0,%,c} (D
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(where(a,% ,O) €W, and [0,% ,cJ € Wz]

V,Ry =W, +W,
Further, any vector {a, b, ) € V4(R) can also be written as

35 b
{r, b.e)= (0,1,0]’{0,;,0] (2)

(where{a,% , 0] €W, and (IO.-E— ,c) € Wz]

(1) and (2) show thal elements of V cannol be uniquely expressed as sum of
elements of W, and W, Henee. V,(R) is the linear sum of two subspaces W, and W,
but. is not direct sum of two subspaces W, and W,

A simplified criterion for a sum of subspaces to be the direct sum is given in the
following theorem.

Theorem 10. Let W,, W, ..., I}, ben subspaces of V(F). Suppose that the only
way lo express 0 in the form w, + w,+...... +u, withw, € W, for each i, is lo ake every
w; = 0. Then the sum W, + W, +.. W is a direct sum.

Proof, l.et 1: be an arbitrary vector in W, + W, + . +W .

Let, if possible, w ¢an be written in two different. forms :

w=u, tu,+ . tu, = gt +u D
where, for each {, n, € W;and v; e W, '

The (wo expressions {or w are identieal.

From (1), (e (-} + T, —1)=10

= =, =20u,—r,=0, .., -t =0

(by given hypothesis)

= w=u, for r=12 .. n

= The uwo expressions for e are identical.

Hence, the sum of subspaces is the direct sum.

Following theorem gives a very simple criterion for the sum of two only subspaces
to be the direct sum.

Theorem 11. If W, and W, are two subspaces of VF), then W, +W,isa
direct sum if and only if W, n 1V, ={0}.

Proof. (/) Let W, + W, be a direet sum.

Ta show : W, N W, = {0}

Tet weW,nW, = weW, and weW,

Now, weW, = —weW, (~. W, is a subspace)
: wti—uw)y=0

Thus, 0 can be expressed as sum of a vector in W, and a vector in W, in two
ways: 0=, + (—w)and0=0+0.

But W, + W, being the direct sum (given). there is only one way to express 0 as
sum of a vecior in W, and a vector in W,
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w (and — w) must be 0.
ITence, no vector other than 0 can belong to W, n W, But, W, A W, being a
suhspace of V, containsg 0.
W, nW,={0}
(u) Conversely, let W N W, ={0}
We further suppose that 0 = 1, + w, where wr; € W, and wy e W,

u, =—w, and hence w, € W, (v w, e W,and W, is a subspace)
Therefore, w, e W nw,
= i, =0 - W, nW,={0h
Henee, wy (=-uw)=90

This proves thal the only way 10 express 0 as the sum of a vector in W, and a
vector in W, is to take both these vectors equal to 0.

ITence. W, + W, is a direct sum.
Theorem 12. Let W, and W, be liwo subspaces of a vector space V(F). Then,
V=W, @ W, if any two of the following conditions hold
L V=W, +W, 2. W, A W, = {0}
3. dim V=dim W, +dim W),
Proof. (i)} let (1) and (2) hold.
Since W, n W, ={0}
The sum W, + W, is a direci sum.
Fram (1}, it follows that V=W & W,
(71} Let (1) and (3) hold.
Then, from (3), dim V=dim W, + dim W,
= dim (W, + W) = dim Wl + dim W, TG by (D, V=W, + W)
= dim W, +dim W, —dim (W, » W,) = dim W, + dim W,
(o dim (W, + W) = dim W, + dim W, — dim (W, n W,}. To be proved later)
= dim (W, AW)=0 = W AW, ={.
(2) also holds. Hence by part (), V=W, EBW
(tif) Let (2) and (3) hold.
Since by (2), W, n'W, = {0}, therefore W, + W, iz a direct sum.
dim (W, ® W) =dim W, + dim W, =dim V {By condiLion (3))
Since W, ® W, is a subspace of V, it lollows that V=W, & W,

8.20. COMPLEMENTARY SUBSPACES

IfV=W,@& W, then the two subspaces W, and W, of the vector space V(F) are
said to be complementary subspaces.

Remark L. A vector space Vis said lo be the direct sum of n subspaces W, W, ... W
(of V) iff each element v e V can be uniquely written as :

TS TS S TR S +w, wherew, e W i=1,2 ... n

We write V=W, 0 W,® .0 W,

Remark 2. If (e, e, ..... ¢, ) isa basis of W, and (f, f,, ...... ) is ¢ basis of W, then

() (e, g ooe @y [0 fou o [ 15 0 Dasis of W, 8 W,

i) dim (W, @ W,y =dim W, + dim W,

(ii)) The result of (i) and (ii) can be generalized to more than two subspaces.
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LINEAR INDEPENDENCE OF VECTORS

8.21. DEFINITION

Let V be a vector space over F. Vectors v, tyr.., v, € V, are said to be linearly
dependent (L.D.) over Fif there exist scalars a, ag ... . a, in ¥, not all zero such that

aiy tag, o +a,u, =0
fiere, © on the right hand side indicates the null vectar.
Veetors which are not linearly dependent are called linearly independent (L.1).

In facl, veclors v, 0y, ...... . t,, are linearly independent if and only il
ey agn, o +an,=0a¢eF
implies a=e,=....=a,=0

i.e., zerosolution is the only solution.

I8={u, vy, 1}, then we say thai the set Sis LI or L.D. according as the
Ceelors Uy, Vg, oo , U are LI orl.D

An infinite subset S of V is said to be L1 if every finite subsct of S is L.1,

Remark 1. A sel containing only zero vector is linearly dependent

Let S ={0}

Consider al=0

This eguation is satisfied by o = 0 and alsa by non-zero values to a.

The set. § = {0} is a [..T). sef.

Remark 2. A singlefon sel of o non-zero vector of V(F) is linearly independent.

Let S = it where « is a non-zero vector of V).

Consider ao=0

This equation is satisfied only by a = 0.

- The set § = {u} is linearly independent.

Remark 3. Now: we remind the reader of the few resulls on consistency and soluiions of
[inear eguations.

Wi know Lhat matrix form of linear equations is AX = B.

Case I. Matrix B = O, the equations are said to be Non-Homogeneous.

If A is non-singular ; then unique solution is X =A=' B.

If A is singular and (Adj. A)B 2O ; then

no solution i.e., equations are inconsistent

Il A is singular and (Adj. A)B=0; then

Infinitely many solutions.

Case I1. Matrix B = O, then equations are said to be homogeneous (AX=0)

If A is non-singular, then only zero solution

If Ais singular (l.e. | A | =0); then infinitely many solutions. (Here also zero
solution is one of the solutions).

Ome may define ; A set of veetors {v, vy ..o Jebis LD, if one of the vectors can
be expressed as a L.C. of the others. Note (hat. if a et of vectors (with a2 2) is L.D.. it
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may not be true that. each of the veetors in the sequence is expressible as a L.C. of the
others.

For example. in {(1, 0. (0. 1}. (0. 2)}, (0. 2) is expressible in terms of (1, 0) and
(0, 1) but (1, () cannot be expressed as a L.C. of (0, 1) and (0, 2).

(- all combinatlions of (0, 1) and (0, 2) are of the type (0, &)

Moreover, a sel. containing a repetition is always L.D.

For example, {n), ), g, ., w0 )} is LD,
because Lo+ (= Dagy + Og + + the, = 0.

Example 12, Show that the set of vectors {(1, 2, 0), (0, 3, 1), (-1, 0, 1} in V(Q)
is L.I (where @ is the field of rafionals),

Sol. Suppose o(1, 2, M+ 60, 3, D+e(= 1,0, D=0=(0,0,00 wherea, b, ce Q.
= (n—c.20+3b,h+c)y=(0,0,0)
= n—c=0.2ﬁr+3b=0,b+c=0.
From first and last equations

a=c b=s—c
But2¢+3b=2c—-3c=20unlesse=0

a =0, b=0.¢=0is the only solution.
Hence, the given vectors are [..1.

Or

Matrix form of the above Linear homogeneous equations is

FARE(HEH

10 -1
Now, 2 3 =13-0-0-@2-0)=120
01 1

Hence ¢ =0, b =0. ¢ = 0 is the only solution,
Hence the given vectors form a L.1. set.
Example 13, If Vis the vector space of all 2 X 3 matrices over R, show that the

metrices
e 2 1 -1 A= 11 -3
ST -2 41T -2 0 5|

4 -1 2
and C=[1 -2 3] form a L.1. set.
Sol, Suppose A+ b(B+ ¢C=0O wherea, b,ce R
2 1 -1 i1 -3 4 -1 2] [0 00
= “[3 _9 4]”’[-20 5]*"—'[1 -2 3/%|10 0 0

2a+b+4c a+b-c -a-3b+2]} [0 0 0
3a-2b+c —2a-2 4a+5b+3c| |0 0 O
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Algebra = 2at+tbtde=0.a+b-0c=20,-a=-3b+2c=0 (D
and 3a-2b+¢=0,~20-2¢=0,4a+ 50+ 3c=0 (2
Solving equaltions in (1), we get.
NOTES a=h=c=0
which obviously satisfy the 3 equations in (2) also.
Hence, the given matrices form a L1 set.
Example 14. If X, , X, , ... . X is a linearly independent system of n x 1

column. vectors und A is an n x n nou-singular matrix, show that AX,, AX,, ..., AX,
are linearly independent.

Sol. Suppose g, AX| + @, AN, + ... +a AX, = O for some scalars . a,, ... A,
= A X))+ A, X + + A, X)=0
= Alg, X[+, X, + ...+ X)=0 AN

Since A is non-singular, A7 exists.
Pre-multiplving both sides of (1) by A™?, we have
AtA(a X, + X, + . +aX)=AT0

= (A )@ X, + a,X, .+ aX)=0

= a X, Fa,N, +aX.=0 ¢ A=)

= == . =, =0, since X, X,, ......, X, are linearly independent.

Hence, AX,, AX,, ......, AX are linearly independent,

Example 15. Consider the vector space P(x) of all polynomials over the field F
wnd show that the infinite set =41, x, x%, X3, ... Vis L1

Sol. Let. §  ={x™, ", __... x"} be any finite subset of 5. Then for scalars a,,
g .o . a2, consider the linear comhination

a, g™ + a0 ot

By definition of zero polynomial and the cquality of two polynomials,

™ Fax™ +apa’ =0 D

iff a4, == . =q, =
where () on the right of (1) is a zero polynomial

Hence, any finite subset of §is 1.1

SisLL
Example 16. Show that the vectors
u=(1+i 2),v=(11+i)

in Vy(Cyare L.D. but in V(R) are I..1.

Sol. Two vectors are dependent. if one is a multiple of the other,

Thus ¢ and v are dependent if for some number o + iff € C,

u={o+ B

e, i Q+i2)=@+iB) Q. 1+H=(a+ifa—f+i(a+p)
fe, il a+rif=1+i and o-B+i(u+P) =2
e, if a=1p=1
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Thus, 1= (1 + He. Hence, v, v are L.D.

() If u, v € Vy(R), then u is not a multiple of © because 1+ 7 ¢ R. Thus, u, v
are L1

Theorem 13. Any sef which contains the null vector 0 is linearly dependent,

Proof. Let {v,, v, ..., 1} bea setof vectors containing the null vector 0 over
V. Let v, =0,

Then, Ovy, + 0v, + ... +0r, + Le;+ 00, +....+ 0, =0is a lincar combination
of vectors with not all eoeflicients zero. Hence, the set is linearly dependent.

Theorem 14, If iz rector v is a linear combination of vectorsv , v, ..., v, then
{t, v, Uy oo, 1) i85 @ linearly dependent set.

Proof. Since v is a linear combination of vectors v, ', ...... ,u

. There exist sealars a;. a,, ... a, such that

vr=ar tagu, o o,

= —Detae tap,+oLtap, =0
which shows that there is at least one non-zero coefficient (= 1).

Ilence. the set. {1, v}, Uy, ....... ¥} i5 a linearly dependent set.

Remark. Coefficients may nol be zero in a linear combination.

Theorem 16. If {v,, v, ....... , .} is a linearly independent set and {rv, v, vy,
..... c vt is o linearly dependent sel, then v is a linear combination of the vectors v,
Py e, U

Proof. Since the set {v. v, p,. ..., v} i linearly dependent.

o there exist sealars a, a,, a,, ......, @, not all zero, such that

av+av fagyt . tar, =0 (1)
Case(a=0
Dividing (1) by « and rewriting, we have

- — sz -,
v—[ 2 ][-‘1+[ @ J[-‘21+,.,...+( a ) U

= ri§ a linear combination of vectors v, vy, ... v,

Case (i) a=10

From (1), a;v,+ay+... +a,=0

= a,=a,=....=a,=0, sincethe vectors v, vy, ......, i, are linearly independent.
This contradicts that the scalars a, a,, @,. ......., @, are not all zero,

Hence, @ # 0 and ¢ is 2 lincar combination of vectors v, 1y, ........ N
Theorem 18. The sef of non-zero vectors i, v, ..., v, from a vector space V' is

linearly dependentif and only if there exists some vector v which is a linear combination.
of the preceeding vectors v, vy, ... ,

Proof Suppose v; is a lincar eombination of the preceeding vectors v, vy, .. v

ie., T I N A O T +a,, vy, for scalavs a, a,, Lay
From this, we have the relation
o g, ta_ v =Dy 00+ 0 =0

which has at least one cocfficient, namely (- 1) non-zero.

= thevectors v, n, ....... , v, are linearly dependent.
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Conversely, let the vectors vy, 1y, ..., ¢, be linearly dependent.

there exist scalars a,, @y, ........ @, not all zero such that
i, Fagy,t oL tar =0 (B
leti be the largest subscript for which o, 0 (f.e., 4y Oy o are all zero).

Casel.iz1
Then, (1} can be written as

Uy Fagly Ty Ay = 0
Since m, 2 0, we can rewrite it as

| =& N — a2 + N |
S P R g 2t a; | Vi

= v, is a linear combination of the preeecding vectors v, Uy, ... U
Case II. When i = 1, we have 1, = 0 with a, # 0.

v, = 0 which is a contradiction to the given hypothesis that all vectors are

not. Z2ero,

Remark. The above theorem provides us a method o decide whether a given sel of veclors
is linearly dependent or nol. Following example illustrates this.

Example 17. Show that the vectors (1, 2), (1, 1), (3, 4) and (7, 9) in R? are
linearly dependeni.
Sol. Clearly a{l, 2) # (1, 1) for any scalar a.
Now a(l, 2+ b(1. H=(@3. 4)
= a+b=3 and 2¢+b=4
Solving, we havea=1,b=12
(3, 4) is a linear combination of (1, 2) and (1, ).

Hence. the given set of vectors is linearly dependent.

Cor. 1. Iftheveclors v, vy, ....... , v, generatea subspace Wof a veetor space Vand
v, is a linear combination. of the remaining v — I vectors, then the remaining r — 1
LeClOrS U}, Uy covivsy Uppo Uyypoooenny U, @lso generale the same sishspace W

To illustrate the corollary, consider three vectors (1, 1), (1, 2}, (3, 5) in RZ
A linear combination of these vectors is
a(l, 1Y+ b(L, 2) +e(3, H) AD

for some sealars @, b, ¢.

Since 3,5 =1(1, 1)+2(1, 2

(1) can be rewritren as
all, )+ b(1. 2+ cl1(l, D+ 2(1, 2] =(u+e)l, D+ b - 201, 2).

-, Every linear combination of the 3 vectors (1, 1), (1, 2), (3, 5) can he expressed
as a linear combination of 2 vectors (1, 1) and (1, 2).

Hence, the space gencrated by the 3 given vectors is the same as that generated
by the vectors (1, 1} and (1, 2).
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Cor. 2. Any finile generating sef S of veclors not all zero contains a subset of
linearly independent vectors, which also generates the same space.

For. we can delete from the set 8, any vector which is a null vector or which is a
linear combination of the vectors proceeding it. The remaining subset will also generate
the same space and will be linearly independent.

Theorem 17. Every subsel of a linearly independent set is linearly independent.

Proof. Let {r,. v, ......, v} be a linearly independent set.

Let, il possible, {v,, v,, ....... . g}, k < n, be a linearly dependent subset ol {t,
gy e T

Then there exist scalars a,, a,, ......, a,, not all zero, such that.

a;u tagt, tar, =0,

= (U, Fagty + o +ap, + 0, +..... +0e, =
and the scalars a,. &, ........ @), 0. ....... 0 are not. all zero.

= thevectors v, vy, ......., v, are linearly dependent. But, this contradicts the
given hypothesis that the vectors v, v, ......., v, arc lincarly independent.

Hence. the set {|, r,, ......, v} is a linearly independent set.

Similarly, any other subset of {v;, v, ... , v} is linearly independent.

Cor. Every super set of a linearly dependent sel is linearly dependent.
Proof. Let A be a set of linearly dependent vectors. Let. B be a super set. of A,

"Len, if possible, B be linearly independent. Then, A heing a subset of a linearly
independent set B, is linearly independent. This contradicts the given hypothesis that
A is linearly dependent.

Hence, B is linearly dependent.
Theorem 18. The non-zero rows in an echlon matrix form a L.1. set.

Proof, If the echlon matrix is O, then the set of non-zerv rows is ¢ and hence
L.L

S0, consider ihe case when there is al. least one non-zero row in the echlon
matrix. Let its non-zero rows be (in order from the top downwards) R|. R,, ... R,

Suppose o, R, + a,R, + ...... + @R, = O lor some scalars a;, a,, ......, a,

Each side of this equation is a row matrix, Pick out from each side the entry in
the position where R, has the leading entry and where therelore, the lower rows R,,
R, ... : R, of the echlon matrix have zeros.

Hence, a,x (cading entry of R} =0.

= a, =0

@R+ . +aR,=0.

Now, consider the position where R, has leading entry (and therefore, R, ... .

R, have zeros). Hence, we deduce that a, = 0. Proceeding like this, we find tha

Iy =0, = ... = a; = (. Thus, all the coefficients 1y, Uy, ..y Wy A€ ZCYO,

2
The set {R,. R,, ...... Rpis LI
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BASES AND DIMENSION OF AVECTOR SPACE

7

8.22. BASIS

Definition. Let V" be a vector space. A sel of vectors v, iy, ....... , v, € Viscalled
a basis of V'if

(i) the vectors . ty, ..., U, are linearly independent

(D) v, vy, cue, U, SPAN vV .

{i.e. any vector v € V can be expressed as a linear combination of the vectors v,
L 158 §

The space V is finite dimensional if it has a finite basis. If V is not finite
dimensional, it is calied inlinite dimensional.

The veetor space V,, = {0} is zero dimensional,

Note. ¢ is taken as basis of {0} since < ¢ >={0} and ¢ is L.I. Note further that {0} is nol
basis of {0} since the set {0} s L.D,

Remark. Basis of a veclor space is not unique but the number of vectors in a basis is
unigue,

Evamples. (i) The sel of vectors (1, 0,0, (0, 1, B and (0, 0, Disa basis for the
voctor space RY.

Sol. For, a (1, 0. M+ b0, 1, ) +¢(0,0, N=0,a,b,ce R

= (ar, bo)=0=(, 0,0

= a=0,b=0,0=0

= theveetors (1, 0, 0), (0, 1, ® and (0, 9, 1) are lincarly independent.

Also, any vector (x, y, 2) of R3 can be written as a linear combination ol these
vectors, namely
(x, », 2 =x(1, 0,00+ 30, I, )+ 2(0, 0, 1),
Hence, these veclors [orm a basis.
) The set of 3 vectors (1. 1, 1), (1, 2, 3) and (1, 4, 2) is a basis for the vectlor
space R,
Sol. First, we show that these vectors are linearly independent.
Now. if for some sealars a, b, ¢
all, 1, D+ bi(1,2, D+e(1.4,2)=0
then, (+b+eca+t2b+de,a+3b+200=0=(00,0)
= at+bte=1}
a+2b+4c=0 and a+3h+2¢=0
Solving these equations, we find that @=0,6=0,c =0,
the three veeiors (1, 1, 1. (1, 2, 3y and (1, 4, 2) are linearly independenl.

Secondly, we show that any vector (v, y. 2) of R® can be expressed as a linear
combination of given vectors.

Now, ooy, 2y=p(L 1, D+g(l, 2, D+l 4. 2) (D
= (y.)=(prag+r.p+2g+dr.p+3g+2r)
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= ptgtr=x Tector Spaces
pr2g+4Ar=y and p+3q+2r=z
Solving these three equations for p, g and r, we find that
p=—3 @u+y+32), NOTES

g=-3% Qx+y+32),
r=—31 (x—2y+2).

As,x,y,2€e Rip, g, re R
For these values of p, g, r, we get from (1), (x, v, 2) as a linear combination of
(L1, 1), (1. 2, 3y and (1, 4, 2}. Hence, the veetors (1, 1, 1), (1, 2, 3) and (1. 4, 2) form a
basis of R%, '
(7ir) In the vector space R *, the vectors e, ={1,8,0,...,0,e=010_..0.
e 8, =1(0,0,0, . . 0, 1) form a basis.
Sol. For, if ae Fae,t . +ae, =
then aq=0a,=0 ... a,=
s0 the set of vectors e, e,, ......, ¢, is linearly independent.
Also, any vector (x,, X, o0 X,) € R can be expressed as
(X %y, L x)=xe e, oL tre
Thevectors ey, e,. ....... €, are called unit vectors and are said to form the standard
basis of R”.
{iv) One can see that the set of vectors
a,0,q0,.... L, 01,0, ey W, (11, 0, 1) s also a basis of R7
() The veectors v, =(1, |, 1), v,= (1, 2, 3) and vy = (3, 2, 1) are not a basis of R,
because vy = 4e) — o,
(D) in the veclor space P, (R) of all polynomials of degree n over the field of
reals, the set {1, x, »2, ..., ¥} of polynomials is a basis of P (R).
Sol. Firstly these vectors are L 1.
For, a,. 1+ax+tax®+.  +ax"=0
[where a,, a,, ... a, € R and 0 on right is the zero polynomiall.
By definition of zero polynomial and equality of polynomials, we have
0=, =g, =
Secondly, if flx) =a, + ax+ a,?+ ... + a,x" is any polynomial in P (R), then
/(x) can be thought of a5 a linear combination of polynomials t, x, ¥, ..., x"
Hence. the set {1, x. 2% . x"} of polynomials is a basis of P_(R).
(i) The set {1, &, 2, ., 4", 2™ L } is a natural basis for the vector space of
polynomials of any arhitrary degree over R or C.
(uiie) The set {(1, 0, 0, (1, 1, 0}, (1, 1, 1), (0, 1, O)} of vectors spans V,(R) but. is not
a basis.
Sol. Let (u, b, ¢) be any vecior ol V(R).
Let us examine whether we can express it as a linear comhination of given
veclors or not,
Now, @b o=a(0.0)+a(l,L,0)+a,, 1. 1)+ a, 0. 1.0

=(rn Yo, +ag a,+a,+a,q)
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= mta,ta=aa,tata,=ba;=0
Solving these equations, we get
7 =a-G,—agg=a+ta—ba,=b-u—q,=b-c—a,q=c
In particular, taking a, =0, we find
(e, b, o)=(a—b)}L, 0,0+ H—c)1, 1,0 +c(l, 1, 1)+ 00,1, 0.
Thus, (a. b, ¢} has been expressed as a L.C. of the given veclors.
Bul, the given set is not L.}, becaunse
KLO O+ (=10, L0+, 1, D+, 1,0=(0,00
Hence, the given set is not a basis.
(ix) 11V is the veclor space of all ordered pairs ol complex numbers over the field
R. then the set. S =4(1. 0). (i, 0). (0, 1), (0, D)} is a basis of V.
Sol. Firsily, to show that §i=s L.L.
Now, a,(1, 0) + a,(f, ) + a,(0, 1) + a, (0, n=>0
(where @, a,, a,, 0, € R)

= (a, +iay a, +ia) =0, 0)
= a +ia,=0,a,+i, =0
= a=0=a,a,=0=uq,

Hence, S is L.L
Secondly, to show that S spans V.,
Let i be any elt, of V.
u=(a+ih,c+idy,a b e, de R
= (1. 0) + bG. 0) + ¢(0. 1) + (0, )
showing that i is a L.C. of clements of 5,
Hence, S is a basis ol V.
(x) If M, is the vector space of all 2> 2 matrices over R, then the set 8 ={A,, A,

0 1 0
A, Ajwhere A = [3 Ojl » Ay= [g 0] . A= [(i gil A= [0 {ﬂ is a basis of M,

Sol. (7 Any element (‘: 3] of M, can be written as :

a b]_ (10 01 (L} ¢ 0
(¢ a)=elo o) w2 ( o)r< (3 6} (3 )
. 5 generates M,
DA, A, Ay, A are L

19 01 040 00 a0
For, 0:100+o:200+u310+a4(0 1]=00]

0y « 00
= (u; G:JZ(O 0]:():[:0,&2:[),(13:0]a“=0‘

By « basis of a sub-space Wof a vector space V, we mean a basis of Was a vector
space under the induced operations,
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Remarks. (f) The basis of & vector space need not be unique as is clear from the above
example.

(i) Bvery basis of a vector space V is a generating set for V but not conversely, since a
generating sel need nol be linearly independent.

{{if} A basis of n vector space is a linearly independent set but a linearly independent set
of veciors need not. be a basis of V since these linearly independent. vectors may not. span V.

8.23. COORDINATE VECTOR

Iftheset B={u, v, ...... , v, } 15 a basis of a vector space V(F), then a vector ve V
can be written as
v=ua, tay, o +tau.
for somescalarsa, a, ...... , @, The coefficients a, a,, ... . @, in the linear combination

of v are called coordinates of v relative to the basis B, The veclor (¢, ay, ......, a,) is
called the coordinale vector of v yelative to the basis B and is denoted by fvf,,

The coordinates of a vector relative to the standard basis are simply called the
coordinates of the vector,

It ig important 1o note that the vectors in a basis musl be in a particular order
and, as a matter of fact, the basis {¢, v, ......, v,} is considered to be different from the
hasis {v,, (T » U} This is because the coordinates of a vector v in V(F) in terms ol
these basis arc respectively (@, a,, ...... ,a)and (a,, a,. ... » @,) which are obviously
different. uwnless a, = a,. Hence, a basis will always imply an ordered basis in the sense

we have given.,

Theorem 19. A sef of veclors v, vy, ...... U, € Visa basis of Vif and only if each
element of V can be uniquely expressed as a linear combination of v p oo , b

Proof. (£} Let v . vy, ..., ", be a basis for V. If € V. then by the definition of the

basis of V, there exist scalars a,, @y, ...... . a, such that
=g taa o +o,u, LA

Let. if pogsible, v=b, byt +b,u, ()
he another linear combination of 1. 1y, .. v,

(1)—(2) gives O=v—rv=(a, - b, + @, - bu, + ... + (@, — b,

Since vy, vy, ..., v, are linearly independent. we have

a~b,=00,-b,=0,....,a,~b, =

ie, @, =b,.6,=b,, ......a,= b,

'
"o

(ii} Conversely, let each element of V be uniquely expressed as a linear

combination of ', 1y, ...... , t,. This implies, in particular that ¢, vy, ..., v span V.
To show that . 1. ........ 1, are linearly independent, let.
e Fan, o tea g, =0
Also, Oy + 0y, + . +0r,=0

Thus, the null vector 0 has been written as a linear combination in two ways.

Therefore. our assumption of unique representation implies that
a=a,=....=a,=(

Hence, (L , 1, are linearly independent.
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Next theorem shows that if V is a finitely generated vector space, then from a
given generating set of V, we can choose subset which lorms a basis of V.

Theorem 20. If v, vy, ... v, _genernle a veclor space V, then there exisis o subsel
of U, Uy s 11, which is a basis of V.

Proof. Il 1, vy, ... , ¢, are linearly independent, then these already lorm a
basis of V.

If these are linearly dependent, then some 1y is a linear combination of the
remaining vectors

LS (R Uy Uy g ooy U

Since each v in V is linear combination of t:), v, ......, ,, t; is a linear combination
ol vy, Vg, ooy By Vg e Uy Thus, on removing the element v; from the given set, we
still get a generating set for V_If this subset is linearly independent, it is a basis of V,
otherwise we repeat the argument. After a {inite number of steps, we obtain a subset
of 1), ty, ......, 4, which is linearly independent and is a generating set for V and hence
is a basis of V.

Theorem 21. If iz}, ¢y, ....cc L isa generating sel of o vector space V, then any
n + I vectors in V are linearly dependent.

Or-

T, ... u, form a basis in Vihenwanyn + I vectorsin Vare lincarly dlependent.

Proof. Without any loss of generality, we suppose that the vectors t, vy, ... ¥,
are L.1. because otherwise, we can find a subset of v, vy, .o; U, which is 1.1, and
generate V,

. ] - Tt 1 H
Let iy, Wy, ooow., W, be any n+ 1 vectorsin V.
Since 1), Uy e . v, gencrate V, we have

Wy =yl F AUyt g,

132 SelfInsiructional Material

1y =y U) ¥ gty T Ty 0,
Wy T Py T g U F e 0 n T
for some scalars a;
To show that w, . ...... , 1, are linearly dependent, we have to show that.
there exists sealars €. 0y, .. €40, NOE all zero such that
e ey Fogreg o te g, =0 D)
. n+l
Le, 2 e, =0
i=1
n+l Ii
ie, | dagui|=0
i=1 i=1
n n+l
Le., a;c; v;= 0
j=1 =1
rtl
This is su if 2 a;; 6= 0,1<j<n (v, nre 1L L A2)
i=1




Now, (2) 1s a system of » homogeneous equations in » + 1 unknowns ¢, and

hence has a non-irivial solution, ie., there exisi ¢, ¢,, ......, ¢, not all zero such that
(2) and henee (1} is true,
Hence, w,, 1, ......., w,,, are linearly dependent.

Cor. If Vis a finitely generated vector space, then the maximum number of linearly
independent elements in V is finite.

Proof. If V has a generating set of n elements, then any set of.linearly
independent vectors in V has at the most n elements.

The following theorem shows that every finitely generated veetor space has a
basis,

Theorem 22. (Existence Theorem) : If Vis a finitely generated vecior space, then
any maximal set of linearly independent vectors in Vis u basis of V.

Proof. Consider sets of linearly independent vectors in V. By the above corollary,
the number of elements in any such set is hounded by a fixed rumber. Among these,

choose the one with maximum number of elements. let o), vy, ..., v} be such a sel.
We shall show that {r,. g oy U} 18 a basis of V.

By our choice, Uy, Uge oy U, are linearly independent. Let v e Vbe any element,
then by the maximality of v, v, ......, t,, the set consisting of ¢, v, ..., v, and v isa

linearly dependent. set.

Thereflore, il follows thai ¢ is a linear combination of rp Uge e .. Hence, iy,
. ', 15 a basis of V.

Theorem 23. (Invariance of the Number of Elements in a Basis) : If Vis a
finitely generated vector space, then any two basis of V have the same number of elements.

Proof. Let vy, vy, ... v_and w,, i, ..., 10, be two bases of V,
Suppose s < r. Then v}, vy, ..., t;, are linearly dependent (Theorem 44), a
contradietion.
s¢r
Similarly, rg s,
Hence, r=s.

8.24, DIMENSION OF A VECTOR SPACE

Definition. The number of vectors in a basis of a finitely generated vector space
is ealled the dimension. of the vector space V and is denoted by dim V.

The dimenston of a null vector space Vi.e., V = {0} is defined to be zero.

Dimension of a non-zero vecior space is a natural number greater than or equal
to 1.

Il dim V is n, then we say that V is an n-dimensional veetor space. The
dimensions of the spaces R, R2and R" are 1,2 and n respectively. That is why
we call R” an n-dimensional vector space. The dimension of the vector space of
polvnomials of degree <nisn+ 1 because 1, x. x% ..., " is a basis of the vecior space.

Vector space of all polynomials with coefficients in F is an infinite dimensional
veclor space.
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A veetor space of dimension r econsisting of r-vectors is generally denoted by
V 7(F). When r =n, we denote by V (F) for V (F).

Remark. Since 1we can choose ¢ basis of a vector space V from a given generaling sel,
dimension of V is less than or equal lo the number of elements in any generuling set. Further,
since any maximal set of linearly independent elements of V forms a basis of V, we see that any
linearly independent sef has at the most n elemenis if dim Vis n.

Theorem 24. (Fxtension Theorem) . If V' is a finitely generated vector space,
then any sel of linearly independent vectors v, v'y, ..., , v, in V) can be extended to a
hasis of V.
Proof Let V(F) be a finitely generated vector space aver F.
V has [inite dimension n (sav),
Let B={u, 1y, ..., 1} be a basis o V.

Let A={r vy, o, v, } be any 1.1, set of vectors in V.
We shall show that A can be extended to form a basis for V,

Write B, =AUB={u,, v . U, My My, 1)
Since B, 2 B, and B, is a basis.
B, is L.I.

= There exists a vector in B,, which is a linear combination of the preceding
vectors and that vector cannot. be any one of the t,’s (*+ A is L.1). Therefore, that
must be one of the u,’s. Let that u; be u,. Theu u, is a linear combination of v}, ¢y, ...,
Lo My Hgy o Uy )
Alter removing r, from the set B, we denote the remaining set by B,.

By = v, vy v, Uty gy o Uy g e MR
and B, spans V.

(-» Ifue V, can be expressed as a linear combinacion of elements of B, and in
this linear combination, u, can be written as a linear combination of v, vy, ... v, 1,
Hy. ..oy Uy, SO 17 can be written as a linear combination of o, vy, ... v, 1yt
Wy Hygy e LU

Il B, is L.I., then B, is a basis of V.

If B, is 1.1, then we repeat the same procedure as we have done for B, toget a
new set. We continue this process till we get a set. B containing vectors v, vy, ..., ¥
such that B’ is L.I. and spans V.

Thus, B is an extended set of A and is a basis of V, Thus, any linearly independent.
sel. in V can be extended Lo form a basis of V.

Example 18. Find the basis for R, which contains the vectors (1, £, 3) and
(2 1, 0.

Sol, The set of vectors (1, 0, ), (0, 1, 0) and (0, 0, 1) is'a standard basis of R8,

Consider the linearly dependent set of vectors (1, 2. 3), (2. 1. 0). (1. 0, (0,
0, 1.0y and (0, 0, ).

We stari from lefl.

(1, 2, 3} being a singleton set. of non-zero vector is L.L

First two vectors (1, 2, ) and (2, 1, 0) are linearly independent because neither
veclor is a4 multiple of the other.
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So. consider the first. 3 vectors. The relation
a(l, 2, N+ D02, 1,0 +e(1,0,0 =
implies a+2b+ec=10
20+0=0 and 3a=0
Matrix form of these homogeneous equations is

12 1][a] [0
2 10| ([s]_]0
30 0]|c| |0

Since =3{0-ND==-3=0

GO 00
O b
D0

The given equations have only null solution.
a=0,b=0, ¢=0is the only solution.

Therefore, the vectors (1, 2, ), (2, 1, 0) and (1, 0, 0) are linearly independent.
and hence form a basis of B

~ Example 19. Find a largest linearly independent set of vectors contained in the

set{~ L0, 1, (-1 1 2,(LL20),(3 1 21,1 4 as a subsel of RS

Sol. Lel S={-1L01.(-1,1.2.(1,2,0..1,2)(1, 1, 9}

We start from left to right.

{(= 1, 0. 1)} being a singleton set of non-zero vector is L.1.

Since (=1, 1,2y 2a (= 1,0, 1) for any scalar a.

(— 1.0, I)and (- 1,.1. 2) are linearly independent.
Now, a1,0, D+b=1,1.2)+c(1,2,00=0
= —a-b+ec=0
b+2e=0 and a+2b=0
Solving these, we have
a=0,b=0.¢=0.
The vectors (= 1, 0, 1), (= 1, 1, 2) and (1, 2, 0} are linearly independent.

We know that. (By Art. 44) every set of (1 + 1) or more vectors of an r-dimensional
vector space is L.,

Also we know that. dimension of R% is 3.

~ Kvery sel of four vectors and five veciors of R® is L.D.

Hence, the largest linearly independent subset of 8 is

{10, 1,12, 1,2 0

Remark 1. A largest linearly independent. subset. may not be unique. For instance, in
the above example. one can verify that the set {{— 1. 0. 1), (= 1. 1, 2), (3, 1. 2)} is another largest
linearly independent subsaet. of &8,

Theorem 25. The sequence of non-zero rotws in an echlon matrix E is a basis of
‘the row space of E and of every matrix equivalent lo E,

Proof. If E = 0. then the set of non-zero rows of E is ¢ and the result is true
because the only matrix row equivalent (o E is O whose row space is {0}. ITE # 0, then
the set. of non-zero rows in E spans the row space of E and this set is L.I. Hence, this
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sef is n basis of the row space of E and therefore, of the row space of every matrix row
equivalent io E.

This theorem provides a very efficient method for dealing with numerical problems
but, it must be kept in mind that this method usually produces u basis which is not a
subset of the given spanning set as is clear from the following exam ple

Example 20. Find o basis of the subspace of RY spanned by the set

(1.0, 12,0230 1,1,1,1,-2,(135 8- Dy Find its basis and dimension,
Sol. Consider the given vectors as row malrices.
+. The suhspace W spanned by the given vectors is the row space of the matnx

101 2
230 1

A=l1 11 -2
153 -1

Reduce A to echelon matrix K (where leading entry in a row may not be 1) given
by

101 2

B=|9 5 & 9| (Verify )
0000

Then, the set of non-zero rows of E is a basis of W. So, the basis is {(1, 0, 1, 2),
. 1,2, 0, (0. 0, 8, H}. Hence dimension is 4.
Example 21. Extend {(1, 2, 3, 4}, (0, 0, 5, 6)} to a basis for R
Sel. Consider the given vectors as row matrices.
Write down an echelon matrix whose rows include the given vectors, namely,
1 2 3 4
0100
0 05 8
0 001
(Leading eniry in a row in echelon form may not be 1)
The rows of this matrix written in any order form a L.1. sev of 4-vectors and
since dim (RY =4
This is a basis of R? and is an extension of the given L.L set.

Theorem 26. If W is a sub-space of a finite dimensionad vector space V, then
dim W < dim V. Equality holds only when W=V,

Proof. Lei B={r. 1, . v} be a basis for V.
Then, B gencerates V dl’ld hdb n elements.

Any set of LI vectors in V and therefore, any set of [..l. veclors in W cannot.
have more than # veetors, Henee, dim W £ dim V.

When dim W = dim V, a basis for W, is 4 set.of i 1.1 vectors of V, whose dimension
is also n. 8o, B is also a basis for V. This means V=<B>=W,

Theorem 27. If W, and W, are two sub-spaces of a finite dimensional vector
space V, then dim (W, + W, ) = dmr W, +dim W, dim (W, H o).

Proof. 1.t dim W, =m, dimW, = p, dim (W, n W)
=r, and dim V= n.
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Let {vy, vy, ...... v} be a basis for W, n W,

This is a L.L set.in W, n'W, and therefore, in W, as well as W, So, it can be
extended to a basis for W, say

U Vg e Ul o, 1, ) D
and to a basis for W, say
H{AA L L 7R " ~.(2)

We shall show that the set
AR Uge iy Uy g Mgy oy B 08 e W)
is a basis for W, + W,
To show that A is a basis for W, + W, we shall show () Ais L1 in W, +W,
) <A>=W +W,

To prove (i), let us assume that

r "
Z ar;+ Z b, + f cu; =0 (3
i=1 i=r+1 i=r+1
- "
= Z ap; + E bu,=- i e
i=1 i=r+1 i=r+l
. {4)
= ¢ {say).
The vector v € W, as [.FL.8. is in W
u1s also in W, since R H.S. of (4) is in W,
Thus, re W, nW,,
Thercfore, 1 can be cxpressed wniguely in terms of v, 1y, ..., 1,
¢ e vy, .} is a basis for W, 1 W)
= 2 d; for suitable d;'s
i-1
)]
Hence, from (1), Z dy + i e, =10
i=1 i=r+1
..(6)
But {ry, vy, ..., v, urp} is L.I
So, each d;'s and ¢/s is zero.
Puiting e, = I =c,= 0in (4). wo have
z au;+ z bu,=0 (D
F=1 i=r+1l
But ey, vy, oty n b is L

So. each of a/'s and b/s is zero.

cquation {3) implies that each scalar involved is zero, Hence, A is 1.1
To prove (if), let wr e W, + W, be any element.
Then, w=r+vwherewe W, and ce W,,
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= 2 au, + 2 ba, + z a/v, + Z b/w,
i=1 Emp o+l i=1 i=r+l
..(8)
NOTES for suitable scalars a5, bs, a;’s. bs.
From (8. we find thal e e <A >,
Hence, W, +W,g<A>
Since AgW +W,
<A>c W +W,
Hence, W+ W, =<A>

Now, dim (W, + W,) is the number of elements in A
=r+{m-rt+t{p-N=m+p-r
= dim W, + dim W, ~dim (W, n W)
This completes the proof.

Cor L. If a finite dimensional veclor space V(F) is the direct sum of its sub-spaces
W, and W, then dim V=dim W, +dim W,

iFor, Let V=W, &W,
= V=W, +W, and W, n'W,={0}
Now dim V = dim (W, + W)

= dim W, + dim W, — dim (W, n W)
=dim W, + dim W, -0
= dim W, + dim W, - W,nW,={0})
Example 22. In. R3(R), let W, and W, be the sub-spaces generated by i(1, 0, - 1),
(21, Nand {(- 1, 2, 2, (2 2 -1, (2 -1 2,3 0, 3} respectively, Find the
dimensions of W, W, W, W, and W, + W,
Sol. Since the set {(1, 0, — 1), (2, 1, 3} generates W and it has only two elements,
so that dim W, €2,

Since (1,0, -D=za, 1, Ploranyne R
The given set {(1. 0. = 1), (2, 1, 3)}is L.L and hence is a basis of W
dim W, =2

Since W, is a sub-space of R'(R).

- dim W, < dim R3*R) = 3.

Since the set {(= 1, 2, 2), (2, 2, — ). (2, - 1, 2), (3, O, — )} generates Wé, the
maximum L.I. subsel of it is a basis of W,

Now, (2,2, — 1), (2, - 1, 2),(3,0,-B}isa L1, set (verify !} and is a maximal L.L

set also.
dim W, = 3.
Since dim W, = dim R3(R).
- W, = R*,
Now, W, AW, =W n RP=W,.
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dmW nR*=dimW, =2
dim (W, + W,) = dim W, + dim W, —dim (W, "Wy =3+2-2=13

8.25. IDENTICAL SPACES

Definition. Tuwo vector spaces V, and V, (of the same dimension) are called
identical spaces if and only if every vector of V, is a vector of V', and conversely, i.e., if
and only if each is a subspace of the other.

Example 28. Show: that the vector space spanned by the vectors v, =(1, 2, 1),
vy =(1, 2, 8 and v, =(3, 6, 5) and the vector space spanned by the veclor w =00, 0, 1)
and w, =(1, 2, 3) are identical.

Sol. Since (1, 2, 3) # a(1, 2, 1) for any real number a.

1, and vy, are linearly independent.

Bul, vy = 2o+,

The space spanned by ©,. vy, 14 is the same as that of v, and v,
The veciors ', Uy Uy Span a space V| (say) of dimension two.
Sinee (0, 0, 1) = (1, 2, 5) for any real number ¢.

The vectors i and 10, are linearly independent and span a space V, (say) of
dimension two.

. L=l _ 1,
Next, we see that. W E gy — 5T
and 1w, = 2p, ~
and vy =y~ Ay
P )
vy = 1w, — 20,

Now. any vector awe, + biry of V, is a vector
(Fa+2b),— Ga+ by ol V,
and any vector v + du, of V| is a vector
e+ dypey~ (de + 2dyue, of V.
Hence the spaces V, and V,, are identical.

Example 24. If v, =(1, 2, 1), v, =(3, 1, 5) and 1y =(3, — 4, 7) are veclors int R®,
prove thol the subspaces spanned by S =1{v,, v and T={r, v, v} are same.

Sol. Let. W, =LE) and W,=L(T)

To show : W, =W,

Now, ScT=LEclM=W, W, A
Let ro=ar, +br,;a be R

= G, -4.D=a(l. 2, D+ 53, 1.6)=(a+3b, 2a+ b, a + 5b)
= a+3b=32a+b=-4,a+db=7

Solving we get, a=-3.b=2

- v, =— 31, + 2u, D)
Let re W,=1(T

v=ogry oy, Fogty, o€ R

Tector Spaces

NOTES

Self-Instructional Material

139




Algebra

NOTES

= oy gty o, (— 3, + 21y) By (2)]
= (o, — oy)v, + (o, ¥+ 2a ),

= ve W, = L(S)

Hence W, oW, )]

from (1) and (2), W, =W,

QUOTIENT SPACE

8.26. COSETS

Let W be a subspace of a vector space V(F). For any elementve V, the subset of V

defined by
{v+w | we W is catled the left coset of W generated by v and is denoted by
r+W

Similarly, the subset of V defined by

o+ v ) 1 € Wi is called the right coset of W generated by ¢ and is denofed by
W+
As the veclor space V(F) is commutative w.r.L. addiiion '+,
vHw=w+y, voe Vandwe W
o that 1 + W =W + 1 ; Le., the right eosets of W become identical with the left coserts
of W. Hereafter, each is called a coset of W in V generated by v

If1e W.thenn+we Wioreachwe W (-~ W is a sub-space.}

vt Weste+w ! we Wi=fu | e Wi=W (where v+ =)

Hence W itself is a coset generated by any one element of L1

In particular, W = 0 + W, where @ is the additive identity in V.

Thus, all cosets of W with the elemenis of V which are also elemends of W are
identical with the coset W and cosets by the elements of Viehich are nol elements of W
are different.

Theorem 28. If Wis a sub-space of a vector spuce V) and u, v e ¥V, then
u+ W= +iWiffu-rell

Proof. (Y Let. u+W=r+W,

By definition of equality of two sets, it means that fu+ 1w, e u+ W, then there
must be some element. © + w, in ©+ W such that

w+ e, = v+ uy, where wy, w e W
= U-—1= Ny~
As 10y, 105 € W and W is a sub-space, u, — 1w, € W,
Hence, u-re W
(i) Conversely, letu—rve Wioruy,re V.
Now, for w e W,
ntw, =0+ut =p—u+utuw
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=v+ -1+, =1+, where i, =@—+tiw, eW
(cu-vreWanduw, e W= -1+, e W)

u+iw, =vtu,lorw,e W

= wtuw € r+WwW
= utWeor+ W,
Similarly, e+Wou+ W
Hence, uFW=v+W,

Let us now consider the set {u + W | v e V} of all cosets of a sub-space W in a
vector space V(F). This sel is denoled by VAW In this sel of cosels, we defline addition
{+) and scalar multiplication () as follows :

+W+ @ +Wi=u+0)+W. foru,reV
and am+Wi=au+W, YVaeF ue V.
{(which we just write a(u + W) = au + W).
Note that in (i + W) + (v + W), '+ is some sort of addition of two sets, while in
n+ W, '+ is another type of addition and in (. + ) + W, '+ in u + ¢t is the vecior
addition of elements of V. Similar is the case with scalar multiplication ©. ",

In the following theorem, we shall prove that. the set. of cosets V/W is a vector
space w.r.t. the addition and scalar compositions defined above.

Theorem 29. If W is a subspace of a vector space V(F), then the set V/W
= fu+ W/u e V}of all cosets of Win Vis a vecior space over Fuw.r.t. addilion and scalar
compositions defined by .

W+ M+e+M=@+r+Wure V
and - afu+W=au+ W YaeFue V.

Proof. Foru, ve V.u+re Vand aue V, and hence (11 + t) + W and an + W are
certainly in VIW,

Firse of all, it is necessary to show that. the two compositions are well defined,
i.e., they are independent of the particular representative chosen to denote a coset.

"To show that addition is well defined, i.e., show that if 1t + W =1+ W for 1,
weVandr+W=1"+Wforn, v € V. then

W+ W=+ o)+ W,
Now, HtW=p'+W = u-uwew
and ntW=v"+W = r—-t'eW.
Since W is a subgpace. therefore,
Hu—weW and v—-t'eW

= (-uw)+(t—1Ne W {~* W is a sub-space)
= M+)-@@+iHeW
= W+ + W=+ +W (By the Theorem 54)

= {U+W)+e+W)y=+ W)+ @ + W)
showing that addition is well defined.
To show that scalar multiplication is well defined
Now, u+W=uy+W = u-wuwew (By Theorem 54)

= aft—uYe Wilorae F (* W is a sub-space)
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Algebra = au—an' e W
=- au+ W= +W
Hence. n+W=u' +Wandae F=an+W=au'+ W
NOTES showing that scalar multiplication is well defined.

Now (o show that VAV is a vector space, we have (o verify the axioms for a
vector space as below :

Addition satisfies the following properties :
1. Associativity. Foru, v, we V,
[ + W)+ @+ W) + (e + W)

=[(u+ vy + W]+ (i + W) (By def. of addition)
S{u+r+u)+ W (By def. of addition)
=(u+ WY+ (v + w) + W] (By def. of addition)

=+ W)+ [+ W)+ (e + W) (By def. of addition)
Addition is associative.

2. Commutativity, Foru. re V,

@+W+ @ +Wy=u+)+W By def. of addition)
=@+t +W (- Vis commutaiive)
=+ W)+ @+ W) (By def. of addition)

addition is commutative.

3. Existence of additive identity
0+ We VW for 0 e Vsuch that for
H+We VW, 0+ W)+ @ +W)=(0+1)+W=u+ W
(0 bring additive identity in V)
Hence, 0 + W{= W) is the additive identity in V/W.
4. Existence of inverse. For each 1 + W e VAV,
3 (— i)+ W e VAW such that
w+rWy+ () +Wy=mu+ () +W=0+W (- u+r—w=0inV)
=W.
Thus, — e + W is the addilive inverse of 11+ W,
Scalar multiplication satisfies the following properties :
letu+ W, r+We VIWand a, b e F. Then,
Oaltu+ Wi+ @+ W]=allv+ )+ Wi=alu+ )+ W
=(ou+avy+ W
= (gu + W) + (e + W)
=af + W) + a(r + W)
(i) (a+ b+ Wy=(@+hu+W=(m+by+Ww
= (qu + W) + (bu + W)y = a(e + W) + btz + W)

(i) ab(e+ WYy = (abys + W
= a(bi) + W = atbu + W) = alblu + W
(1 Tw+Wi=(lw+W=u+W

Henee, VA is a veclor space over F,
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8.27. QUOTIENT SPACE

The vecior space V/W formed of all cosels in V(F) of a sub-space W and defined
above, is called the quotient space of Vu.r.t. W,

DIMENSION OF A QUOTIENT SPACE

Theorem 30. If W is an m-dimensional sub-space of an n-dimensional vector
space V(F), then dimension of the quotient space V/Wis n-m.

Le dim (V/W) =dim V- ddim W
Proof. et the set. B={u. u,, ... Ji eV
be a basis of W, where m £ n. Then B can be extended to a basis of V. Let the set.
Bomfu by o 0, W U}
be a basis of V,
Consider the set S of all cosets of W by vectors i, , 4, o ..., 1t, € V (but not
in W).
Le., S T W W, L, FWHC VW,

We claim that. S is a basis for V/W,
To prove it, firstly, we show that S is L.I.

Let a,,.t ¢, € F such that

ppd QY trreran

i3

Z a,u,+ Wy=0 (where 0 is the additive identity in V/W and is
fzm+1
infact W).
= Gy Qo * W Ha, o WY e, e+ W) =W
= @ M TWH(a, o, ot W+ +au, + W) =W
(By scalar multiplication composilion in V/W)
= Oy U ¥ O+ T )+ W =W
= Ay Uy T U1 ot tau €W
= (e Mgy T g W T+ a1, can be expressed as a linear combination
of elements of B (- Bis abasis of W)
= W Vo T O W0t +tau,
=bau +bu,+ ... +b u_ forsomebseF,
n m
= z ot Z =b)u;=0.
P=m+l iel
=2 Uy =00, ,,=0, .., ¢, =0and b, =0,b,=0,..., b, =0
(B, is a basis of V)
= §is L.L
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Secondly, to show that VAW = L(S).
Consider any element u + W(for u# € V) of V/W.

7l
Then, u+ W= [z aiu,-] + W (~+ B, is abasis of V)
i=1

:[i a.-u:]"'[ i ai“f] W= 2": au; + W
i1

[=m+l (mm+l

M
Z a;i; being the linear combination of clements
i=1
of the basic set B of W, is in W |
= Z a; (1, + W),
i=me+l

which is a linear combination of elements of S,
1+ We L(S).

[{ence, VW < L(S).
Also, L(S) g VIW.
Henee, VIW = [45).

Therefore, S is a basis of VAW,
. dim (VAX) is the number of elements in 8,
fe., dim (VW) =n—m =dim V—-dim W,
Example 25. If Wis a sub-space of V = V(R) generated by {(1, 0, 8), (1, 1, o,
find VAW and its basis.
Sol. Clearly (1. 0, 0) and (1, i, 0) are L.1. and therefore, form a basis of W.
This basis can be extended to a basis for V.

One can check that (1,0, 0), (1, 1, 0) and (0, 0, 1) are L..l. and hence form a basis
of V. '

VIW={u+W |ueV}
={a(0,0, D+W | ae F}
¢+ (1,0 Oand (1, 1, 0) are in W)
One of its basis is {(0, 0, 1) + W}

SUMMARY

e  Anon-empty set F containing at least two elements and with two binary operaticns,
denoted additively (+) and mulriplicatively (), is called a field

» A subset § (containing more than one element) of a field F is ealled a subfield of F if
5 is a field w.r L. the addition and mulliplication in F.

e The necessary and sufficienl condition for a non-empty subsel W ol u veclor space ¥V
(F) to be a sub-space of Vis that W is closed w.r.t. veetor addition and scalar multiphi-
cation in V.

s Avoctor #€ Vis said to be a linear combination {[..C.) of the vectors 11, £, . o1

€ Vil there oxist seatars &, @y, ..., a,€ Fsuchthat v=a v tagtyt ... +auv

o
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s The span (or linear span) of a subset. S of a vector space Vis the set.of all finite linear
ecombinations of S.

* A space which arises as a set. of all linear combinutions of any given set. of vectors, is
said to be generated {or spanned) by the given set of vectors. The given set. of vectors
15 said to be the set of generators of the space.

»  Veciors which are not linearly dependent are called linearly independent, (L.1.)

*  The non-zere rows in an echlon matrix form a 1.1, set.

¢ The number of vectors in a basis of & finitely generated vector space is called the
dimension of the vector space V and is denoted by dim V,

*  Two vector spaces V, and V, (of the same dimension) are calied identical spaces il
and only if every vector of V| is a vector of V, and ronversely, i.e., if and only if each is
a subspace of the other.

REVIEW QUESTIONS

(@) Define a vector space and give one example of a vector space over the field of reals.

() Deline vector space and show that the sel C of all complex numbers is a vector space
over the set R of all reals w .r.t. usual addition and scalar multiplication.

Prove that R is & vector space over the field Q of rationals where vector addition is
defined by
v+u=u+up, Vu, ne R and sealar multiplieation is defined by :
a.u=aw whereae Q ue R.
Let R be the set of all positive ruul numbers. Define the operalions of sddition and
sealar multiplication as follews ;
vtves=uwy, viLvre RY
at=u* Yue R and ae R
Show that B* is a real veclor space (f.e., veclor space over R),
Prove that the set of all diagonal matrices of same order over R, is a vector space w .t
matrix addition and sealar multiplication.

¥

Show that the set of all matrices of the form [ﬁ_; J:] where x, y€ C. is a veclor

space over C w r.t. matrix addition and seatar multiplication.

Show that.
() C is a vector space over C (i) Cis a vector space over R
(i£8) R is not a vector space over (fv) Q is not a vector space over R

under usual operations of addition and seatar multiplication.
Show that the set Q(ﬁ) ={a+ b2 |a be Q} is a vector space over  w.r.t. the
compositions :
@+ by2)+(c+dy2)=(a+c+ (h+d)42)
and (g + b2 y=ao+ baof2
where @, b. £, d and « are all rational numbers.

Show that W={(x. %) | ax+ by = 0. x. y € R} where a, b are fixed real numbers, is a
subspace of R2,

Show that W= J| ¥ 0
00

matrires,

x€ R] is a subspace of the vector space V, of all 2 X 2 panl
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12,

13.

14.

15.

16.

17,

18,

19,

20.

21.

22.

23.

24.

25.

Write the vector @ = {1, = 2, 5} as a linear combination of vectors ¢, = (L, 1, 1), o, =
(1,2 and oy =(2, - 1, 1)in the vector space V, (R).

2 0
Faxpress the matrix [4 _ 5] as a linear combination of the matrices

0 -3 00 2 3
4‘\=[2 0]'3:[2 1] and C=[0 5].

For what value of % will the vector a = (1. &, 5) in V,(R} is a linear combination of
vectors B= (1,~3, 2 andy=(,-1. 7).

Con the polynomial 332 —Bx+ 7 be expressed as a linear combination of the
polynomials 2 + Tx - 3and x¥*+ 34~ 57

Show thai in R the subspace

W= K0, v,2) | ¥ ze R}is generated by

M 0, 2.~ 1) and (0. 1, 2) (id) (0, 2. 3) and (0, 3, 5).

e, =@ -1, r,=(0021and v, ={0.2-1), show that 1, v, v; are linearly
independent. Express the vectors (3, 2, 1), (3, 1, 1) as a linear combination of 11, 55, 11,
Show that the vectors v, =(2,8,-1.-1), v, =(1,=1,-2,-4). v, =@, 1,3,-2),v,=,
3.0, 7) form a linearly dependent sot. Also, express one of them as a linear combination
of the others.

in the vector spuce of polynomials of degrees < 4, which of the following sets are linearly
independent. ?

ODx+1, 3T+ L ad+2v+1 2+ 83 -1, o -x
i 1+x x+x2 a2+ 2% 0+ 4, V- |

Show that the thres row vectors as well as the three column vectors of the matrix
2 3 1
7 -6 17
5 2 7

- - a = - a - +
Find the relation vn a, b, ¢ such that the matrix I:b {,} is 1 linear combinution ol

[o -1} [-3 o] o o)

A set of vectors is linsarly dependent. Show that. at least one member of the set is a
linoar combination of the remaining ones.

are linearly dependent.

Let &, b, 1 be elements of a veclor space V(F) and 2, be I.

Show thai n, v, 1w are LD 1+ av + b, v, @ arve 11D,

Show that the 4 vectors

(1,0,0, (@, t,0),{0,0, Dand (1, 1, 1) in V,(C) are ],.D. but any three of them are L.1.

1 1
Find @ if the vectors [— 1:| . [ 2, [g] are linearly dependent.
31 1-3 1

Test. for 1.1, of vectors

©0.0,1,1);:(,0.1,0,13:0,1,0, 1,1 ; (1,1, 1.1, 1) over V(Q).

Show that the following sets of vectors constitute a basis of R%.
ME3DET0 1L -1 (H-1.1,003-5,E01

Gi @ —1.0), (3,5, 1), (1, 1. 2).




26,

27.

28,

29.
30.

31.

32.

33.

34,

35.

Show that the following sets of vectors are basis for R1.

N1.0.0,0,(0,1.0,0), (0,0 1,0L0.00 1)

D (.0.0,00,0,2,0 0,(1,2,3 M, (20 4.

Determine a basis of the sub-space spanned by the vectors
©3,1.2),0,1.3.€ 101101 ‘.__

Extend the following scts of vectors 10 form a basis of R?;

@0, 1,2), 2, -1, 41 G (L. 2,3), (2 -2, 0).

Extend the set {3, — 1, 2) to twao different. basis for V,(R).

{@) Show thal in R”, any n + 1 vectors are linearly dependent. Hence, deduce Lhat if v,,
Pge evrens v, in R arc lincarly independent, then every vin R" is a lincarly combina-
tian of 1, 1y, ... N

(b} [[ V is a n-dimensional vector space, then prove that every set of (n + 1) vectors in V
is linearly dapendent.

[Hint. Tt is Art. 50]

Show that any set v, v,, ..., t, of linesrly independent vectors in R" cun be extended Lo
a basis of R".

Show that the subspace generated by (0, 0, P and (1, 1, 1) is of dim 2.

If W is the subspuce of the vector space V = V(R) genersted by (1, 2), find then the
quotient space VAW and its basis.
If Wis a subspaee of the vector space V = V_(R) genavated by {(1. 0, 0), (0. 0, 1}, find the
quolient space VAW and its basis.

If V iz the vector space of all 2 * 2 matrices over R and

._Jla b
W‘{[O c]a,b,ceR}

Then find a basis of V/W.
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